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Abstract

Video semantic segmentation has achieved conspicuous
achievements attributed to the development of deep learning,
but suffers from labor-intensive annotated training data gath-
ering. To alleviate the data-hunger issue, domain adaptation
approaches are developed in the hope of adapting the model
trained on the labeled synthetic videos to the real videos in the
absence of annotations. By analyzing the dominant paradigm
consistency regularization in the domain adaptation task, we
find that the bottlenecks exist in previous methods from the
perspective of pseudo-labels. To take full advantage of the
information contained in the pseudo-labels and empower more
effective supervision signals, we propose a coherent PAT net-
work including a target domain focalizer and relation-aware
temporal consistency. The proposed PAT network enjoys sev-
eral merits. First, the target domain focalizer is responsible
for paying attention to the target domain, and increasing the
accessibility of pseudo-labels in consistency training. Second,
the relation-aware temporal consistency aims at modeling the
inter-class consistent relationship across frames to equip the
model with effective supervision signals. Extensive experi-
mental results on two challenging benchmarks demonstrate
that our method performs favorably against state-of-the-art
domain adaptive video semantic segmentation methods.

Introduction
Video semantic segmentation, which aims to predict a specific
semantic class for each pixel in consecutive video frames,
has achieved conspicuous achievements attributed to the re-
cent advances in deep neural network (Long, Shelhamer, and
Darrell 2015; Wang, Luo, and Zhang 2023; Pan et al. 2023;
Sun et al. 2023b) with widespread applications such as au-
tonomous driving, robotics, augmented reality (Cordts et al.
2016; Couprie et al. 2013; Ngan and Li 2011), etc. However,
it is labor-intensive and time-consuming to gather massive
pixel-level annotations as training data. To alleviate the data-
hunger issue, a feasible solution is to resort to synthetic data
rendered by video game engines (e.g., GTA5 (Richter et al.
2016)) in a self-generated manner with minimal cost. How-
ever, video segmentation models trained on synthetic data

*Equal contribution
†Corresponding author

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(source domain) inevitably suffer from performance degra-
dation when applied directly to real-world videos (target
domain) raised by distribution differences (domain shift).
How to alleviate this gap to empower the learned model
generalization capability is thus extremely challenging.

In this work, we focus on the domain adaptive video se-
mantic segmentation (DAVSS) task, which aims to adapt a
model trained on source domain videos equipped with seg-
mentation annotations to target domain videos in the absence
of accessible labels. To tackle this issue, existing methods can
be roughly categorized as adversarial training methods and
consistency regularization methods. In adversarial training
formulation (Guan et al. 2021), the model seeks to capture
domain-invariant spatial-temporal information, but it cannot
guarantee a low empirical error on unlabeled target domain
videos (Chen et al. 2019; Kumar et al. 2018), along with
training stability (Kodali et al. 2017). Recently, consistency
regularization paradigm (Gao et al. 2023; Xing et al. 2022;
Gao et al. 2023) dominate this field credited to its simplicity
yet competitive performance. The core idea of the consistency
regularization methods is to impose temporal consistency
constraint to the prediction (pseudo labels) of the current
frame as well as the one from the previous frame that is
warped to the current frame resorting to optical flow.

After an in-depth analysis of the consistency regulariza-
tion paradigm, we argue that pseudo-labels matter in DAVSS,
which is intuitively sensible from the definition of the task
itself; that is, pseudo-labels play a dual role - minimizing
the inter-domain discrepancy and maximizing the target do-
main’s temporal consistency. However, we find pseudo-labels
become performance bottleneck raised by two key ingredients
lacking in previous works. (1) Accessibility of pseudo-labels.
Considering the absent target annotations, models trained on
the source domain with significant domain shift are prone to
suffer from limited coverage of underlying features for the
same class in the target domain (e.g., the decision boundary
crosses the high-density region for target domain class veg-
etation in Figure 1 (a), leading to incomplete segmentation
with different fragments of object vegetation). In this case,
considerable unconfident yet reliable pseudo-labels tend to
be easily overwhelmed by noise ones. Therefore, it is highly
desirable to suppress noisy pseudo-labels and guarantee the
truly reliable ones embrace higher weights, in pursuit of en-
hancing their accessibility. (2) Effectiveness of supervision
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Figure 1: Illustration of our motivation. (a) (b) show the decision boundary with original prototypes and target prototypes. Models
trained on the source domain with significant domain shift are prone to suffer from limited coverage of underlying features for
the same class in the target domain. (c) shows different ways of modeling temporal consistency. Hard Pseudo-Labeling may
suffer from being guided by false pseudo-label, while the KL divergence take each class separately into consideration. Our
relation-aware temporal consistency provides more effective guidance.

signals from pseudo-labels. To fully probe the intrinsic tem-
poral information in videos, previous methods often impose
temporal consistency by aligning the pseudo-labels of the
current frame with those of the previous frame warped to the
current frame as supervision signals. The construction strate-
gies for supervision signals involve hard pseudo-labeling and
soft pseudo-label. On the one hand, the naive hard pseudo-
labeling strategy only selectively recruits the classes with the
highest confidence for training but neglects that these labels
may be inaccurate (Figure 1 (c) ❶), which can undesirably
manifest in the feature learning process and leads to confir-
mation bias (Guo et al. 2017). On the other hand, retaining
scores for all classes as soft pseudo-labels and imposing tem-
poral constraint with KL divergence, as proven by (Ke et al.
2020), can alleviate confirmation bias, but is trapped in taking
each class independently and heavily relying on strong i.i.d.
assumption (Figure 1 (c) ❷), hindering the learning process.
Then, the question naturally arises: how to leverage the inter-
class relationship to model structure information to empower
more effective supervision signals?

In this paper, we analyze the bottlenecks that exist in pre-
vious methods from the perspective of pseudo-labels, and
shed light on the possibility of closer collaboration between
the pseudo-labels themselves and the supervision signals
they constitute. Specifically, we design a coherent PAT net-
work, including a target domain focalizer and relation-aware
temporal consistency regularization to Pay Attention to the
Target domain and to model the inter-class consistent rela-
tionship across frames. In the target domain focalizer. In
order to alleviate the inconsistency of class-level underlying
features between the two domains raised by domain shift
to enhance pseudo-labels accessibility, we draw inspiration
from Gestalt law (Koffka 2013) that pixels belonging to the
same class within a domain are more similar than those be-
longing to different classes or domains. We devise the target

domain focalizer to pay attention to the target domain by ef-
fectively capturing more complete underlying characteristics
that fittingly match the features of the target domain, enabling
the decision boundary to lie in the low-density region (Fig-
ure 1 (b)). The main idea is, enabling prototypes vegetation
trained on the source domain directly to the target domain
undoubtedly leads to incomplete segmentation caused by do-
main shift, resulting in segmentation fragments (Figure 1 (a)).
However, if we retrieve other unrevealed parts supported by
segmentation fragments, more complete segmentation results
can be achieved (Figure 1 (b)), which generate prototypes
closer to the true class vegetation centroid of target domain,
since these fragments are from the same class within the same
domain. In specific, we generate the initial segmentation by
directly applying prototypes trained on the source domain to
the target domain. Then, based on the resultant segmentation,
we collect confident features to generate target-aware proto-
types, which are further employed for segmenting this frame.
In this way, noisy pseudo-labels will be suppressed while
the reliable ones will be highlighted, thus increasing their
involvement in consistency regularization-based training.

In the relation-aware temporal consistency regulariza-
tion. To harness the inter-class relationship modeling struc-
ture information for more effective supervision signals, in-
stead of taking each class independently, we carefully de-
sign the relation-aware temporal consistency regularization
to impose the pixel-class relations of the current frame to be
consistent with their counterparts from the previous frame.
The core idea is that we take the class ranking as a random
event rather than a deterministic permutation. For example,
in ranking, given pixel pt in Figure 1 (c) ❸, its scores vary for
different classes, which can be regarded as probabilities. The
probability of being ranked first is 0.25 of the class bus and
0.3 of the class car. The ranking permutation reflects the rel-
evance of classes w.r.t. the pixel pt. In specific, we transform
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the scores of pixel-class relations into class-ranking probabil-
ity distributions and associate the probability with every rank
permutation between the pixel in the current frame and the
counterpart from the previous frame. Finally, by constraining
the pixel-class relation ranking permutation to be consistent
on adjacent frames, the model can be equipped with more
effective supervision signals.

In this work, our contributions can be concluded as follows:
(1) We analyze the bottlenecks that exist in previous methods
from the perspective of pseudo-labels, and shed light on the
possibility of closer collaboration between the pseudo-labels
themselves and the supervision signals they constitute. (2)
We propose a coherent PAT network. Specifically, we design
the target domain focalizer to pay the prototypes’ attention
to the target domain, and the relation-aware temporal consis-
tency to model the inter-class consistent relationship across
frames. (3) Extensive experimental results on two challenging
benchmarks demonstrate that our method performs favorably
against state-of-the-art DAVSS methods.

Related Work
In this section, we briefly overview methods that are related
to domain adaptive image semantic segmentation and domain
adaptive video semantic segmentation, respectively.

Domain Adaptive Image Semantic Segmentation
With the recent advances in deep neural network (Sun et al.
2021, 2023a,c,d; Wang et al. 2022; Wang, Sun, and Zhang
2023; Luo et al. 2023; Mai et al. 2023), domain adaptive
image semantic segmentation (DAISS) has gained significant
attention as a solution to address the challenges posed by
dense pixel-level annotations and domain shift issues (Melas-
Kyriazi and Manrai 2021). Most existing methods can be gen-
erally divided into two groups, including adversarial learning
based methods and self-training based methods. Adversarial
learning based methods endeavor to learn domain-invariant
representations by adopting adversarial training at image-
level (Choi, Kim, and Kim 2019; Huang et al. 2021b; Kim
and Byun 2020), feature-level (Chen, Li, and Van Gool 2018;
Huang et al. 2021a; Luo et al. 2019a) or output-level (Luo
et al. 2019b; Vu et al. 2019; Lv et al. 2020). The self-training
based methods (Li, Yuan, and Vasconcelos 2019; Yang and
Soatto 2020) attempt to obtain pseudo labels for target do-
main data and then utilize the predicted pseudo labels to
fine-tune the segmentation model. However, pseudo labels
for the target domain data are usually unreliable due to the
domain shift (Zheng and Yang 2021). Recently, several meth-
ods are proposed to improve the reliability of pseudo labels
by domain-aware meta learning (Guo et al. 2021), filtering
out noisy samples (Mei et al. 2020) and uncertainty estima-
tion (Zheng and Yang 2021).

Domain Adaptive Video Semantic Segmentation
Video semantic segmentation is a task to predict pixel-level
segmentation for individual frames within a video sequence.
Current works usually exploit inter-frame temporal relations
to achieve accurate and efficient segmentation. For instance,
DFF (Zhu et al. 2017) and DAVSS (Zhuang, Wang, and Wang

2020) introduce feature propagation to reuse keyframe fea-
tures under the guidance of estimated optical flows to reduce
computational cost. Accel (Jain, Wang, and Gonzalez 2019)
presents an adaptive fusion policy to integrate predictions
derived from different frames effectively. However, these
methods still need dense pixel-level annotations for training,
which is expensive and time-consuming. To address this issue,
DA-VSN (Guan et al. 2021) first proposes the domain adap-
tive video semantic segmentation (DAVSS) task. Inspired
by DAISS, DA-VSN extends the ADVENT framework (Vu
et al. 2019) to target the DAVSS task, encompassing both
spatial and temporal adversarial learning. TPS (Xing et al.
2022) abandons unstable adversarial learning and extends
PixMatch (Melas-Kyriazi and Manrai 2021) to DAVSS with
cross-frame augmentation and cross-frame pseudo-labeling.
SFC (Gao et al. 2023) converts segmentation maps to optical
flows and then imposes consistency between segmentation-
based flow and optical flow to implicitly supervise the train-
ing of the segmentation model.

Method
In this section, we first formulate the domain adaptive
video semantic segmentation (DAVSS) task and present the
overview of our method. Then we describe the details of
the target domain focalizer and the relation-aware temporal
consistency customized for DAVSS. Finally, the training and
inference procedure are discussed.

Overview
The DAVSS task aims at learning an accurate video segmen-
tation model in the target domain based on the labeled source
domain video sequence V S = {XS

t ,Y
S
t }N

S

t=1 and the unla-
beled target domain video sequence V T = {XT

t }N
T

t=1, where
NS and NT denote the number of frames in each domain.
As shown in Figure 2, given a video frame X ∈ RH×W

(omit the superscript S/T and the subscript t for conve-
nience) from either domain, the feature extractor first ex-
tracts feature map F ∈ RH×W×C with the same spatial
resolution as the original input, where C denotes the channel
number of the feature map. Then a set of learnable proto-
types P = {pk}Kk=1 ∈ RK×C is applied to classify the
feature Fi,j of each pixel pi,j , where K denotes the num-
ber of classes. Besides, the target domain focalizer and the
relation-aware temporal consistency regularization are pro-
posed to pay the prototypes’ attention to the target domain
and to model the inter-class consistent relationship across
frames. The details are as follows.

Target Domain Focalizer
Considering the absent target annotations, models trained on
the source domain with significant domain shift are prone to
suffer from limited coverage of underlying features for the
same class in the target domain, leading considerable uncon-
fident yet reliable pseudo-labels easily overwhelmed by noise
ones. To pay attention to the target domain, we design the
target domain focalizer, effectively capturing more complete
underlying characteristics of the target domain features. As
shown in Figure 3, the target domain focalizer contains two
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Figure 3: Illustration of the target domain focalizer. The target
domain focalizer takes the original prototypes P as input and
outputs the target-aware prototype PT .

cross-attention stages and produces a set of target-aware pro-
totypes PT = {pT

k }Kk=1. Specifically, regarding the original
prototypes {pk}Kk=1 as query and the feature map F as keys,
then the kth correlation map ck is given as

ck = pkF
T, (1)

where the T refers to the matrix transpose operation. We
apply softmax(·) operation along the k dimension and get
the initial attention maps {ak}Kk=1:

[a1,a2, ..., aK ] = softmax([c1, c2, ..., cK ]), (2)
where [·, ·] denotes concatenate operation. With the K atten-
tion maps, we can derive another set of prototypes Ptemp by
weighted pooling the feature map F:

ptemp
k =

∑H,W
i=1,j=1 ak,i,jFi,j∑H,W

i=1,j=1 ak,i,j
. (3)

Note that due to the domain gap, the attention maps carry
lots of noise, which is detrimental to the prototypes. There-
fore, before the weighted pooling operation, we filter out
those unconfident weights with a predefined threshold τ .

As shown in Figure 3, the Attention Map 1 produced
by P cannot completely cover the area of the correspond-
ing class, hurting the representative ability of prototypes.
Inspired by the Gestalt law (Koffka 2013), i.e., pixels be-
longing to the same class within a domain are more similar
than those belonging to different classes or domains, we re-
peat the above process again except thresholding and get the
target-aware prototypes PT . It can be seen that the Ptemp

activates the area of the corresponding class more precisely
and completely in Figure 3 (Attention Map 2), ensuring PT

is more target-focused.
In order to expand the coverage of the underlying target

domain feature distribution, we maintain a target prototype
bank updated by exponential momentum averaging with the
momentum θ at each time stamp t:

PT = θPT + (1− θ)PT
t (4)

Relation-aware Temporal Consistency
In the typical consistency regularization-based methods, ei-
ther adopt a hard pseudo-labeling or KL divergence strategies,
taking each class independently. In fact, there is a certain re-
lation between classes. For example, a pixel with the ground-
truth bus should be more similar to truck rather than road,
while such a relation is ignored in the previous method. We
argue that the inter-class relationship should be considered
for more effective supervision signals. We first derive the
scores of pixel-class relation si,j ∈ R1×K between a pixel
pi,j and the target-aware prototypes PT by:

si,j = softmax(Fi,j(P
T )T). (5)

The core idea is that we take the class ranking as a random
event rather than a deterministic permutation. That is to say,
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VIPER → Cityscapes-Seq

Methods road side. buil. fence light sign vege. terr. sky pers. car truck bus mot. bike mIoU

Src.-only 60.4 19.9 79.2 9.7 22.4 20.4 79.0 12.6 82.2 54.4 67.3 5.4 18.6 17.0 12.3 37.4

AdvEnt [CVPR’19] 78.2 32.8 80.3 19.0 25.6 22.3 80.1 17.7 83.4 56.1 66.6 9.2 36.2 6.9 6.3 41.4
FDA [CVPR’20] 70.3 27.7 81.3 17.6 25.8 20.0 83.7 31.3 82.9 57.1 72.2 22.4 49.0 17.2 7.5 44.4
RDA [ICCV’21] 72.0 25.9 80.8 15.1 27.2 20.3 82.6 31.4 82.2 56.3 75.5 22.8 48.3 19.1 6.7 44.4

PixMatch [CVPR’21] 87.5 30.7 84.7 5.7 22.5 29.7 85.5 37.4 83.3 58.9 79.2 29.5 47.3 20.1 8.6 47.4

DA-VSN [ICCV’21] 86.8 36.7 83.5 22.9 30.2 27.7 83.6 26.7 80.3 60.0 79.1 20.3 47.2 21.2 11.4 47.8
I2VDA [ECCV’22] 84.8 36.1 84.0 28.0 36.5 36.0 85.9 32.5 74.0 63.2 81.9 33.0 51.8 39.9 0.1 51.2

TPS [ECCV’22] 82.4 36.9 79.5 9.0 26.3 29.4 78.5 28.2 81.8 61.2 80.2 39.8 40.3 28.5 31.7 48.9
SFC [AAAI’23] 89.9 40.8 83.8 6.8 34.4 25.0 85.1 34.3 84.1 62.6 82.1 35.3 47.1 23.2 31.3 51.1

PAT (Ours) 85.3 42.3 82.5 25.5 33.7 36.1 86.6 32.8 84.9 61.5 83.3 34.9 46.9 29.3 29.9 53.0
∆ ↑ +24.9 +22.4 +3.3 +15.8 +11.3 +15.7 +7.6 +20.2 +2.7 +7.1 +16.0 +29.5 +28.3 +12.3 +17.6 +15.6

Table 1: Quantitative results of different domain adaptive methods on VIPER → Cityscapes-Seq benchmark. We report mIoU
(%) and show the improvements over Src.-only baseline. The best is highlighted in bold.

every permutation of the classes exists with some probability
rather than only the permutation from largest to smallest
exists. The probability of one permutation π ∈ P (|P| =
K!) given s (omit the subscript i, j for convenience) can be
calculate as:

P (π|s) =
K∏

k=1

sπ(k)∑K
k′=k sπ(k′)

, (6)

where π(k) denotes the kth class index of this permutation.
For example, suppose we have three classes: car, truck and

bus. One permutation of these three classes is π =(truck, car,
bus). Based on the scores of pixel-class relation s, we can
derive the probability of π:

P (π|s) = s(truck)
s(car) + s(truck) + s(bus)

· s(car)
s(car) + s(bus)

.

(7)
By calculating the probabilities of all |P| permutations, we
transform the scores of pixel-class relation s into class rank-
ing probability distributions P (π ∈ P|s) ∈ R1×|P|, which
has modeled the inter-class relationship. In fact, if we calcu-
late full permutations for all K classes, the computational
overhead is indeed unacceptable. For computational effi-
ciency, we focus on the permutations of the top-4 classes
in each prediction, based on our observation that in every
prediction, the top-4 classes have occupied almost all proba-
bilities.

To constraint the inter-class consistent relationship along
the temporal dimension, we employ the optical flow network
embedded in the VSS model to estimate the optical Ot→t−1,
and warp the feature map Ft−1 of the t− 1 frame to spatially
aligned with the t frame. Then the relation-aware temporal
consistency regularization can be obtained by:

Lreg =
H∑
i=1

W∑
j=1

LKL[P (π ∈ P|st,i,j), P (π ∈ P|st−1,i,j)],

(8)
where LKL denotes the Kullback-Leibler (KL) Divergence
loss. Note that KL divergence is applied to measure the class
ranking probability distributions between t− 1 and t frames
here, no longer just considering each class independently.

Training and Inference
During training, the prediction of the source domain will be
supervised by the provided ground truth YS :

Lsup =
H∑
i=1

W∑
j=1

Lce(softmax(sSi,j),Y
S
i,j), (9)

where the Lce denotes the standard cross entropy loss. As a
result, the overall objective of our method is as follows:

L = Lsup + λLreg, (10)

where the λ is the trade-off weight.
During validation, the maintained target prototypes are

utilized in place of the original prototypes to be the classifier.
Therefore our approach introduces no extra computational
cost at validation time.

Experiments
Datasets and Evaluation Metrics
Cityscapes-Seq (Cordts et al. 2016), a real urban dataset,
containing 2, 975/500 clips for training/validation at a res-
olution of 1, 024 × 2, 048, is adopted as the target domain
dataset. There are 30 consecutive frames per clip, with the
20th frame carefully annotated.
VIPER (Richter, Hayder, and Koltun 2017) is a synthetic
dataset, consisting of 254, 064 frames with labels rendered
by the game engine at a resolution of 1, 920× 1, 080. We use
13, 367 clips of them as one of the source domain datasets.
SYNTHIA-Seq (Ros et al. 2016) is another source domain
dataset, comprising 8, 000 labeled photo-realistic frames at a
resolution of 1, 280×720, and 850 clips are used for training.

We measure the mean Intersection over Union (mIoU)
on the validation set of Cityscapes-Seq over the common
classes. Specifically, 15 common classes exit for VIPER →
Cityscapes-Seq, and 11 common classes exit for SYNTHIA-
Seq → Cityscapes-Seq.

Implementation Details
For a fair comparison, we adopt Accel (Jain, Wang, and
Gonzalez 2019) as the video semantic segmentation model
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SYNTHIA-Seq → Cityscapes-Seq

Methods road side. buil. pole light sign vege. sky pers. rider car mIoU

Src.-only 56.3 26.6 75.6 25.5 5.7 15.6 71.0 58.5 41.7 17.1 27.9 38.3

AdvEnt [CVPR’19] 80.5 22.9 68.6 20.9 7.8 18.8 67.0 65.9 43.2 13.4 62.7 42.9
FDA [CVPR’20] 84.1 32.8 67.6 28.1 5.5 20.3 61.1 64.8 43.1 19.0 70.6 45.2
RDA [ICCV’21] 84.7 26.4 73.9 23.8 7.1 18.6 66.7 68.0 48.6 9.3 68.8 45.1

PixMatch [CVPR’21] 88.1 17.1 80.7 24.6 9.7 32.0 80.1 81.2 52.5 14.2 83.8 51.3

DA-VSN [ICCV’21] 89.4 31.0 77.4 26.1 9.1 20.4 75.4 74.6 42.9 16.1 82.4 49.5
I2VDA [ECCV’22] 89.9 40.5 77.6 27.3 18.7 23.6 76.1 76.3 48.5 22.4 82.1 53.0

TPS [ECCV’22] 91.2 53.7 74.9 24.6 17.9 39.3 68.1 59.7 57.2 20.3 84.5 53.8
SFC [AAAI’23] 90.9 32.5 76.8 28.6 6.0 36.7 76.0 78.9 51.7 13.8 85.6 52.5

PAT (Ours) 91.5 41.3 76.1 29.6 20.9 33.8 72.4 75.9 51.3 24.7 86.2 54.9
∆ ↑ +35.2 +14.7 +0.5 +4.1 +15.2 +18.2 +1.4 +17.4 +9.6 +7.6 +58.3 +16.6

Table 2: Quantitative results of different domain adaptive methods on SYNTHIA-Seq → Cityscapes-Seq benchmark. We report
mIoU (%) and show the improvements over Src.-only baseline. The best is highlighted in bold.

B TDF RTC mIoU

✓ 48.9

✓ 51.4
✓ 51.7

✓ ✓ 53.0

Table 3: Ablation study on different components.

following the DAVSS methods (Guan et al. 2021; Xing
et al. 2022; Wu et al. 2022; Gao et al. 2023). In specific,
it consists of an optical flow network (FlowNet (Dosovit-
skiy et al. 2015) is adopted), two image segmentation net-
works (Deeplabv2 (Chen et al. 2017) with ResNet-101 (He
et al. 2016) pretrained on ImageNet (Deng et al. 2009) is
employed) and a 1× 1 convolution fusion layer. During the
training and validation phase, we resize the frame of VIPER
and Cityscapes-Seq to 720 × 1, 280 and 512 × 1, 024. We
adopt the SGD optimizer with a momentum of 0.9 and a
weight decay of 5×10−4 for the network, where the learning
rate of the backbone is set to 2.5 × 10−4 and the other is
set to 5× 10−3. The hyperparameters threshold τ , trade-off
weight λ and momentum θ are eventually set to 0.8, 1.0 and
0.999, respectively. All the experiments are implemented on
NVIDIA GeForce RTX 3090 with 24 GB memory.

Comparison with State-of-the-art Methods
We conduct experiments on two popular synthetic-to-
real benchmarks including VIPER → Cityscapes-Seq and
SYNTHIA-Seq → Cityscapes-Seq and make a compari-
son with SOTA DAVSS methods including DA-VSN (Guan
et al. 2021), TPS (Xing et al. 2022), I2VDA (Wu et al.
2022) and SFC (Gao et al. 2023), and several representa-
tive DAISS methods including AdvEnt (Vu et al. 2019),
FDA (Yang and Soatto 2020), RDA (Huang et al. 2021c)
and PixMatch (Melas-Kyriazi and Manrai 2021).
Results on VIPER → Cityscapes-Seq. From Table 1 we
can observe that our method outperforms the source-only
(Src.-only) model by 15.6%. Our method also significantly

TDF mIoU FPS

0 51.7 1.15

1 53.0 1.04

2 53.2 0.95

3 53.1 0.87

Table 4: Ablation study on the
number of TDF.

TC mIoU

PL 51.3

L2 51.6

KL 51.9

RTC 53.0

Table 5: Ablation on
ways modeling TC.

outperforms the existing SOTA DAVSS methods. Taking the
recently proposed method I2VDA (Wu et al. 2022) as an
example, the performance gain of our method reaches to
+1.8% mIoU.
Results on SYNTHIA-Seq → Cityscapes-Seq. Table 2 com-
pares results of PAT and some SOTA methods on SYNTHIA-
Seq → Cityscapes-Seq. The proposed PAT achieves consis-
tent performance gains over the source-only baseline, obtain-
ing improvements of 16.6% mIoU. Our work also signifi-
cantly outperforms SOTA methods TPS (Xing et al. 2022) by
1.1% mIoU in this scenario, demonstrating the effectiveness
of our approach.
Qualitative Results To further analyze and understand
the proposed method, we present qualitative comparisons
with the state-of-the-art methods TPS (Xing et al. 2022) and
SFC (Gao et al. 2023) on VIPER → Cityscapes-Seq in Fig-
ure 4. From Figure 4 we can observe that the proposed PAT
can achieve more accurate prediction compared to the TPS
and SFC (denoted in yellow boxes).

Ablation Study and Analysis
To look deeper into our method, we perform a series of abla-
tion studies on VIPER→Cityscapes-Seq to analyze each com-
ponent of our PAT, including the Target Domain Focalizer
(TDF) and the Relation-aware Temporal Consistency (RTC).
Note that we remove TDF and RTC, and adopt hard pseudo-
labeling as our baseline (B).
Effectiveness of Components. As shown in Table 3, both tar-
get domain focalizer and relation-aware temporal consistency
bring a certain performance lift compared with the baseline.
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TPS SFC Ours GTImage

Figure 4: Qualitative comparison of PAT with the state-of-the-art domain adaptive video semantic segmentation benchmark
VIPER → Cityscapes-Seq. Compared with existing methods, our method generates better segmentation results on the target
video (highlighted by yellow boxes).
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Figure 5: Visualization of the attention map in the target
domain focalizer.

(1) With the utilization of TDF, a 2.5% improvement of mIoU
can be observed, indicating that paying the prototypes’ atten-
tion to the target domain can benefit the domain adaptation
task. In Figure 5, we visualize the attention maps inside the
TDF for different classes. We can see that in the attention
map1 produced by the original prototypes, each class is in-
completely activated due to the significant domain shift. With
the help of TDF, the target-aware prototypes activate the area
of the corresponding class more precisely and completely,
increasing the accessibility of pseudo-labels in consistency
regularization-based training. (2) The introduction of RTC
achieves further accuracy gains (4.1% in mIoU), mainly as-
cribed to the leverage of the inter-class relationship to model
structure information, providing more effective supervision
signals.
Effectiveness of the Target Domain Focalizer. We attempt
to to use multiple TDFs serially in our experiments, and the
results are shown in Table 4. From 0 to 1, we observe a clear
performance comparison (51.7% vs. 53.0%), demonstrating
the efficacy of our TDF. From 1 to 3, negligible performance
gains are observed but with the cost of reduction of feedfor-
ward speed during training. Therefore, we use just one TDF
in the main experiment.
Effectiveness of the Relation-aware Temporal Consis-
tency. As shown in Tab 5, we compared different ways
of modeling Temporal Consistency (TC), including hard
Pseudo-Labeling (PL), L2 and KL with soft pseudo-label and
our RTC. First, by comparing rows 2,3 with row 1 (51.6%,
51.9% vs. 51.3%), we can learn that the soft pseudo-label is

τ mIoU

0 51.7

0.6 52.6

0.7 52.7

0.8 53.0

0.9 52.9

(a) Threshold τ .

λ mIoU

0.5 52.5

1.0 53.0

1.5 52.7

(b) Trade-off λ.

θ mIoU

0.9 52.4

0.99 52.8

0.999 53.0

(c) Momentum θ.

Table 6: Hyperparameter evaluations.

better than the hard one in the domain adaptive task, attributed
to its ability to alleviate confirmation bias. Furthermore, our
relation-aware temporal consistency leverages the inter-class
to empower more effective supervision signals, achieving
better performance.
Hyperparameter Evaluations. As shown in Table 6 (a), (b)
and (c), we report the performance of different hyperparame-
ters, including the threshold τ in TDF, the trade-off weight
λ in training objective and the momentum θ for exponential
momentum average updating. Table 6 (a) shows that, without
thresholding, (i.e., τ = 0), the performance drop by 1.3%
in mIoU, indicating the importance of thresholding opera-
tion for constructing representative target-aware prototypes.
Except that, our method is insensitive to hyperparameters.

Conclusion
In this paper, we analyze the bottlenecks that exist in previous
methods from the perspective of pseudo-labels, and shed light
on the possibility of closer collaboration between the pseudo-
labels themselves and the supervision signals they constitute.
We propose a coherent PAT network. Specifically, we design
the target domain focalizer to pay the prototypes attention
to the target domain, and the relation-aware temporal consis-
tency to model the inter-class consistent relationship across
frames. Extensive experimental results on two challenging
benchmarks demonstrate the effectiveness of our method.
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