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Abstract
Video Moment Retrieval (VMR) aims to retrieve temporal
segments in untrimmed videos corresponding to a given lan-
guage query by constructing cross-modal alignment strate-
gies. However, these existing strategies are often sub-optimal
since they ignore the modality imbalance problem, i.e., the
semantic richness inherent in videos far exceeds that of a
given limited-length sentence. Therefore, in pursuit of bet-
ter alignment, a natural idea is enhancing the video modal-
ity to filter out query-irrelevant semantics, and enhancing the
text modality to capture more segment-relevant knowledge.
In this paper, we introduce Modal-Enhanced Semantic Mod-
eling (MESM), a novel framework for more balanced align-
ment through enhancing features at two levels. First, we en-
hance the video modality at the frame-word level through
word reconstruction. This strategy emphasizes the portions
associated with query words in frame-level features while
suppressing irrelevant parts. Therefore, the enhanced video
contains less redundant semantics and is more balanced with
the textual modality. Second, we enhance the textual modal-
ity at the segment-sentence level by learning complemen-
tary knowledge from context sentences and ground-truth seg-
ments. With the knowledge added to the query, the textual
modality thus maintains more meaningful semantics and is
more balanced with the video modality. By implementing two
levels of MESM, the semantic information from both modal-
ities is more balanced to align, thereby bridging the modality
gap. Experiments on three widely used benchmarks, includ-
ing the out-of-distribution settings, show that the proposed
framework achieves a new start-of-the-art performance with
notable generalization ability (e.g., 4.42% and 7.69% average
gains of R1@0.7 on Charades-STA and Charades-CG). The
code will be available at https://github.com/lntzm/MESM.

Introduction
Video moment retrieval (VMR) poses a meaningful and
challenging task in video understanding. Given a natural
language query that describes a moment segment in an
untrimmed video, VMR aims to determine the start and end
timestamps of the segment in the video (Anne Hendricks
et al. 2017; Gao et al. 2017). Therefore, it necessitates an
accurate understanding of both the video content and the
language query, as well as their alignment (Li et al. 2023b).
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Figure 1: We creatively analyze the modality imbalance
problem in VMR and the comparison between existing di-
rect alignment and our balanced alignment, which mani-
fests in two levels: (a) Frame-word level, the description of
a word should typically align with specific parts within a
frame (balanced) rather than the entire frame (direct). (b)
Segment-sentence level, there is some semantic information
in the segment but absent in the given sentence. The segment
should typically align with the expanded sentence semantics
(balanced) rather than the sentence only (direct).

Modality alignment in existing VMR methods is primar-
ily implemented at two distinct levels. Some previous stud-
ies (Li, Guo, and Wang 2021; Liu et al. 2022a) align frame-
level and word-level features, devising efficient alignment
strategies to accurately regress the moments. Another line
of methods (Chen and Jiang 2019; Wang et al. 2022) gen-
erates proposals to extract segment-level features, align-
ing them with sentence-level features to identify the most
matching segment as the answer. There are also some meth-
ods considering both the frame-word and segment-sentence
level (Wang et al. 2021; Moon et al. 2023). Normally, they
first align frame-level and word-level features, then pool the
segments for further alignment and moment retrieval.

Despite the achievements of existing alignment strategies,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3855



most of them disregard a crucial modality imbalance prob-
lem at both the frame-word and segment-sentence levels, re-
sulting in a modality gap. At the frame-word level, as shown
in Figure 1(a), the words in a sentence are typically aligned
with specific parts within a frame rather than the entire frame
(e.g., the action stands up), which poses difficulties to under-
stand the fine-grained relationship between two modalities.
Figure 1(b) shows the case of the segment-sentence level.
First, the semantic information of the segment (e.g., frame
#3 to #5) surpasses the details provided in the given sentence
and humans can easily infer missing information (e.g., from
the sofa). Second, the sentence itself may be ambiguous for
VMR due to the annotation subjectivity. For example, frame
#5 captures the action of turn around, which is entirely ab-
sent in the given sentence. Both scenarios result in a negative
impact on video understanding. In summary, due to the in-
herent semantic richness of the video modality, the textual
modality should only align to a subset of video modality at
both levels, and direct alignment with the entire modalities
thus results in sub-optimal solutions.

To tackle the problem, a natural idea is to enhance both
modalities simultaneously. The video modality should be
enhanced to filter out irrelevant semantics for the query, and
the textual modality should be enhanced to capture more
knowledge related to the segment. Therefore, we propose
a novel framework named Modal-Enhanced Semantic Mod-
eling (MESM) to enhance them at two levels. At the frame-
word level, we enhance the video modality by reconstruct-
ing words via a weight-shared cross-attention mechanism.
Since the words typically refer to certain portions of the
frames, the reconstruction renders the model more sensi-
tive to these semantically relevant portions and suppresses
irrelevant ones. Consequently, there is less redundant seman-
tic information in the output enhanced video feature, thus
more balanced with words. At the segment-sentence level,
we enhance the textual modality by learning complemen-
tary knowledge for the given query. As shown in Figure 1(b),
the absence of semantic knowledge typically originates from
both the given sentences within a video (e.g., sofa, under-
lined in red) and the scenes of video segments (e.g., turn
around, underlined in purple). Therefore, we can acquire the
absent semantics by learning from both sources. We mask
the given sentence and regenerate the semantic knowledge
supervised by the corresponding segment. As the generated
knowledge complements the query, the semantic informa-
tion of the query becomes stronger and is thus more bal-
anced with the segment. Extensive experiments show our
MESM achieves new state-of-the-art performance on three
benchmarks and the out-of-distribution settings, demonstrat-
ing improved modality alignment and generalization.

The main contributions of our paper can be listed as fol-
lows. (1) As far as we know, we are the first to analyze
the modality imbalance problem in VMR from both the
frame-word and segment-sentence levels. (2) To alleviate the
modality imbalance problem, we propose a novel framework
MESM to model the enhanced semantic information from
two levels, balancing the alignment to bridge the modality
gap. (3) Extensive experimental results demonstrate the ef-
fectiveness of the proposed method.

Related Work
Video Moment Retrieval. Different from Video Re-
trieval (Li et al. 2022b), Video Moment Retrieval is a cross-
modal task that emphasizes the ability to understand both
video and textual modalities, including their alignment. The
alignment can be typically split into the frame-word and
segment-sentence levels. Some methods align the frame-
level feature with the word-level feature (Yuan, Mei, and
Zhu 2019; Zhang et al. 2020a; Liu et al. 2021a; Li, Guo,
and Wang 2021; Liu et al. 2022a). Normally, they design
various alignment strategies to directly predict the start and
end moments. Other methods focus on aligning the segment-
level feature with the sentence-level feature (Gao et al. 2017;
Chen and Jiang 2019; Zhang et al. 2020b; Wang et al. 2022).
They usually generate proposals to obtain the segment-level
feature and align it with the sentence-level feature to select
the best matching segment. There are recently some methods
implementing the alignment from both levels (Wang et al.
2021; Sun et al. 2022; Moon et al. 2023; Wang et al. 2023a).
SMIN (Wang et al. 2021) carefully designs multi-level align-
ment based on 2D-TAN. DETR-based methods (Lei, Berg,
and Bansal 2021; Moon et al. 2023; Wang et al. 2023a; Li
et al. 2023a) usually do the frame-word level alignment, and
then pool the segments with learnable proposals for further
interaction, which yields promising results. However, most
of these methods overlook the modality imbalance problem,
leading to the modality gap.
Modality Imbalance Problem. The modality imbalance
problem seems widely existing in video-text representation
tasks. (Ko et al. 2022) points out the non-sequential align-
ment problem between the video and the text due to the am-
biguity of labeling and designed a differentiable weak tem-
poral alignment. (Wu et al. 2023) used large language mod-
els to generate auxiliary captions for a video to complete
the video-text retrieval task. In VMR, the modality imbal-
ance problem is also crucial but few researchers focus on it.
(Ding et al. 2021) builds a support set using generative cap-
tions, considering the co-existence of some visual entities.
Still, many methods only use one video-query pair as their
input, ignoring the causal relationship among different sen-
tences of segments within the same video and simply con-
sidering these sentences as negative ones (Wang et al. 2022;
Luo et al. 2023). Different from them, we utilize this in-
formation with the video modality together, enhancing both
the video and textual modalities, leading to a more balanced
alignment and bridging the modality gap.

Proposed Method
Overview
Problem Formulation. Given a pair of an untrimmed video
V = {fi}Nv

i=1 and a language query Q† = {w†
i }

Nw
i=1, VMR

aims to predict a video segment of moment m̂ = (t̂s, t̂e)
that is most relevant to Q†, where Nv and Nw represent the
number of frames and words, respectively, t̂s and t̂e indicate
the predicted start and end time of the video segment.
Pipeline. Figure 2 shows the pipeline of the proposed
MESM, which consists of three steps. First, an offline video
and text feature extractor is utilized to obtain frame-level and
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Figure 2: An overview of our MESM, which includes the feature extractors, the proposed Enhanced Cross-Modal Aligner
(ECMA), and a transformer encoder-decoder network. We model the enhanced semantic information at two levels in ECMA,
which consists of the Frame-Word level MESM (FW-MESM) and the Segment-Sentence level MESM (SS-MESM).

word-level features. Then, we design an Enhanced Cross-
Modal Aligner (ECMA) to alleviate the modality imbalance
problem and complete a more balanced alignment. Last, a
transformer encoder-decoder network is utilized to encode
the aligned feature and decode the moments from learn-
able spans. Different from many methods that directly align
the features of different modalities, we focus on balancing
the alignment through modal-enhanced semantic modeling
from both frame-word and segment-sentence levels in the
proposed ECMA, bridging the modality gap.

Feature Extractors
Feature extractors are necessary for downstream tasks (Du
et al. 2022; Zheng et al. 2023; Zhang et al. 2023). Followed
by most VMR methods (Zhang et al. 2020b; Wang et al.
2023a), we use offline feature extractors to get pre-obtained
features from the raw data of the video and text. Generally,
given a video extractor and a text extractor, we use train-
able MLPs to map the extracted video feature and text fea-
ture to a common space. Given a set of language queries
Q = {Qi|i = 1, ...,K} belonging to the same video V ,
the mapped video and text feature can be represented as
Fv ∈ RLv×D and Fq = {F i

q ∈ RLw×D|i = 1, ...,K}, re-
spectively, where K is the number of sentences in the video,
D is the dimension of the common space. Lv and Lw are the
lengths of the features. We use F †

q ∈ Fq to represent the fea-
ture of current query Q† for moment retrieval, and thus Fv

and F †
q are frame-level and word-level features, respectively.

Enhanced Cross-Modal Aligner
This section presents our proposed Enhanced Cross-Modal
Aligner, comprising three sub-modules: Frame-Word level
MESM (FW-MESM), Segment-Sentence level MESM (SS-
MESM), and the Modality Aligner (MA). FW-MESM en-
hances the video modality at the frame-word level by em-
phasizing the query-relevant portions of frame-level features
and suppressing irrelevant ones. SS-MESM enhances the
text modality at the segment-sentence level by generating

a complementary token derived from both the query set and
the ground-truth segment. Given that FW-MESM and SS-
MESM generate enhanced features to address the modality
imbalance issue, we subsequently implement MA to achieve
the ultimate cross-modal alignment.
Frame-Word Level MESM. Since words often refer to spe-
cific parts within frames (Ge et al. 2021, 2022), we en-
hance the frame-level feature to filter out redundant parts
and design an efficient semantic modeling strategy based on
a weight-shared cross-attention mechanism. It is proven that
weight-shared self-attention can process data from different
modalities (Bao et al. 2022; Wang et al. 2023b), and we
expand it to the case of cross-attention. As shown in Fig-
ure 3, the output of cross-attention F enh

v (the left branch)
symbolizes the video feature targeted for enhancement. The
enhancement necessitates the acquisition of fine-grained dis-
crimination ability to emphasize word-relevant parts within
the frames, and we implement it by an auxiliary masked lan-
guage modeling (MLM) task with the weight-shared cross
attention (the right branch). Once the ability is obtained, the
shared weights provide a bridge to enhance the output.

Specifically, we first treat the projection of frame-level
feature Q = W vFv as query, the projection of word-level
feature K = W kF †

q and V = W vF †
q as key and value, where

W q , W k, W v are linear projection matrices. Therefore, the
output feature F enh

v ∈ RLv×D can be formulated as:

F enh
v = Fv + MLP

(
softmax

(
QK⊤
√
d

)
V
)
, (1)

where d is the dimension of the query, key and value. To
enhance F enh

v , we exchange the modality of the input and
employ MLM. During the MLM, 1/3 of the words are ran-
domly masked. If we denote the masked word-level feature
as F †m

q , and the modal-exchanged inputs are Q∗ = W qF †m
q

for query, K∗ = W kFv and V∗ = W vFv for key and value,
the reconstructed feature of words F †r

q ∈ RLw×D can be
calculated similar to Equation 1. Then a fully connected
layer and softmax operation is utilized to get the probabil-
ity distribution P (F †r

q ) ∈ RLw×Nvocab of the words, where
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Figure 3: The pipeline of FW-MESM. The weights of the
cross-attention are shared, inputs are exchanged for MLM.

Nvocab is the vocabulary size. We use the cross-entropy loss
to measure the similarity between the reconstructed words
and the original words, which can be formulated as:

Lfw = − 1

Lw

Lw∑
j=1

z†j logPj(F
†r
q ), (2)

where zj is the label of the j-th word in a sentence.
Due to the shared weights, the obtained ability from the

MLM task applies to the original output as well. Therefore,
F enh
v is enhanced to highlight the semantically relevant por-

tions in Fv while filtering out irrelevant portions, making it
more balanced with the textual modality.
Segment-Sentence Level MESM. Since the sentence can
not fully cover the segment, we enhance the textual modal-
ity at the segment-sentence level by generating a comple-
mentary token from context sentences and the ground-truth
segment, then the token is concatenated to the given query.
To supervise the learning of the complementary knowledge,
we construct a positive set for contrastive learning. The pos-
itive set collects the existing neighborhoods of the ground-
truth segment to perform a soft supervision since they own
similar semantic information, which we introduce later.

As we have extracted the word-level feature Fq of the K
sentences, we simply average F i

q for i-th sentence to get
the sentence-level feature F i

s = 1
Lw

∑Lw

j=1 (F
i
q)j and thus

F i
s ∈ RD. For the current sentence-level feature F †

s , we re-
place it with a learnable [MASK] token F †M

s ∈ RD, and the
set of the sentence-level feature with the masked one can be
written as FM

s = {F 1
s , ..., F

†M
s , ..., FK

s } ∈ RK×D. Then
the cross-attention layers are implemented on FM

s (query)
and Fv (key and value). The output of the cross-attention
layers can be represented as:

Fgen
s = {F 1gen

s , ..., F †gen
s , ..., FKgen

s } ∈ RK×D. (3)

Note that F †gen
s is in the output Fgen

s and we take it out as
the generated token for the complementary knowledge to the
sentence. Then we concatenate the generated token F †gen

s
with the word-level feature F †

q together to get the enhanced
word-level feature F †enh

q = [F †gen
s , F †

q ] ∈ R(Lw+1)×D.
With the complementary knowledge, the query is more

balanced with the segment. Thus, we use the segment-level
feature to supervise F †enh

q to obtain knowledge related to

the segment. Given the ground truth of the video segment
(ls, le), where ls and le denote the start and the end index
of the frame-level feature Fv . We take the average as the
segment-level feature S ∈ RD, which can be formulated as:

S =
1

le + 1− ls

le∑
j=ls

(Fv)j . (4)

Then we design a contrastive loss to supervise the knowl-
edge learning. Since there may be some neighbor segments
with similar moments in the video, we build a positive set
Spos in a batch based on the IoU among the segments. We
take the segments as positive when the IoU between two
of them is larger than γ, and the corresponding knowledge
should be similar. The contrastive loss can be formulated as:

Lss = − log

∑
j∈Spos

exp(
∑Lw+1

k=1 F †enh
q · S/τ)∑Nb

j=1 exp(
∑Lw+1

k=1 F †enh
q · S/τ)

, (5)

where Nb denotes the batch size, τ is the temperature coef-
ficient. Supervised by the segment-level feature S, the en-
hanced word-level F †enh

s thus contains the complementary
semantic information within the whole segment and is thus
more balanced with the video modality.
Modality Aligner. Since we have gotten the enhanced
frame-level feature F enh

v and enhanced word-level feature
F †enh
q , we finally employ cross-attention layers between

F enh
v (query) and F †enh

q ( key and value) to do the modal-
ity interaction and alignment. The final aligned feature F ∈
RLv×D can be calculated as the standard cross-attention.

Transformer Encoder-Decoder
After the modal-aligned feature F is obtained from ECMA,
a DETR (Carion et al. 2020) network is utilized to complete
the VMR, which consists of a transformer encoder and de-
coder. The transformer encoder encodes F to a fusion repre-
sentation Fenc, helping the model better understand the se-
quence relations. The encoding process follows the standard
self-attention and the loss can be calculated as:

Lenc = − 1

Lv

Lv∑
j=1

yj log(sj) + (1− yj) log(1− sj), (6)

where s ∈ RLv is the similarity vector which represents the
attention of the model to focus, and is obtained by an MLP
from Fenc. y ∈ RLv is the similarity label, where yj=1 if the
j-th frame is within the ground-truth and yj=0 otherwise.

As for the transformer decoder, inspired by DAB-
DETR (Liu et al. 2021b), we follow QD-DETR (Moon et al.
2023) to design learnable spans, representing the center co-
ordinate and the window. The decoder calculates the stan-
dard cross-attention between learnable spans and the pooled
features, refining the result of spans continually.

Inspired by (Carion et al. 2020; Lei, Berg, and Bansal
2021), the moment retrieval loss consists of three parts:
Lvmr = λL1∥m− m̂∥1 + λiouLiou(m, m̂) + λceLce, (7)

where m and m̂ are the predicted and ground-truth moments,
λ(L1,iou,ce) are the hyper-parameters, Liou is the general-
ized IoU loss (Union 2019), Lce is the cross-entropy loss to
classify the foreground or background (Carion et al. 2020).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3858



Methods Extractors
Charades-STA

R1 mAP
@0.5 @0.7 @0.5 @0.75 avg

2D-TAN*

VGG,
GloVe

41.34 23.91 54.68 24.15 29.26
CBLN 47.94 28.22 - - -
RaNet* 42.91 25.82 53.28 24.41 28.55
DCM 47.80 28.00 - - -
MMN* 46.93 27.07 58.85 28.16 31.58
UMT† 48.44 29.76 58.03 27.46 30.37
QD-DETR* 51.51 32.69 62.88 32.60 34.46
MESM(Ours) 56.69 35.99 67.94 33.64 37.33
VDI C, C 52.32 31.37 - - -
M-DETR* C+SF,

C

53.22 30.87 58.86 26.43 30.43
QD-DETR* 56.89 32.50 66.49 32.00 35.39
MESM(Ours) 61.24 38.04 70.31 36.36 38.57

Table 1: Performance comparison (%) on the Charades-STA
dataset. ”†” means the method uses the audio data. ”*” de-
notes that we re-implement the method under the same train-
ing scheme. M-DETR is short for MomentDETR.

Methods TACoS
R1@0.1 R1@0.3 R1@0.5 mIoU

VSLNet - 29.61 24.27 24.11
2D-TAN 47.59 37.29 25.32 -
CBLN 49.16 38.98 27.65 -
RaNet - 43.34 33.54 -
SeqPAN - 31.72 27.19 25.86
SMIN - 48.01 35.24 -
MMN 51.39 39.24 26.17 -
MS-DETR - 47.66 37.36 35.09
MESM(Ours) 65.03 52.69 39.52 36.94

Table 2: Performance comparison (%) on TACoS. All the
listed methods use C3D and GloVe as their extractors.

As a result, the final loss is:

L = λfwLfw + λssLss + λencLenc + Lvmr, (8)

where λfw, λss and λenc are the hyper-parameters.

Experiments
Experimental Settings
Datasets. We evaluate the proposed method on three widely
used datasets, which are Charades-STA (Gao et al. 2017),
TACoS(Regneri et al. 2013), and QVHighlights (Lei, Berg,
and Bansal 2021). We also experiment on Charades-CG (Li
et al. 2022a), which proposes out-of-distribution (OOD) set-
tings for Charades-STA. Charades-STA is built upon the
Charades dataset (Sigurdsson et al. 2016), which consists
of daily indoor activities. TACoS includes long-term videos
about cooking activities. videos in QVHighlights range from
daily vlog, travel vlog, and news. Charades-CG is proposed
to evaluate the generalization ability by constructing new
splits. These datasets cover videos from different domains,
which are suitable for our evaluation in multiple scenes.
Metrics. We calculate R1@µ, mAP@µ, mIoU, and mAPavg
as used in previous methods (Lei, Berg, and Bansal 2021;
Zhang et al. 2020b,a). R1@µ and mAP@µ are the recall

Methods
QVHighlights

R1 mAP
@0.5 @0.7 @0.5 @0.75 avg

MCN 11.41 2.72 24.94 8.22 10.67
CAL 25.49 11.54 23.40 7.65 9.89
XML 41.83 30.35 44.63 31.73 32.14
XML+ 46.69 33.46 47.89 34.67 34.90
MomentDETR 52.89 33.02 54.82 29.40 30.73
UMT† 56.23 41.18 53.38 37.01 36.12
QD-DETR 62.40 44.98 62.52 39.88 39.86
MESM(Ours) 62.78 45.20 62.64 41.45 40.68

Table 3: Performance comparison (%) on QVHighlights test
split. All the listed methods use C+SF and C as their extrac-
tors. ”†” denotes they use audio data.

and mean average precision with IoU thresholds µ within
the top-1 results. mIoU denotes the average IoU and mAPavg
indicates the average mAP with µ=[0.5:0.05:0.95].
Implementation Details. We use different offline fea-
ture extractors for a fair comparison. VGG (Simonyan
and Zisserman 2014), I3D (Carreira and Zisserman
2017), C3D (Tran et al. 2015) and C+SF (short for
CLIP+SlowFast) (Radford et al. 2021; Feichtenhofer et al.
2019) are utilized as video extractors, GloVe (Pennington,
Socher, and Manning 2014) and C (short for CLIP) are used
as text extractors. We set γ as 0.9, the hidden dimension of
the transformer layers as 256, the layers of FW-MESM, MA,
transformer encoder, and decoder as 2. We build our model
upon QD-DETR (Moon et al. 2023) with some optimiza-
tions, and train our model with Adam optimizer (Kingma
and Ba 2014) on a single NVIDIA RTX 3090.

Performance Comparisons
We compare our MESM with the following state-of-the-art
methods: MCN (Anne Hendricks et al. 2017), CAL (Escor-
cia et al. 2019), XML (Lei et al. 2020), 2D-TAN (Zhang
et al. 2020b), VSLNet (Zhang et al. 2020a), LGI (Mun,
Cho, and Han 2020), CBLN (Liu et al. 2021a), RaNet (Gao
et al. 2021), MomentDETR (Lei, Berg, and Bansal 2021),
SeqPAN (Zhang et al. 2021), SMIN (Wang et al. 2021),
VISA (Li et al. 2022a), MMN (Wang et al. 2022), UMT (Liu
et al. 2022b), QD-DETR (Moon et al. 2023), VDI (Luo et al.
2023), MS-DETR (Wang et al. 2023a).
Charades-STA. As Table 1 shows, our MESM performs
the best with a large margin both on the uni-modal fea-
ture extractor (VGG, GloVe) and the multi-modal extrac-
tor (C+SF, C). Compared with the strong baseline QD-
DETR, our MESM obtains 3.03% average gains in mAPavg
and 4.42% in R1@0.7 on two types of extractors. Though
multi-modal pre-trained extractors perform better than sepa-
rated ones, the modality imbalance problem still makes them
hard to achieve comprehensive alignment. When our MESM
models more balanced semantics, it reasonably outperforms
the existing state-of-the-art methods. Though VDI does not
use SlowFast, they employ a sequence model to capture the
temporal relationship based on CLIP features with spatial
information in RLv×H×W×D, incurring much more compu-
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Methods Year Extractors Novel-composition Novel-word
R1@0.5 R1@0.7 mIoU R1@0.5 R1@0.7 mIoU

LGI 2020 I3D, GloVe 29.42 12.73 30.09 26.48 12.47 27.62
VSLNet 2020 I3D, GloVe 24.25 11.54 31.43 25.60 10.07 30.21
VISA 2022 I3D, GloVe 45.41 22.71 42.03 42.35 20.88 40.18
MESM(Ours) 2024 I3D, GloVe 46.19 26.00 41.40 50.50 33.67 46.20
MomentDETR* 2021 C+SF, C 37.65 18.91 36.17 43.45 21.73 38.37
QD-DETR* 2023 C+SF, C 40.62 19.96 36.64 48.2 26.19 43.22
VDI 2023 C, C - - - 46.47 28.63 41.60
MESM(Ours) 2024 C+SF, C 44.39 23.27 39.89 52.66 31.22 46.38

Table 4: Performance comparison (%) on Charades-CG, which contains two types of OOD settings on Charades-STA: novel-
composition and novel-word. ”*” denotes the result we re-implement under the same training scheme.

FW SS Lenc R1@0.5 R1@0.7 mIoU mAPavg
53.82 30.78 46.75 33.99

✓ 54.76 31.51 47.15 34.18
✓ 54.60 33.17 47.60 34.24

✓ 57.66 35.00 49.91 36.82
✓ ✓ 59.62 36.26 50.91 37.83

✓ ✓ 60.19 37.39 51.15 38.31
✓ ✓ ✓ 61.24 38.04 52.14 38.57

Table 5: Main ablation study (%) of module FW-MESM
(FW) and SS-MESM (SS), loss Lenc on Charades-STA.

cross-attention layers R1@0.5 R1@0.7 mIoU mAPavg

w/o
SS

2×MA w/o FW 57.66 35.00 49.91 36.82
4×MA w/o FW 55.03 33.05 47.63 36.79
2×FW+2×MA 59.62 36.26 50.91 37.83

+SS all w/o MLM 57.39 36.37 50.10 37.49
all 61.24 38.04 52.14 38.57

Table 6: Ablation study (%) of MLM. FW and SS denote
FW-MESM and SS-MESM, w/o means without.

tational cost. On the contrary, we use the global frame-level
feature in RLv×D and filter out some semantically irrelevant
components for more balanced alignment, getting better re-
sults than VDI with much less computational cost.
TACoS. Different from Charades-STA, there are much
fewer but longer videos in TACoS with much more sen-
tences within a video. Table 2 shows the comparison with the
state-of-the-art methods. We achieve the best in all metrics.
Note MS-DETR uses multi-scale video features, which is
beneficial for results, but it still suffers from the modality im-
balance problem and is thus sub-optimal, we obtain 5.03%
and 2.16% gain in R1@0.3 and R1@0.5, respectively.
QVHighlights. QVHighlights is a special dataset as each
video only contains one sentence, which is quite challenging
for our SS-MESM, making it only learn the complementary
knowledge from the video modality. As shown in Table 3,
we also obtain gains in all metrics on the test split com-
pared with QD-DETR. When FW-MESM works normally,
we analyze that the masked sentence in SS-MESM tends to
perform as a prompt to learn from various videos.
Charades-CG. When the MESM bridges the modality gap,

SS-MESM layers R1@0.5 R1@0.7 mIoU mAPavg
2 57.10 35.32 49.75 36.26
3 59.38 35.22 50.68 37.90
4 61.24 38.04 52.14 38.57
5 60.97 38.39 52.09 38.50
6 58.25 35.70 50.31 37.60

Table 7: Ablation study (%) on the layers of SS-MESM.

the model should be more generalizable to understand the
relationship between videos and language queries. To val-
idate it, we conduct experiments on the OOD settings of
Charades-STA. Table 4 shows the comparison. The novel-
composition set contains the unseen combination of ob-
served constituents, and the novel-word set contains novel
words for a sentence. For the novel-composition set, com-
pared with VISA, we gain considerably (3.29%) in R1@0.7,
which means we can get answers with higher quality due to
better modality alignment. For the novel-word set, we ob-
tain inspiring gains (12.79% in R1@0.7). The reason can
be concluded from both FW-MESM and SS-MESM. When
FW-MESM provides fine-grained discrimination ability to
understand novel words from frames and other words, SS-
MESM also supplements additional semantics for better un-
derstanding. Compared with QD-DETR, we also gain 5.03%
in R1@0.7, demonstrating better generalization ability.

Ablation Study
To validate the effectiveness of each component, we conduct
ablation studies on Charades-STA with C+SF as the video
extractor and C as the text extractor.
Main Ablation. The key components of our MESM are the
two different levels of semantic modeling, FW-MESM and
SS-MESM, while we also add a loss function Lenc for the
transformer encoder. As shown in Table 5, each component
is beneficial for VMR and Lenc makes the most of it since
it provides a supervised signal for modal-aligned features to
figure out the correct segment. Without FW-MESM and SS-
MESM, the framework is similar to QD-DETR, so is the per-
formance. Based on the result of adding Lenc, FW-MESM
and SS-MESM achieve gains of 1% and 1.24% in mIoU,
respectively. When we use all of them, the result comes to
the best, which gains 3.04% in R1@0.7 and 2.23% in mIoU,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

3860



Query: Person begins to take some medicine.Person opens a box. Person puts the others back in the box.

16.9~22.2sGT:

3~10sQD-DETR:

14~22sMESM (Ours):

Video:

Figure 4: Visualization of prediction on Charades-STA. Model needs to understand what the others are, which is challenging.

Text in Segment

Enhanced Text in Enhanced Segment

Text in Enhanced Segment w/o MLM

Text in Enhanced Segment

0.06

0.25

0.30

0.36

Figure 5: Visualization of the level of text modality within
the video modality, a reference to evaluate alignment.

demonstrating that both of them are beneficial to the results.
This is because they both make the alignment more balanced
and are compatible with each other.
The Weight-Shared MLM. To make sure it is the weight-
shared MLM works for FW-MESM, instead of the extra
cross-attention layers, we conduct the ablation study as
shown in Table 6. When SS-MESM is not implemented,
we set 2 layers of cross-attention (2×MA) as baseline (line
1). If we simply add the layers of cross-attention to 4 with-
out MLM (line 2), the scores drop, which may be caused
by overfitting. 2 layers of FW-MESM and 2 layers of MA
together achieve the best (line 3). When SS-MESM is im-
plemented, all metrics drop with a margin without MLM.
These results demonstrate the effectiveness of the MLM on
the weight-shared cross-attention, instead of the extra layers.
The Layers of SS-MESM. We also conduct the ablation
study on the SS-MESM to figure out the suitable number of
layers. As shown in Table 7, the mIoU and mAPavg come to
the best when implementing 4 layers of SS-MESM, too few
layers can not provide enough power to learn the semantics
while too many layers may cause overfitting.

Qualitative Analysis
In Figure 4, we show an example of prediction. For the given
query Person puts the others back in the box, the model
should understand what the others are, which is challeng-

ing. Therefore, QD-DETR may only simply catch the words
puts and box, then gives a wrong answer to similar scenes.
When we supplement semantics and enhance both modali-
ties, MESM understands the others stand for the things ex-
cept for medicine, and thus gives a more accurate answer.

In Figure 5, we answer the question of how much of the
text modality is contained in the video modality. We ran-
domly select a query and calculate the subspace similarity
based on the singular value decomposition (Hamm and Lee
2008; Hu et al. 2021). The calculation is implemented be-
tween the top-i singular vectors of the query and all singu-
lar vectors of the segment. The similarity is quite low be-
tween the original text F †

q and original segment Fv[le:ls]
(line 1), and becomes much higher when it comes to F †

q and
the enhanced segment F enh

v [le:ls] (line 2&3) due to both the
cross-modal interaction and the suppression of semantically
irrelevant parts by the MLM task. The similarity between the
enhanced text F †enh

q and F enh
v [le:ls] is the highest (line 4)

owing to the complementary knowledge added to the textual
modality. As the similarity stands for the level of containing,
the results demonstrate both the enhanced video and textual
modalities are more balanced than before.

Conclusion
In this paper, we address the modality imbalance problem,
which means the inherently richer semantic information in
the video modality than the textual modality. The imbalance
makes the direct alignment sub-optimal but most methods
ignore it. Therefore, we propose a novel framework MESM
to tackle this problem from two levels. At the frame-word
level, we enhance the video modality to filter out the redun-
dant query-irrelevant semantics, making it more balanced
with the texts. At the segment-sentence level, we enhance
the textual modality to capture more segment-relevant se-
mantics, making it more balanced with the videos. In the
future, we aim to design a framework to model the semantic
information progressively from the frame-word level to the
segment-sentence level to achieve robust alignment, and we
believe the issue and solution introduced in this work can
provide fundamental insights to related fields.
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