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Abstract

As a class of fruitful approaches, diffusion probabilistic
models (DPMs) have shown excellent advantages in high-
resolution image reconstruction. On the other hand, masked
autoencoders (MAEs), as popular self-supervised vision
learners, have demonstrated simpler and more effective im-
age reconstruction and transfer capabilities on downstream
tasks. However, they all require extremely high training costs,
either due to inherent high temporal-dependence (i.e., exces-
sively long diffusion steps) or due to artificially low spatial-
dependence (i.e., human-formulated high mask ratio, such as
0.75). To the end, this paper presents LMD, a simple but
faster image reconstruction framework with Latent Masking
Diffusion. First, we propose to project and reconstruct images
in latent space through a pre-trained variational autoencoder,
which is theoretically more efficient than in the pixel-based
space. Then, we combine the advantages of MAEs and DPMs
to design a progressive masking diffusion model, which grad-
ually increases the masking proportion by three different
schedulers and reconstructs the latent features from simple to
difficult, without sequentially performing denoising diffusion
as in DPMs or using fixed high masking ratio as in MAEs,
so as to alleviate the high training time-consumption predica-
ment. Our approach allows for learning high-capacity models
and accelerate their training (by 3× or more) and barely re-
duces the original accuracy. Inference speed in downstream
tasks also significantly outperforms the previous approaches.

1 Introduction
Image reconstruction is one of the most challenging and
computationally expensive tasks in computer vision. Recent
years, diffusion probabilistic models (DPMs) (Ho, Jain, and
Abbeel 2020) based on Markov probability prediction have
gained prominence in various generative models (Rombach
et al. 2022; Saharia et al. 2022; Ma et al. 2023a), due to
their excellent performance in the diversity and high-fidelity
of image synthesis. Subsequently, a large number of works
based on DPMs have been proposed and great progresses
have been achieved in terms of sampling procedure (Liu
et al. 2022b), conditional guidance (Nichol et al. 2021), like-
lihood maximization (Kim et al. 2022) and generalization
ability (Gu et al. 2022). However, almost all existing DPMs
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Figure 1: An example to illustrate the comparisons between
our proposed LMD versus DPMs and MAEs on training
time-consumption.

face an inherent time-consuming dilemma (e.g., 150-1000
V100 days in ADM (Dhariwal and Nichol 2021)), because
the Markov diffusion process in DPMs requires a very large
number of diffusion steps (e.g., thousands) and sampling
time, which can be optimized but is basically inevitable for
effective synthesis (Cao et al. 2022; Croitoru et al. 2022).
Meanwhile, masked image modeling, as a simpler and more
efficient self-supervised learning technique, has been intro-
duced to the CV fields to develop a widespread Vision Trans-
former (ViT) (Dosovitskiy et al. 2020), which is a non-
autoregressive milestone model and has recently sparked the
interest of many researchers (Zhang et al. 2022; Ma et al.
2022a). With the great success of ViT, a series of masked au-
toencoders (MAEs) have been proposed (He et al. 2022; Wei
et al. 2022; Li et al. 2022a). These MAEs are widely viewed
as efficient visual learners, and can fully utilize the paral-
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lel computing capability of GPU to learn multi-head visual
features and reconstruct images well at pixel-level. Com-
pared with DPMs, MAEs seem to be more acceptable, due
to their higher inference efficiency, wider generalization per-
formance (Ma et al. 2023b) and lower theoretical threshold.
However, they also seem to be somewhat simple and crude
by mandatory setting the mask proportion as a fixed num-
ber (e.g., 75%), which makes the training of MAEs less ele-
gant as compared to the progressive ways in DPMs. A large
number of experiments (Huang et al. 2022; Liu et al. 2022a;
Chen et al. 2022) also prove that the training of MAEs is
very time-consuming (e.g., 112 V100 days for MAE (He
et al. 2022)), which is even close to that of DPMs.

To sum up, DPMs and MAEs have made significant con-
tributions in their respective technical routes for image re-
construction. However, they both share a fatal problem, high
training time-consumption. Through an in-depth analysis of
these two categories of models, we attribute this problem
to two factors: (1) Pixel-level modeling. Firstly, they al-
most all model image features at the pixel-level, which nat-
urally requires a lot of time to encode (or add-noise) and
decode (or de-noise) the image features in the entire pixel
space. Taking the 256×256 image input in Figure 1 as an
example, for DPMs, each diffusion step requires Gaussian
sampling and noise prediction in the 256×256 pixel space,
which greatly reduces its training efficiency. For MAEs,
the pixel size of its input image determines the number of
patches (i.e., the input length of the ViT) when the same
patch size is maintained. Therefore, for both DPMs and
MAEs, modeling at pixel-level is one of the significant
causes of high time-consumption. (2) Spatial-temporal de-
pendency. Secondly, their training efficiency is implicitly
limited by their inherent or artificially spatial-temporal de-
pendency. As illustrated in the table in Figure 1, for DPMs,
each Markov diffusion step is calculated based on the pre-
vious step, so the training time theoretically is positively
correlated with its temporal-dependency, that is, stronger
time dependence (i.e., longer diffusion steps) will lead to
higher training time-consumption. On the contrary, the train-
ing time seems to be negatively correlated with the spatial-
dependency, that is, in each training iteration, the de-noising
optimization process from Xt to Xt−1 is obviously easier
and the time-consumption is shorter than that directly from
Xt to X0. Therefore, for MAEs, each iteration from 75%
masked Xt to unmasked X0 will naturally require higher
time-consumption for training.

Driven by the above two aspects, we propose a simple
but well-considered latent masking diffusion framework for
faster image reconstruction. Specifically, to address the first
factor, inspired by the success of Stable Diffusion, we em-
ploy a pre-trained variational autoencoder to compress the
input image from the original pixel space to a latent space
with smaller scale for latent destruction and reconstruc-
tion. But different from Stable Diffusion, we then follow
the MAEs’ architecture to split the latent feature map into
small patches to compose a patch sequence with length l as
the readout. Based on the latent patch sequence, we further
address the second factor by designing a progressive mask-
ing diffusion strategy, which gradually increases the mask-

ing proportion by mask schedulers and restores the latent
features from simple to difficult. Among them, three differ-
ent schedulers are adopted to avoid temporal-dependency for
faster parallel computing and enhance spatial-dependency to
help model reconstruct efficiently, so as to ultimately reduce
the total training time-consumption.

Experiments on two representative datasets ImageNet-1K
and Lsun-Bedrooms demonstrate the effectiveness of the
proposed LMD model, showing that it achieves competitive
performance against previous DPMs or MAEs models, but
with significantly lower mean training time-consumption.
The inference speed of LMD in image reconstruction also
significantly outperforms the previous approaches. More-
over, LMD can be well generalized to a variety of down-
stream tasks, due to its flexible architecture.

2 Related Work
Diffusion Probabilistic Models (DPMs). Recent years
has witnessed the remarkable success of DPMs, due to its
impressive generative capabilities. After surpassing GAN
on image synthesis (Dhariwal and Nichol 2021), diffusion
models have shown a promising algorithm and emerged as
the new state-of-the-art generative (Yang et al. 2022) and
editing (Ma, Jia, and Zhou 2023) models. As a pioneering
work, DDPM (Ho, Jain, and Abbeel 2020) still suffers from
slow sampling procedure and sub-optimal log-likelihood
estimations. To this end, DDIM (Song, Meng, and Ermon
2020) proposes a more efficient sampling procedure to
accelerate the forward process and has been widely used in
subsequent DPMs. Later, a brand new ADM (Dhariwal and
Nichol 2021) model emerges and leads the trend of guided
diffusion models (Liu et al. 2021a; Nichol et al. 2021) After
that, a series of large DPMs (Saharia et al. 2022; Rombach
et al. 2022; Yu et al. 2022; Ramesh et al. 2022) with billions
of parameters have been proposed and have attracted the
attention of a large number of researchers.

Masked Auto-Encoders (MAEs) Different from DPMs’
route, as a series of efficient self-supervised visual learners,
MAEs (Li et al. 2021; Zhou et al. 2021; Ma et al. 2022b;
Zhang et al. 2022; Ma et al. 2022c) commit to pre-train
a generalized representation models by mask-then-predict
pixels. Among them, MAE (He et al. 2022) is one of the
most representative models, which proposes an asymmetric
encoder-decoder architecture to feed those visible patches
(about 25%) into encoder and reconstructs the image by pre-
dicting the remaining 75% patches. Subsequently, SimMIM
proposes a simpler framework without the special designs
(e.g., block-wise masking and tokenization via discrete
VAE) to perform masked image modeling for addressing
the data-hungry issue faced by large-scale model training.
Moreover, to train the hierarchical models faster and reduce
the GPU memory consumption, GreenMIM (Huang et al.
2022) designs an optimal grouping strategy based on
dynamic programming and couplings it with sparse convo-
lution into MAEs, which enjoys a training-speed advantage
in hierarchical ViT training, such as Swin Transformer (Liu
et al. 2021b) and Twins Transformer (Chu et al. 2021).
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Figure 2: The Proposed Framework.

Compress-based Models. Compress-based image recon-
struction models (Ramesh et al. 2021; Vahdat, Kreis, and
Kautz 2021; Kim et al. 2022) aim to compress image into
a smaller latent space for training acceleration, which is an-
other line of research relevant to our work. VQVAE (Van
Den Oord, Vinyals et al. 2017) proposes a simple yet power-
ful generative model to learn latent discrete representations
by introducing vector quantization operation into VAEs and
has shown powerful image compression capabilities. Based
on the technique, VQGAN (Esser, Rombach, and Ommer
2021) further models images as a composition of percep-
tually rich image constituents and introduces adversarial
training for better image reconstruction. Recently, Stable
Diffusion (Rombach et al. 2022) has become one of the
most sought-after diffusion models among researchers, due
to its excellent text-to-image synthesis performance. Though
achieving remarkable progress, these compress-based mod-
els are basically built on top of the DPMs and therefore still
suffer from the inherently strong temporal-dependence of
the Markov diffusion, e.g., Stable Diffusion is still very com-
putationally expensive if trained from scratch.

Motivated by these works, our LMD model focuses on
unifying the Latent space project technique, the Mask self-
supervised technique and the Diffusion generative idea, then
respectively leverages these techniques to reduce the dimen-
sion of the input image, avoid temporal-dependence for par-
allel computing, and enhance spatial-dependence for faster
training, which eventually reduces the total training time-
consumption for faster image reconstruction.

3 Methodology
To lower the computational demands and training time-
consumption towards high-resolution image reconstruction,
we propose a novel latent masking diffusion (LMD) frame-
work, which integrates progressive mask self-supervised
strategies into an encoder-decoder framework, as depicted in
Figure 2. LMD mainly contains two steps: 1) Perceptual La-
tent Space Projection (Sec. 3.1) and 2) Latent Space Mask-
ing Diffusion (Sec. 3.2). The former aims to pretrain a VAE-
based latent space projector to compress input images into a
perceptually high-dimensional space for acceleration, while
the latter aims to conduct latent masking diffusion procedure

for more efficient image reconstruction.
We observe that the mask autoencoders provide high GPU

parallel computing efficiency due to using ViT as the vi-
sual learner, but there are still two problems: (i) Almost
all existing MAEs are modeled at the pixel-level. Though
the computing cost can be reduced by assigning a higher
pixel proportion to each patch, it will greatly damage the
global-perceptibility of semantic elements. (ii) The cur-
rent MAEs follow a high-proportion masking strategy for
training, which will greatly impact the spatial-dependence
among pixels and make the training unstable and the time-
consumption longer. A better way may be to gradually in-
crease the mask proportion to make full use of the spatial-
dependency for acceleration. We now introduce the details
of the two steps in LMD.

3.1 Perceptual Latent Space Projection
The latent space projection step is performed to compress
the input images into a perceptual high-dimensional space
by leveraging a pretrained latent space projector (LSP) based
on previous work (Esser, Rombach, and Ommer 2021; Rom-
bach et al. 2022). The LSP consists of an encoder E , a de-
coder G, a discriminator D, and a learnable latent codebook
Z . Given an input image x ∈ RH×W×3, LSP first compress
the image x into a latent variable ẑ by encoder E , i.e., ẑ =
E(x) and ẑ ∈ Rh×w×d, where h and w respectively denote
scaled height and width (scaled factor f = H/h = W/w),
and d is the dimensionality of the compressed latent vari-
able. After going through the step described in Sec. 3.2, the
latent variable ẑ is updated and finally reconstructed into x̂
by decoder G. Formally,

x̂ = Gθ(LSMDϕ(Eθ(x))), (1)

where LSMD(·) represents subsequent latent space masking
diffusion step, ϕ denotes the parameters of LSMD, and θ
denotes the parameters of LSP that are first pretrained and
then frozen to use in the LSMD stage.

Vector Quantization As illustrated in Figure 3, vector
quantization in the pre-training stage of LSP aims to map
the aforementioned compressed latent variable ẑ into a
perceptual latent variable zq . A learnable codebook Z =
{zk}Kk=1 ⊂ Rd, which has been pre-trained by (Van
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Figure 3: The Latent Space Projector.

Den Oord, Vinyals et al. 2017), is introduced to help LSP
learn the perceptual latent feature of the image constituents.

Specifically, the codebook can be viewed as a discrete la-
tent space of size K that is leveraged to express the relatively
complete and perceptual semantic elements of the original
image constituents (e.g., dog’s eyes or tongue), and can be
retrieved by ẑ to obtain a latent variable zq using element-
wise vector quantization function q(·), i.e., zq = q(ẑ), which
is the key to compressing an image with little loss of accu-
racy. More precisely, the vector quantization function q(·)
aims to obtain a perceptual discrete representation zq of the
input image by using ẑ to perform nearest neighbour look-up
over latent codebook Z , as follows,

q(ẑ) :=
(
arg min

zk∈Z
||ẑij − zk||

)
∈ Rh×w×d. (2)

In sum, the above forward process in the LSP stage can be
formally described as,

x̂ = Gθ(qθ(Eθ(x))). (3)

Note the operations in Formula (2) are non-differentiable,
so the above forward process cannot be directly optimized
due to the gradient of the q(·) cannot be backpropagated.
Following (Esser, Rombach, and Ommer 2021), we adopt
a straight-through gradient estimator to copy the gradients
from the decoder to the encoder for end-to-end training via
the loss function LVQ:

LVQ(E ,G,Z) = ||x− x̂||2 + ||sg[E(x)]− zq||22
+ β||sg[zq]− E(x)]||22,

(4)

where the first term is reconstruction loss between x and x̂,
the middle term is vector quantization loss between encoded
vector ẑ and retrieved vector zq , here sg[·] stands for stop-
gradient operator and is used to solely update the zq part of
the codebook. The last term is the commitment loss designed
to ensure the encoder commits to an embedding and its out-
put does not grow. To keep consistent with (Van Den Oord,
Vinyals et al. 2017), the commit factor β is set to 0.25.

Adversarial training To make the LSP more robust, ad-
versarial training is also introduced into our work. As men-
tioned above, the decoder G is leveraged to reconstruct the
latent variable zq into x̂. After that, a patch-based discrimi-
nator is introduced to accept the real image patch from x or
the reconstructed image patch from x̂ and give out a (1, 0)
judgment, which is trained via an adversarial loss LADV:

LADV({E ,Z,G},D) = −[log(1−D(x̂))+ logD(x)). (5)

Kernel

0
2D-Conv Flatten

0

Figure 4: The Patch Embedding Layer.

The total objective for finding the optimal latent projector is:

LTotal = LVQ(E ,G,Z) + γLADV({E ,Z,G},D), (6)

where γ is an adaptive weight hyperparameter. With the
patch-level adversarial training, LSP can be well general-
ized to the subsequent LSMD step, which is also trained on
the same patch-level.

3.2 Latent Space Masking Diffusion
The latent space masking diffusion step (i.e., LSMDϕ(·))
follows an encoder-decoder architecture and is designed
to achieve progressive masking diffusion by the following
three components.

Latent Encoder To learn the deeper semantics of the com-
pressed latent variables ẑ of the image x, we sequentially
perform a pipeline, which includes patch embedding layer,
mask scheduling layer, spatial position embedding layer and
MAE encoder blocks, for training.

The patch embedding layer aims to further embed the
compressed latent variable ẑ ∈ Rh×w×d into patched-based
latent variable ẑp ∈ Rl×d (l is the number of the patches,
and the size of each patch is p × p pixels), as illustrated in
Figure 4. Specifically, we first feed the compressed latent
variable ẑ into a 2D-convolution layer to perform the con-
volution operation, where the kernel size and stride are both
set to p, and then obtain the final patch-based representation
ẑp through a flatten operation. Note that ẑp is a latent vec-
tor with length l, which is treated as the representation of a
visual sequence and served as input to the subsequent visual
Transformer.

The mask scheduling layer is designed to produce an in-
creasing mask-ratio sequence by using a masking diffusion
scheduler, which will be detailed in Sec. 3.2. Based such a
mask-ratio sequence, LMD will progressively increase the
mask proportion of patches in ẑp with the increase of the
training step, and finally only read out the unmasked patches
for encoding.

Since the self-attention mechanism in Transformer is not
sensitive to position, and the 1D position-features of tokens
in NLP are ineffective for 2D data of image, we propose
to use a spatial position embedding layer to learn the 2D-
features and integrate them into latent variable ẑp for obtain-
ing better spatial-aware latent vector representations. Specif-
ically, we first convert the index of each patch in ẑp (see Fig-
ure 2) into their 2D coordinates (cx, cy) by dividing the index
number into h/p (or w/p) to get the quotient as cx and the
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remainder as cy . Here cx and cy both are integers and record
spatial position of the current patch. Then, we respectively
embed them into a sin - cos space via SPE(·),

SPE(i, j) =

{
sin( i

10000
2i
d
), if i is even

cos( i

10000
2i−2

d

), otherwise (7)

to obtain a 2D position vector (ẑx, ẑy) corresponding to
latent variable ẑp, where i ∈ (1, l) and j ∈ (1, d/2) re-
spectively denotes patch and dimension index. Note here
ẑx ∈ R d

2 and ẑy ∈ R d
2 . Finally, we can obtain the updated

spatial-aware vector ẑp ∈ Rd, by first concatenating ẑx and
ẑy and then adding it to previous ẑp.

Finally, a battery of MAE Encoder Blocks are adopted to
learn attentive representations for better mining the deeper
sematics of compressed images. Similar to ViT-base, we
adopt 12 layers of Transformer as MAE encoder blocks, and
define each Transformer block by a block function fblock(·)
as,

ẑ
(ℓ)
out = f

(ℓ)
block(ẑ

(ℓ−1)
out ) (8)

ẑ
(0)
out = ẑp (9)

where ℓ is layer index, and ẑ
(12)
out is the output of the last

layer. Note that in ẑp, only unmasked patches are fed into
the above MAE encoder blocks for image reconstruction.

Latent Decoder As opposed to the above encoder, the de-
coder is designed to reconstruct the compressed latent vari-
able ẑ ∈ Rh×w×d by using the output ẑout of the encoder as
input. The pipeline of the decoder consists of a latent linear
layer, a spatial position recall layer, MAE decoder blocks
and latent normalization and prediction layers, and is also
executed sequentially. Wherein, the latent linear layer and
asymmetric MAE decoder blocks are adopted to given extra
consideration for trade off between discriminant and gener-
ative tasks, the spatial position recall layer keeps the same
operation as in the encoder but with negative SPE(·), and
then the normalization and prediction layer is used for latent
image reconstruction.

1) Trade off between discriminant tasks and genera-
tive tasks. In the original MAE (He et al. 2022), the asym-
metric structure is adopted by setting up a heavier encoder
(e.g., 12 blocks) and a lighter decoder (e.g., 8 blocks), which
is more suitable for discriminant tasks. We consider to take
a trade off between discriminant tasks and generative tasks,
and additionally propose to use a lighter encoder (e.g., 8
blocks) and a heavier decoder (e.g., 12 blocks) for genera-
tive tasks such as image synthesis. Moreover, a latent linear
layer is also preferentially placed at the beginning of the de-
coder for deeper decoder embedding (e.g., embed 512-dim
to 1024-dim for decoding).

2) Latent Image Reconstruction. Different from the pre-
vious MAEs (He et al. 2022; Xie et al. 2022b), the latent
image reconstruction (LIR) target of LMD is established in
a latent space. The last layer of the decoder is a latent linear
prediction layer whose number of output channels equals
the dimension d of ẑ, which is used to predict the recon-
structed latent image ẑrec. LMD adopts the mean squared
error (MSE) between the reconstructed latent variable ẑrec

step:0 (0.15) step:30 (0.25) step:75 (0.4) step:135 (0.6) step:180 (0.75)

step: 1e3 (mask ratio)

step:0 (0.15) step:12 (0.25) step:60 (0.4) step:94 (0.6) step:180 (0.75)

step:0 (0.15) step:31 (0.25) step:53 (0.4) step:80 (0.6) step:180 (0.75)

Figure 5: Mask diffusion examples under three different
scheduling schemes: Uniform, Piecewise, and Cosine (from
top to bottom). Note the 5×5 images from the LSUN-
bedrooms with a maximum of 180k training steps in latent
space.

and original latent variable ẑ of the compressed image as
training target,

LLIR,ϕ = ||ẑ − ẑrec||22, (10)

here ϕ denote the parameters of the whole LSMD step. Sim-
ilar to MAE, the loss is only computed on masked patches.

Masking Diffusion Scheduler The masking diffusion
scheduler aims to produce an increasing mask-ratio se-
quence for dynamically fitting the model training, so as to
optimize the overall training time-consumption. Motivated
by the lower temporal-dependence of MAEs and higher
spatial-dependence of DPMs, we stand on the shoulder of
mask self-supervise and diffusion generative techniques to
propose the masking diffusion strategy, which is achieved
through the following three scheduling schemes1.

1) Uniform Scheduling. This uniform scheduling is a
pre-explored scheme, which follows the assumption that the
difficulty of model training decreases uniformly with the in-
crease of the number of training steps. In the training stage,
we randomly sampled 5 × 5 latent images for evaluation,
as shown in Figure 5. From Figure 5, we can observe that
when the mask ratio grows to 0.4, the masking speed of the
uniform scheduler exceeds the reconstructing speed of the
model. Moreover, it can be noticed that when the mask ratio
reaches 0.75, this phenomenon is further aggravated.

2) Piecewise Scheduling. The previous scheme shows
that the model capability is not uniformly improved with
the growth of the mask ratio. To the end, we provide the
piecewise scheduling scheme. Specifically, for the first 1/6
training steps, we increase the mask ratio linearly from 0.15
and 0.4, for the next 1/6 training steps, we maintain the mask

1In all schemes, the mask ratio of randomly masking is preset
in [0.15-0.75], which follows the discrete optimal lower bound in
BERT (Kenton and Toutanova 2019) and the continuous optimal
upper bound in MAE (He et al. 2022).
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ImageNet-1K (IN1K)
Method Backbone Image Size Patch Size Mask Ratio MIT ↓ MLT ↓ MLI ↓
MAE (2022) ViT-B (12/8 blocks) 224 x 224 16 x 16 0.75 2.62 17.11 6.53
SimMIM (2022b) Swin-B (2/2/18/2 blocks) 192 x 192 32 x 32 0.6 3.45 20.01 5.80
GreenMIM (2022) Swin-B (2/2/18/2 blocks) 224 x 224 4 x 4 0.75 2.23 11.93 5.35
UM-MAE (2022b) ViT-B (12/8 blocks) 256 x 256 16 x 16 0.25 2.15 13.80 6.42
LMD-PS (Ours) ViT-B (12/8 blocks) 224 x 224 16 x 16 0.15 / 0.4 / 0.75 2.78 8.37 3.01
LMD-CS (Ours) ViT-B (12/8 blocks) 224 x 224 16 x 16 cosine-based values 2.61 6.92 2.65

Table 1: The pre-training mean time-consumption versus MAEs methods on ImageNet-1K dataset.

Method Mask Ratio MAT@1↓ MAT@5↓
MAE (2022) 0.75 0.374 0.253
LMD-PS (Ours) 0.15 / 0.4 / 0.75 0.158 0.137
LMD-CS (Ours) cosine values 0.135 0.102

Table 2: The fine-tuning valid mean time-consumption for
accuracy improvement on ImageNet-1K dataset.

LSUN-Bedrooms 256 x 256
Method Backbone MIT ↓ MLT ↓ MLI ↓
DDPM (2020) U-Net 5.45 39.89 7.32
iDDPM (2021) U-Net 5.32 24.74 4.65
DDIM (2020) U-Net 4.46 29.53 6.62
LDM (2022) U-Net 2.86 15.84 5.54
LMD (Ours) ViT-B 2.45 7.06 2.88

Table 3: The training mean time-consumption versus DPMs
methods on LSUN-Bedrooms dataset.

ratio at 0.4, and for the remaining 1/3 steps, we continue to
linearly increase until reaches 0.75, and maintain such a ra-
tio till the end of the training.

3) Cosine Scheduling. From Figure 5, we can observe
that under piecewise scheduling, the model still performs
poor in both the early stages (e.g., at step 12e3) and the
later stages (e.g., at step 94e3). We guess the reasons why
the model requires more training steps in the early and later
stages are respectively due to poor data fitting and high mask
ratio. To address this issue, we further propose a new cosine
scheduling scheme. Specifically, considering that the cosine
function can approximate the scheduling process well, we
adopt the cosine function to compute a sequence of mask
ratios. As can been seen from Figure 5, such a scheduling
scheme achieves the best results.

4 Experiments
4.1 Experimental Setup
Datasets and Metrics. Following (He et al. 2022; Ho, Jain,
and Abbeel 2020), we pre-train our model on ImageNet-
1K (IN1K) (Deng et al. 2009) and LSUN-Bedrooms (Yu
et al. 2015) respectively. Three main metrics: mean itera-
tion time (MIT), mean loss-decrease time (MLT) and mean
loss-decrease iterations (MLI) are adopted to evaluate the
valid training time-consumption of the models, which will
be detailed in the Appendix. On the downstream classifica-

tion task, we evaluate our model on the IN1K dataset (with
1000 object categories) and adopt mean accuracy-increase
time (MAT) including MAT@1 and MAT@5 as the main
evaluation metrics, which can be used to test the valid time-
consumption with mean accuracy improvement. Moreover,
FID, CLIP-score and LPIPS metrics are used to evaluate the
generative performance.

Baselines. For more holistic comparisons, we compare
LMD with the two categories of baseline models: 1)
DPMs, including DDPM (Ho, Jain, and Abbeel 2020), iD-
DPM (Nichol and Dhariwal 2021), DDIM (Song, Meng, and
Ermon 2020) and LDM (Rombach et al. 2022); 2) MAEs, in-
cluding MAE (He et al. 2022), SimMIM (Xie et al. 2022b),
GreenMIM (Xie et al. 2022b) and UM-MAE (Li et al.
2022b). Note all baselines use the base model.

Implementation Details. LMD adopts 20-layers ViT as
the backbone, of which 8 encoder blocks and 12 decoder
blocks for generative training, and 12 encoder blocks and 8
decoder blocks for discriminant training. The mask ratio of
the mask scheduler is set in [0.15, 0.75]. The scaling factor
f is set as 8. The base learning rate is set as 1.5e−4, and
the weight decay is set as 0.05. We use the Adan (Xie et al.
2022a) optimizer to optimize the model.

4.2 Overall Performance

As shown in Table 1, compared with MAEs methods, LMD
achieves the best performance on MLT and MLI metrics.
As for the MIT metric, although UM-MAE achieves the op-
timal mean iteration time, but with a very low mask ratio
of 0.25. In fact, the MLT metric can better reflect the ef-
ficiency of the model for valid loss decreases, and we are
nearly twice as fast as UM-MAE on this metric. From Ta-
ble 2, we can observe from this fine-tuning results that LMD
is much faster than MAE, and the actual speed up is about
3× under the same accuracy contribution, which further
proves LMD’s effectiveness. Moreover, Table 3 shows the
comparison between our model and DPMs-based methods
in terms of training time. From Table 3, it can be clearly seen
that LMD greatly accelerate the generative training process,
which proves that the LMD model is substantially more ef-
ficient in training as compared to the DPMs-based methods,
because it can take full advantage of the parallel comput-
ing of GPU by utilizing ViT as the backbone. Further, Ta-
ble 4 shows that our LMD has achieved more competitive
results in generative performance than SD-v1.4 or the recent
Musebase with the best FID, CLIP-score and LPIPS results.
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FID ↓ CLIP-score ↑ LPIPS ↓
SD-v1.4 (2022) 17.01 0.24 0.45
Musebase (2023) 6.8 0.25 0.33
LMD-CS (Ours) 6.2 0.26 0.27

Table 4: Generative evaluation on CC (Sharma et al. 2018).

Figure 6: Case studies to test the impact of latent projector.

4.3 Ablation Studies
In this part, we perform ablation experiments to evaluate
the impact of each setting in our LMD on training time-
consumption. We focus on three crucial settings, as shown
in Table 5. Specifically, #1 indicates the complete LMD
model; #2 w/o L (LSP) denotes that we remove the latent
space projector and directly perform the masking diffusion
strategy on the pixel space; #3 w/o M (MAE) denotes that
we remove the MAE encoder-decoder blocks and replace
with a U-Net (Ronneberger, Fischer, and Brox 2015) model;
#4 w/o D (MDS) denotes that we remove the masking dif-
fusion scheduler and adopt a fixed 0.75 mask ratio for re-
construction. From Table 5, we can observe that removing
each component will result in a time-consumption increas-
ing, which proves the effectiveness of all the settings em-
ployed by LMD. In particular, w/o MAE caused a mean de-
lay of 2.70, while w/o MDS only caused a mean delay of
1.27, indicating that low temporal-dependence directly pro-
motes the reduction of the training time-consumption, while
high spatial-dependence is a secondary optimization factor,
which indirectly reduces the training time-consumption. In
contrast, w/o LSP only caused an average delay of 0.33. We
suspect that this is due to the adoption of ViT to offset latent
space acceleration, but it may also have a significant impact
on reducing GPU memory consumption.

4.4 Further Analysis
The impact of latent space projector. To better illustrate
the effectiveness of our model in latent space reconstruction,
we sample and visualize the latent image ẑ (middle of the
three columns in Figure 6) compressed by the latent space
projector and ultimately reconstructed images (right of the
three columns in Figure 6). It can be observed that our latent
space projector based on VQ-GAN almost achieves lossless
image compression, so the accuracy of latent space image
reconstruction can be guaranteed. Moreover, when the latent
space projector fails on partial images (loss of accuracy due
to unseen feature distributions), our model can ensure better
generalization by adding an explicit reconstruction loss
||x − x̂||22 to efficiently fine-tune the ViT blocks, without
re-training the latent space projector.

# Setting Overall↓ MIT MLT MLI MAT@1 MAT@5
mean train train train dev dev

1 LMD 2.48 2.61 6.92 2.65 0.135 0.102
2 w/o L 2.81 3.18 7.92 2.49 0.285 0.198
3 w/o M 5.18 2.95 16.52 5.60 0.425 0.385
4 w/o D 3.75 2.62 11.40 4.35 0.225 0.143

Table 5: Ablation study on IN1K dataset.
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Figure 7: The loss curves from LMD-PS and LMD-CS.

Exploration of mask scheduling schemes. To more clearly
illustrate the impact of different schedulers on loss decline
and show why cosine scheduling is more effective, we re-
spectively visualize the loss decline curves from LMD-PS
and LMD-CS, as shown in Figure 7. From Figure 7 (a), we
can see that there is an obvious fluctuation when the mask ra-
tio exceeds 0.4, which indicates that the learning efficiency
of the model at this time is slightly slower than that of the
mask scheduler. This can be solved by two different ways:
(1) adding more training steps at 0.4 mask ratio; (2) adopting
a more gentle scheduling scheme (such as cosine schedul-
ing) within the range of 0 to 0.4. The former requires more
training time to make up for the learning efficiency of the
model (similar to MAEs with fixed mask ratio). In contrast,
the cosine-based scheduling scheme shown in Figure 7 (b)
is more gentle in the decline of losses, which proves its po-
tential advantage in reducing training time-consumption.

5 Conclusion
In this paper, we propose LMD, a latent masking diffusion
framework for faster image synthesis. Specifically, we first
employ a pre-trained latent space projector to compress the
input image into a latent space with smaller scale to obtain
their latent feature map, and then split the latent feature map
into a patch sequence for masked self-supervised training.
Unlike conventional using fixed mask ratio to reconstruc-
tion, we propose to gradually increase the masking ratio by
mask schedulers and reconstruct the images by a progressive
diffusion mode. By unifying the latent space project tech-
nique, mask self-supervised technique and diffusion gen-
erative scheme, LMD can reduce the total training time-
consumption. Experiments on the representative ImageNet-
1K and LSUN-Bedrooms datasets demonstrate the effective-
ness of LMD, and illustrates its high-efficiency in training
both generative and discriminant tasks.
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