
Stitching Segments and Sentences towards Generalization in Video-Text
Pre-training

Fan Ma1*, Xiaojie Jin2†, Heng Wang2, Jingjia Huang2,
Linchao Zhu1, Yi Yang1†

1 Zhejiang University
2 Bytedance Inc.

mafan@zju.edu.cn, {jinxiaojie, heng.wang, huangjingjia}@bytedance.com, {zhulinchao, yangyics}@zju.edu.cn

Abstract

Video-language pre-training models have recently achieved
remarkable results on various multi-modal downstream tasks.
However, most of these models rely on contrastive learning or
masking modeling to align global features across modalities,
neglecting the local associations between video frames and
text tokens. This limits the model’s ability to perform fine-
grained matching and generalization, especially for tasks that
selecting segments in long videos based on query texts. To
address this issue, we propose a novel stitching and match-
ing pre-text task for video-language pre-training that encour-
ages fine-grained interactions between modalities. Our task
involves stitching video frames or sentences into longer se-
quences and predicting the positions of cross-model queries
in the stitched sequences. The individual frame and sen-
tence representations are thus aligned via the stitching and
matching strategy, encouraging the fine-grained interactions
between videos and texts. in the stitched sequences for the
cross-modal query. We conduct extensive experiments on var-
ious benchmarks covering text-to-video retrieval, video ques-
tion answering, video captioning, and moment retrieval. Our
results demonstrate that the proposed method significantly
improves the generalization capacity of the video-text pre-
training models.

Introduction
Video-language pre-training is a burgeoning research area
that aims to learn universal representations from large-scale
multi-modal data (Radford et al. 2021; Fu et al. 2021; Wang
et al. 2022b, 2023). These pre-trained representations facil-
itate various downstream video-related tasks, such as video
question answering (QA) (Xu et al. 2016; Jin et al. 2023),
text-to-video retrieval (Anne Hendricks et al. 2017; Maharaj
et al. 2017), and video captioning (Lin et al. 2022; Xu et al.
2017). By leveraging massive video-text pairs to align cross-
modal features, the pre-trained video-language models have
demonstrated remarkable performance on diverse applica-
tions (Radford et al. 2021; Xu et al. 2021a).

Contrastive learning is a common technique for video-
language pre-training that aims to align global features of
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Figure 1: Stitching and matching for video-language pre-
training (S3VL). The upper part is to predict the start and
end frames from the stitched video given the text query. The
lower part is to match the video with merged long sentences.
The stitched videos and sentences are from different video-
text pairs.

videos and texts (Radford et al. 2021; Lei et al. 2021). How-
ever, this approach ignores the fine-grained associations be-
tween video frames and text tokens, which may result in
misalignment due to irrelevant frames in the video. For ex-
ample, a party video with the caption “the person is cutting
cake” may also include frames of children running around
the table. Global alignment of the entire video with the sen-
tence may not only degrade the performance of text-to-video
matching, but also limit the generalization capability of the
model when applied to video downstream tasks that requires
temporal relationships in long form videos. Therefore, fine-
grained alignment between relevant texts and video frames
is crucial for learning generic multi-modal representations.

Masked language modeling (MLM) has been used re-
cently to achieve fine-grained interactions via predicting the
masked element with unmasked visual and text features (Fu
et al. 2021; Ge et al. 2022a; Wang et al. 2022b). However,
MLM can not assure the alignment between different modal-
ities along the temporal dimension, which is essential for
many reasoning tasks such as video QA and captioning.
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LocVTP (Cao et al. 2022) attempts to address this prob-
lem by dividing the video into several clips and extracting
phrases from sentences for contrastive learning, but the ob-
jective relies on pseudo alignment due to the lack of video
segment annotations. LF-VILA (Sun et al. 2022) employs
a proprietary long-form video-text dataset that comprises
several video-text pairs in each video with temporal align-
ment. However, existing public datasets containing video-
text pairs, such as WebVID (Bain et al. 2021a) and YT-
Temporal-180M (Zellers et al. 2021), mainly consist of short
videos. Long form video datasets with segment annotations
are scarce and often suffer from noise issues, as exemplified
by HowTo100M (Miech et al. 2019). Therefore, it is chal-
lenging to achieve the reliable video-text alignment without
accurate annotations, which limits the generalization ability
on video downstream tasks.

To enhance detailed matching between videos and texts,
we introduce a novel pre-training task where video segments
and sentences are stitched into longer sequences for match-
ing during training. Our approach, as illustrated in Fig. 1,
entails two objectives: 1) predicting the temporal positions
of frames in the stitched video that aligns with to the textual
description; 2) identifying the sentence in a stitched para-
graph that matches a short video. For the first task, we stitch
frame features from different videos within a training batch
to produce the long form video. Subsequently, we integrate
the stitched frame features with text features and predict the
correct segment boundary for the sentence. Our approach
enables individual frame features to learn from both lan-
guage and visual contexts during pre-training, thus facilitat-
ing fine-grained alignment between individual frames and
sentences without necessitating detailed annotations. Sim-
ilarly, we form long paragraphs by stitching multiple sen-
tences and predict the matching sentence for each short
video. The results of extensive experimentation on several
downstream tasks demonstrate that our proposed stitching
and matching method during pre-training is superior. Our
model has significantly improved zero-shot and fine-tuned
text-to-video retrieval performance on three datasets. More-
over, our model has exhibited a strong generalization capa-
bility on four downstream tasks.

In summary, our contributions are three-fold.

• We introduce a novel task for video-text pre-training that
involves stitching video segments and sentences into long
sequences and predicting fine-grained boundaries to fa-
cilitate interactions between video frames and texts.

• We present innovative and effective methods for stitching
and matching frame-level and word-level features, which
enhance the interactions between them and boost the gen-
eralization capability of the pre-trained model.

• We conducted comprehensive experiments on four
downstream tasks to demonstrate the superiority of
our pre-training task. Our method outperforms the pre-
trained model with contrastive learning and mask lan-
guage modeling on all downstream tasks.

Related Work
Video-Language Pre-training
Pre-training video-language models on multi-modal data
has become a popular approach to improve their perfor-
mance on various downstream tasks, such as text-to-video
retrieval (Xu et al. 2016), video question answering (Xu
et al. 2016, 2017), and video captioning (Lin et al. 2022;
Xu et al. 2016). Most existing models use contrastive learn-
ing to align videos and texts in a common feature space (Xu
et al. 2021a; Huang et al. 2023; Jin et al. 2023), but this only
achieves coarse-grained alignment. The contrastive learning
is used to align features from different modalities in a global
manner. Recent methods also use masked language mod-
eling (MLM) to predict masked signals and enable multi-
modal interactions (Li et al. 2020; Wang et al. 2022b; He
et al. 2023; Liu et al. 2023), but this still does not cap-
ture fine-grained alignment. LocVTP (Cao et al. 2022) pro-
poses a clip-phrase contrastive objective, but it relies on
pseudo supervision that may not reflect the true matching.
LF-ViLA (Sun et al. 2022) uses a new long-form dataset
with temporal annotations, but this dataset is not publicly
available and such annotations are difficult to obtain in prac-
tice. We present a novel stitching and matching task that
does not require any annotations and can enhance the fine-
grained alignment of video and text features.

Data Augmentation
Data augmentation enhances the diversity and quantity of
training data for various tasks, thereby improving model
generalization. It involves modifying the original data in dif-
ferent ways. For instance, image augmentation can blend
two images into one with a mixed soft label (Zhang et al.
2018; Verma et al. 2019; Ma et al. 2022). Text augmentation
can generate new texts by replacing, inserting or deleting
words, or by using back translation or paraphrasing (Wei and
Zou 2019; Zhang et al. 2020a). Video augmentation can al-
ter the temporal or spatial dimensions of videos by adjusting
the speed, order or duration of frames according to the video
categories (Yun et al. 2020; Xu et al. 2021b). However, most
existing methods are task-specific and need domain knowl-
edge or human supervision to produce augmented data. We
propose a general method that stitches frame and sentence
features for matching to align multi-modal representations
without prior knowledge.

Method
Overview of S3VL
Our framework consists of two encoders for extracting video
and text features separately and one multi-modal encoder for
integrating both visual and text features, as shown in Fig. 2.
Given the i-th video-text pair, the visual encoder produces
the video features vi = {vk

i }Tk=1 where T is the number
of frames. The text encoder takes a tokenized text sequence
as input, with a [CLS] text token inserted at the beginning
(represented by the circle in the figure), and generates the
token features si = {ski }L+1

k=0 where L is the number of
tokens in each sentence.
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Figure 2: The framework of stitching video segments and sentences for video-text pre-training (S3VL). There are four pre-
training objectives in the figure: Lvtc to globally align the video and text features, Lmlm to predict masked word tokens given
the video and other language context, Lstmv to predict position of the sentence that matches the video segments, and Lsvmt to
predict boundary of the segment that matches the text description. We use same color for the paired video and text. The frame
tokens are concatenated with the text tokens to form the input for the multi-modal encoder.

Following previous pre-training methods (Huang et al.
2023; Lei et al. 2021), we employ contrastive loss Lvtc on
the paired video and text embedding to align the cross-modal
representations globally:

Lvtc =− 1

2B

∑
i

log
exp(sim(vi, si)/τ)∑
j exp(sim(vi, sj)/τ)

− 1

2B

∑
i

log
exp(sim(si,vi)/τ)∑
j exp(sim(si,vj)/τ)

,

(1)

where vi and si are the i-th paired video and sentence repre-
sentations, and τ is a temperature parameter that controls the
sharpness of the distribution. sim(,) is the cosine similarity
and B is the number of text-video pairs.

To integrate both the visual and text features, we project
all the frame and text tokens into a common embedding
space and concatenate them into a new sequence as the
multi-modal input. We then apply masked language mod-
eling Lmlm on the concatenated sequence to predict masked
language tokens given frames and context words:

Lmlm = − 1

B

∑
i

∑
k

logP (ski |s<k
i , s>k

i ;vi), (2)

where ski is the masked token in the text sequence, s<k is
the sequence before ski , and s>k

i is the sequence after ski .
For the video captioning task that generates one word token
at a time, we use the casual mask and remove the s>k

i in
Eq. (2) to predict the masked token.

The contrastive learning and masked language modeling
only learn the coarse alignment between videos and texts,
limiting the generalization capability on downstream tasks
that require fine-grained matching between frames and sen-
tences. To address this issue, we propose a novel stitching
and matching task as shown in Fig. 2. Our proposed method
enhances the detailed alignment between modalities and im-
proves the model generalization capability.

Stitching and Matching
The frame features are interacted with text features in the
multi-modal encoder. However, this interaction between
videos and sentences remains somewhat rudimentary as the
alignment between video and text representations are not
guaranteed. To address this limitation, this section proposes
a stitching and matching task that enables fine-grained align-
ment across different modalities. As accurate annotations
indicating which segments in videos correspond to specific
text descriptions are nearly unavailable, we stitch short video
segments or sentences into longer sequences to provide su-
pervision. Subsequently, the model predicts the temporal
boundaries of the stitched longer video tokens based on the
provided text descriptions, and identifies the matched posi-
tions within the stitched sentences based on the short video
segments. Each of the objectives is discussed in detail in the
following sections.

Matching text in stitched videos. This task is to pre-
dict the temporal boundary of the text-matched segment in
a composed long video sequence. During pre-training, we
concatenate the short videos in a training batch to form a
long video sequence. Only one segment in this sequence cor-
responds to the text query.
Stitching video segments. We stitch frames from different
videos in two ways. The first method randomly permutes
the order of videos in a training batch and concatenates their
frame features while preserving the temporal order within
each video as shown in Fig. 2. This results in a sequence
of BT frame tokens. We add frame position embeddings to
these tokens and combine them with word tokens from the
sentence to form the multi-modal input. Another method to
create long video sequences is to sample frame tokens from
different videos and insert them into a background sequence.
We select Kp frame tokens from the video that matches the
text and K frame tokens from the other videos, where K is
the desired length. We denote the frame tokens that matches
the text as the positive frame tokens and the irrelevant tokens
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as the negative tokens. We randomly insert the Kp positive
frame tokens into K background tokens. By stitching video
segments, we establish the temporal boundary of the text-
matched segment and represent it as (sv, ev).
Boundary prediction. We use a multi-modal encoder to en-
able cross-modal interactions between frame and text fea-
tures. To enhance these interactions, we design a bound-
ary prediction task that requires locating the text-matched
segment in the video. We use a matching head with two
linear layers to predict boundaries for updated frame fea-
tures psvmt ∈ RBT×2 where the subscript svmt is the ab-
breviation for stitching video and matching text task. The
model produces the probability of each frame belonging to
the starting and ending boundaries of a video clip that corre-
sponds to the text. We use the softmax function to generate
the boundary. The objective of matching text in the stitched
video is then written as:

Lsvmt = − log softmax(p0
svmt)

sv − log softmax(p1
svmt)

ev ,
(3)

where psvmt = [p0
svmt,p

1
svmt] denotes the start and end

predictions. In addition to the boundary prediction loss in
Eq. (3), we can also use the updated [CLS] text token from
multi-modal encoder to directly regress the start and end po-
sitions. Alternatively, we could predict the matching prob-
ability for text in all frame tokens. However these attempts
ignores the interactions between individual frame tokens.

Matching video in stitched sentences. We also match a
short video clip in the stitched sentence to align multi-modal
representations. The text have both relevant and irrelevant
descriptions for the video clip. We stitch word tokens from
different sentences into a long sequence and predict the po-
sition of the video segment that matches the text.
Stitching sentences. We use two methods to stitch sen-
tences. The first one is to shuffle and concatenate the to-
kens in each sentence in the training batch. Then, we use
the video segment to predict start and end positions in the
longer text tokens. The sampling strategy is not suitable for
stitching sentences, as it may alter the semantic information
by missing or repeating some tokens. For example, omitting
the word “not” may reverse the meaning. We also propose to
stitch only the [CLS] text token in every sentence, as shown
in Fig. 2. For one video and B merged [CLS] text tokens,
we form the multi-modal input containing B + T tokens.
Position prediction. For the first text stitching method, we
use the same boundary prediction loss in Eq. (3) for the shuf-
fled sentences. For the stitched [CLS] text tokens, we only
predict the position of the video segment that matches the
text. The training objective for matching video is given by:

Lstmv = − log softmax(pstmv)
mv , (4)

where pstmv ∈ RB is the logit prediction of text position
and mv is the index of sentence that matches the video.

Pre-training Objectives
We use four losses to pre-train the model as shown in Fig. 2.
The text-video contrastive is to coarsely project video and
text into the common feature space, while the objective of

stitching and matching is to enhance fine-grained visual lan-
guage interaction for video-text alignment. With the mask
language modeling, our pre-training objective is formed via:

L = Lvtc + αLmlm + βLsm, (5)

where Lsm = Lsvmt + Lstmv denotes the stitching and
matching objective. The α and β are the hyper-parameters
to balance each pre-training tasks, which are set to 1.

Experiments
Datasets and Downstream Tasks
Pre-training datasets. Following recent work (Huang et al.
2023), we use the WebVid (Bain et al. 2021b) and the
Google Conceptual Captions (Sharma et al. 2018) as the
training data. The static image is treated as the video with
only single frame during the pre-training.
Downstream tasks. We evaluate our method on four pop-
ular downstream tasks. (1) Text-to-video retrieval on three
datasets: MSR-VTT (Xu et al. 2016), DiDeMo (Anne Hen-
dricks et al. 2017), and LSMDC (Maharaj et al. 2017). (2)
Video question answering on MSR-VTT (Xu et al. 2016)
and MSVD (Xu et al. 2017). (3) Video captioning on MSR-
VTT (Xu et al. 2016) and MSVD (Xu et al. 2017). (4)
Video moment retrieval with language is to predict tempo-
ral boundary in a long video for language query. We conduct
experiments on DiDeMo to testify the pre-training models.

Implementation Details
We adopt VideoSwin (Liu et al. 2022b) as the video encoder
with pre-trained weights on the Kinetics-400 dataset (Kay
et al. 2017), and pre-trained BERT-base model as the text
encoder. The multi-modal encoder is initialized from the
last three layers of the BERT-base model. We pre-train our
model for 40 epochs, using a batch size of 2048 on 64
NVIDIA V100 GPUs. We use AdamW (Loshchilov and
Hutter 2019) optimizer with a weight decay 0.005 and be-
tas (0.9, 0.98). The learning rate is first set to 5e-5 and
then decays by 10 times following a cosine annealing de-
cay schedule. All video frames are resized to 224×224, and
8 frames are randomly sampled in a video while the tem-
poral order is preserved. During pre-training, all words in
the sentence is random masked with 15% probability to en-
able the mask language modeling in both normal and causal
attentions. For the retrieval task, we only fine-tune the uni-
modal encoders with the contrastive learning. For both video
QA and video captioning tasks, we adopt the casual mask
in both text and multi-modal encoders to generate both an-
swers and descriptions. For moment retrieval with language
tasks, we use the pre-trained visual encoder to extract video
features first and adopt the off-the-shelf algorithms to train
corresponding models with our extracted features. We have
also used CLIP model as the encoder, which is pre-trained
with image-text pairs, and further training the CLIP with the
multi-modal encoder with more video-text pairs. The exper-
iments with pre-trained image-text encoders are present in
the supplementary material.
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Method Pre-training data MSR-VTT DiDeMo LSMDC
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Zero-shot

Frozen (Bain et al. 2021b) W2M+CC3M 18.7 39.5 51.6 21.1 46.0 56.2 9.3 22.0 30.1
VIOLET (Fu et al. 2021) W2M+CC3M+Y180M 25.9 49.5 59.7 23.5 49.8 59.8 - - -
ALPRO (Li et al. 2022a) W2M+CC3M 24.1 44.7 55.4 23.8 47.3 57.9 - - -
LocVTP (Cao et al. 2022) W2M+CC3M 22.1 48.0 55.3 - - - - - -
MCQ (Ge et al. 2022a) W2M+CC3M 26.0 46.4 56.4 25.6 50.6 61.1 12.2 25.9 32.2
OA-Trans (Wang et al. 2022a) W2M+CC3M 23.4 47.5 55.6 23.5 50.4 59.8 - - -
Miles (Ge et al. 2022b) W2M+CC3M 26.1 47.2 56.9 27.2 50.3 63.6 11.1 24.7 30.6
Clover (Huang et al. 2023) W2M+CC3M 25.8 49.6 60.1 28.0 53.5 65.1 13.8 28.1 38.3
RegionLearner (Yan et al. 2023) W2M+CC3M 22.2 43.3 52.9 - - - - - -

S3VL (Ours) W2M+CC3M 27.2 50.1 60.3 31.3 56.4 67.6 14.9 31.2 39.5

Fine-tune

HD-VILA (Sun et al. 2022) L8M 28.8 57.4 69.1 35.6 65.3 78.0 17.4 34.1 44.1
Frozen (Bain et al. 2021b) W2M+CC3M 31.0 59.5 70.5 31.0 59.8 72.4 15.0 30.8 39.8
All-in-one (Wang et al. 2022b) W2M+H100M 37.9 68.1 77.1 32.7 61.4 73.5 - - -
VIOLET (Fu et al. 2021) W2M+CC3M+Y180M 34.5 63.0 73.4 32.6 62.8 74.7 16.1 36.6 41.2
ALPRO (Li et al. 2022a) W2M+CC3M 33.9 60.7 73.2 35.9 67.5 78.8 - - -
LocVTP (Cao et al. 2022) W2M+CC3M 36.5 64.3 76.8 - - - - - -
OA-Trans (Wang et al. 2022a) W2M+CC3M 35.8 63.4 76.5 34.8 64.4 75.1 18.2 34.3 43.7
Miles (Ge et al. 2022b) W2M+CC3M 37.7 63.6 73.8 36.6 63.9 74.0 17.8 35.6 44.1
Lavender (Li et al. 2022b) W2M+CC3M 37.8 63.8 75.0 47.4 74.7 82.4 22.2 43.8 53.5
MCQ (Ge et al. 2022a) W2M+CC3M 37.6 64.8 75.1 37.0 62.2 73.9 17.9 35.4 44.5
Clover (Huang et al. 2023) W2M+CC3M 38.6 67.4 76.2 45.1 74.3 82.2 22.7 42.0 52.6
RegionLearner (Yan et al. 2023) W2M+CC3M 36.3 63.9 72.5 - - - - - -

S3VL (Ours) W2M+CC3M 41.0 68.2 77.7 48.6 76.1 85.4 23.2 42.2 51.3

Table 1: Text-to-video retrieval comparison on MSR-VTT, DiDeMo and LSMDC under the zero-shot and fine-tune setups.
W2M, C3M, H100M, H8M, Y180M are abbreviations for WebVid2M (Bain et al. 2021b), CC3M (Sharma et al. 2018),
HowTo100M (Miech et al. 2019), LF-VILA-8M (Sun et al. 2022), YT-Temporal-180M (Zellers et al. 2021), respectively.
Higher Recall@k indicate better performance. The best performance is masked in bold under each setting.

Comparison to Prior Arts

Text-to-video retrieval. Tab. 1 illustrates the text-to-
video retrieval results on MSR-VTT (Xu et al. 2016),
DiDeMo (Anne Hendricks et al. 2017), and LSMDC (Ma-
haraj et al. 2017) datasets under zero-shot and fine-tuning
settings. Our proposed method significantly outperforms
the previous approaches among all the datasets. Notably,
the performance improvement with zero-shot evaluation
demonstrates the stronger generalization ability of our
method. Our S3VL achieves the highest recall on four
datasets under the zero-shot setting. In detail, our method
outperforms Clover (Huang et al. 2023) by 1.4% on MSR-
VTT, 3.3% on DiDeMo, 1.1% on LSMDC in Recall@1.
Moreover, our proposed method surpasses VIOLET by a
large margin on both MSR-VTT and DiDeMo, even though
VIOLET is pre-trained with more text-video pairs.

When fine-tuned on the three datasets, S3VL also shows
superiority over the compared methods. Our method out-
performs the compared methods across all the metrics on
MSR-VTT and DiDeMo with a clear improvement. Com-
pared to videos in MSR-VTT, videos in DiDeMo contain
more frames and diverse scenes. The noticeable improve-
ment on the DiDeMo also suggest that our method better

matches long videos with texts. Compared to LocVTP (Cao
et al. 2022) that leverages pseudo fine-grained alignment in-
formation, our model achieves much higher results under
both zero-shot and fine-tune settings.

Video question answering. We evaluate our method on
two open-ended video question answering datasets and com-
pare it with several methods (Tab. 2). These include Jus-
tAsk (Yang et al. 2021), ALPRO (Li et al. 2022a), VI-
OLET (Fu et al. 2021), All-in-one (Wang et al. 2022b),
Clover (Huang et al. 2023) and Lavender (Li et al. 2022b).
Unlike All-in-one and Clover that use classification loss for
the open-ended QA, our method generates answers without
restricting the categories. Our method achieves the best per-
formance on the MSR-VTT and exceeds Lavender by 0.4%.

Video captioning. We evaluate our method on video cap-
tioning task in Tab. 2. The causal mask is used during pre-
training and fine-tuneing. And 60% of words are masked for
captioning task during fine-tuning. Our model outperforms
all other models on both MSR-VTT and MSVD datasets,
demonstrating the effectiveness of the proposed S3VL.

Moment retrieval with natural language. We evaluate
our method on the moment retrieval task that predicts the
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Method MSR-VTT MSVD
VQA Cap. VQA Cap.

JuskAsk (Yang et al. 2021) 41.5 - 46.3 -
ALPRO (Li et al. 2022a) 42.1 - 45.9 -
VIOLET (Fu et al. 2021) 43.9 - 47.9 -
All-in-one (Wang et al. 2022b) 44.3 - 47.9 -
Clover (Huang et al. 2023) 43.9 - 51.9 -
PMT (Peng et al. 2023) 41.8 - 40.3 -
SwinBERT (Lin et al. 2022) - 53.8 - 120.6
Lavender (Li et al. 2022b) 44.2 58.0 55.4 142.9
RegionLearner (Yan et al. 2023) 38.6 - 39.3 -
STOA-VLP (Zhong et al. 2023) 43.2 60.2 50.8 131.8

S3VL (Ours) 44.7 61.9 53.9 148.2

Table 2: Video question answering and captioning compari-
son on MSR-VTT and MSVD under the open-ended setting.
Cap. denotes the video captioning task. We report the accu-
racy and the highest performance is masked in bold.

Method Rank@0.5 Rank@0.7 AVG

2D-TAN (Zhang et al. 2020b) 42.8 23.2 33.0
LocVTP (Cao et al. 2022) 41.2 24.8 33.0
UMT (Liu et al. 2022a) 48.3 29.3 38.8

S3VL (Ours) 49.6 28.8 39.7

Table 3: Moment retrieval comparison on Charades-STA.
The Rank@0.5 denotes the top-1 retrieval results with tem-
poral IoU greater than 0.5. AVG indicates the average score
of two metrics.

temporal boundary in a video for the text description. We
use 2D-TAN (Zhang et al. 2020b) as the baseline model
and compare it with LocVTP (Cao et al. 2022) that uses
the same pre-training datasets. Tab. 3 shows the results on
DiDeMo. Our method surpasses LocVTP by a large mar-
gin on Rank@0.5, indicating that our extracted features are
more accurate in finding the temporal boundaries.

Analysis
To evaluate our design choices, we perform ablation experi-
ments on WebVid1M, a subset of WebVid with one million
pairs of videos and texts.

Pre-training objective. As shown in Tab. 4, we evaluate
our proposed objectives in Eq. (3) and Eq. (4) on four tasks,
including text-to-video retrieval, video question answering
and captioning. Compared to the baseline which uses con-
trastive learning and masked language modeling, our model
significantly improves the zero-shot retrieval performance
by 1.6% on recall@1. The captioning task’s performance
can be enhanced by combining the input text, thereby in-
creasing its impact. Similarly, stitching video clips together
further improves the retrieval task. This is because retrieval
relies on the similarity between global video and text rep-
resentations, and stitching the global video features helps
to reduce the distance between these two modalities. On

Lvtc Lmlm Lsvmt Lstmv Retrieval VQA Cap. MR

✓ 21.2 41.2 53.6 41.8
✓ ✓ 20.8 42.7 56.9 41.6
✓ ✓ ✓ 22.1 43.1 57.7 43.0
✓ ✓ ✓ 21.9 42.7 57.5 42.8
✓ ✓ ✓ ✓ 22.4 43.0 58.1 43.6

Table 4: Effect of pretraining tasks on downstream tasks.
The recall@1, accuracy, CIDEr, and Rank@0.5 are reported
in the zero-shot text-to-video retrieval, video question an-
swering, video captioning tasks, and moment retrieval re-
spectively. MR denotes the moment retrieval task.

Strategy Retrieval VQA Cap. MR

Shuffling 21.7 42.9 58.1 42.3
Sampling 21.5 42.8 56.9 42.8
HardSampling 22.1 43.1 57.7 43.6

Table 5: Analysis of video stitching strategies. Results on
text-to-video retrieval, video question answering, video cap-
tioning and moment retrieval tasks are reported.

all tasks, our model pre-trained with stitching and match-
ing outperforms the baseline model. This suggests that our
design obtains superior generalization capability.

Stitching video segments. We adopt three strategies in
Tab. 5 to stitching individual video features into a long video
sequence. The quality of the merged sequence is essential for
improving generalization capabability of pre-trained model.
The Shuffling strategy only changes the order of different
videos where the order of frame features in the same video
is preserved. Sampling strategy requires the max length to
specify how many frames should be sampled. In this experi-
ment, we only use boundary prediction loss Lsvmt in Eq. (3)
and specify the max sample number K to 128, and the min-
imum and the maximum number of positive frames Kp to
1 and 32. The HardSampling denotes that frame features
are only sampled from those most similar videos in a batch.
From Tab. 5, we observe that the HardSampling strategy ac-
quires the highest zero-shot retrieval performance. It shows
that merging frame tokens from similar videos for detailed
matching is more helpful to the retrieval task.

Stitching sentences. We also compare two stitching
strategies for sentences in Tab. 6. The word merging is simi-
lar to the shuffling in video merging, where only the sentence
order is rearranged. We retain the special [CLS] text token
when merging words. We predict the start and end positions
for the video in this merging strategy. Stitching [CLS] de-
notes that only the first token in each sentence is selected
to combine different texts and the position prediction loss
Lstmv in Eq. (4) is employed. We found that the model with
Stitching [CLS] achieves a bit better retrieval performance
from the experimental results. In text-to-video retrieval task,
only the feature of [CLS] text token is used to align with the
video clips. Therefore, stitching [CLS] token would be ben-
eficial to align the representations between videos and texts.
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Strategy Retrieval VQA Captioning MRetrieval

Stitching words 21.7 42.9 57.4 43.3
Stitching [CLS] 21.9 42.7 57.5 43.6

Table 6: Analysis of word stitching strategies. Results on
text-to-video retrieval, video question answering, and video
captioning tasks are reported.
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Figure 3: Boundary prediction with different strategies.
Boundary classification denotes our method to produce the
boundary probability at each position.

Boundary prediction. To predict precise segments in
stitched long sequences, our model outputs the boundary
probability at each updated token after the multi-modal en-
coder. We compare with several other methods for detailed
matching on stitched videos as shown in Fig. 3. Boundary
regression involves predicting the start and end frames of the
matching segment on the [CLS] text token. Masking classi-
fication involves classifying each frame token as matching
or not. Our model outperforms these baselines on all tasks,
demonstrating the effectiveness of our pre-training strategy.

Generalization capability. We summarize the experi-
mental results of our method with different backbones on
four tasks in Tab. 7. Two visual backbones, including a
video encoder SwinT (Liu et al. 2022b) and a frame en-
coder ViT (Dosovitskiy et al. 2021), are adopted to ver-
ify the stitching and matching (S&M) task for pre-training.
On MSR-VTT, the model trained with stitching and match-
ing strategy obtains significant improvement in the zero-
shot text-to-video retrieval task for both video and im-
age encoders. Both ViT and SwinT based models with
S&M pre-training obtain about 1% performance gain on
the mAP@0.5 metric. Our method also significantly im-
proves the Rank@0.5 on Charades. Albeit ViT based model
achieves lower performance than the SwinT based model,
both visual encoders with the S&M pre-training obtain
improvement on almost all tasks. This demonstrates that
generic representations are well learned with our proposed
stitching and matching task.

Qualitative examples. We extract frame and text features
on the video in Charades-STA, and calculate the similarity
between the visual and language features. We visualize the
results in Fig. 4 to show the matching performance between
models trained with and without stitching and matching. For
the video with the description “person runs up the stairs”,

Backbone MSR-VTT Charades
Recall@1 Acc CIDEr Rank@0.5

ViT (w/o S&M) 16.4 36.2 53.1 38.8
ViT (w S&M) 17.7 36.9 53.0 40.2

SwinT (w/o S&M) 20.8 42.7 56.9 41.8
SwinT (w S&M) 22.4 43.1 58.1 43.6

Table 7: Effect of stitching and matching pre-training task
with different visual backbones. S&M denotes the stitching
and matching task. Results on four tasks are reported.

Figure 4: Visualization of similarity scores between frame
and text features. Higher score indicates higher similarity
between the frame and text features. The temporal ground-
truth for the text description is marked with red.

although the similarity of the two models are close, only the
model with S&M accurately localizes frames that match the
caption. It shows that the cross modality features are better
aligned in our method, and the temporal boundaries are more
accurate for text descriptions.

Conclusion
We introduce a novel stitching and matching task for video-
language pre-training to improve model generalization capa-
bility. Without any fine-grained annotations, we merge video
and text features into longer sequences and use the multi-
modal encoder to predict the precise boundary. The pro-
posed task is simple yet effective to learn a generic muliti-
modal representations. Extensive experiments on multiple
tasks demonstrate the strength of the proposed method.
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