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Abstract

Accurate segmentation of prostate tumors from multi-
modal magnetic resonance (MR) images is crucial for
diagnosis and treatment of prostate cancer. However,
the robustness of existing segmentation methods is lim-
ited, mainly because these methods 1) fail to adaptively
assess subject-specific information of each MR modal-
ity for accurate tumor delineation, and 2) lack effective
utilization of inter-slice information across thick slices
in MR images to segment tumor as a whole 3D vol-
ume. In this work, we propose a two-stage neighbor-
aware multi-modal adaptive learning network (NaMa)
for accurate prostate tumor segmentation from multi-
modal anisotropic MR images. In particular, in the
first stage, we apply subject-specific multi-modal fu-
sion in each slice by developing a novel modality-
informativeness adaptive learning (MIAL) module for
selecting and adaptively fusing informative representa-
tion of each modality based on inter-modality correla-
tions. In the second stage, we exploit inter-slice fea-
ture correlations to derive volumetric tumor segmenta-
tion. Specifically, we first use a Unet variant with se-
quence layers to coarsely capture slice relationship at a
global scale, and further generate an activation map for
each slice. Then, we introduce an activation mapping
guidance (AMG) module to refine slice-wise represen-
tation (via information from adjacent slices) for consis-
tent tumor segmentation across neighboring slices. Be-
sides, during the network training, we further apply a
random mask strategy to each MR modality to improve
feature representation efficiency. Experiments on both
in-house and public (PICAI) multi-modal prostate tu-
mor datasets show that our proposed NaMa performs
better than state-of-the-art methods.

Introduction
Prostate cancer (PCa) is the leading cause of cancer-related
death in men worldwide, and early detection of PCa is cru-
cial for enhancing survival rates and providing appropriate
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Figure 1: Characteristics of the multi-modal MR images
used for prostate tumor segmentation. The red contours and
masks represent the ground truth of the prostate tumor. (a)
Some modalities may provide ineffective features, i.e., DWI
image of one case has inhomogeneous intensities within the
tumor (indicated by the blue arrow), which causes the under-
segmentation issue (shown by yellow contour). (b) The MR
images have high in-plane image resolution (axial view) and
low through-plane resolution (vertical axis in sagittal and
coronal views). (c) The locat ions of tumor across adjacent
slices are inter-related.

intervention (Velonas et al. 2013; Boettcher et al. 2019).
Clinical screening of PCa often uses multi-modal magnetic
resonance imaging (MRI), including T2-weighted images
(T2WIs), diffusion-weighted images (DWIs), and appar-
ent diffusion coefficient (ADC) maps (derived from DWIs)
(Tanimoto et al. 2007; Cornud et al. 2012). If a tumor is de-
tected in the multi-modal MR images, its segmentation from
surrounding normal tissues is required for cancer classifica-
tion and treatment planning.

However, manual segmentation of tumors is time-
consuming, and segmentation results are highly dependent
on the expertise of the radiologists. Therefore, great amount
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Figure 2: Analysis on the effectiveness of multi-modal fusion. The segmentation network uses a multi-branch encoder for
multi-modal feature extraction, and a decoder to derive segmentation results using concatenated features from input modalities.
‘T’ denotes T2WI, ‘D’ denotes DWI, and ‘A’ denotes ADC map. (a) The line graph illustrates the Dice similariy coefficient
(DSC) achieved by different input modalities on PICAI/IH. The histogram displays the distribution of the cases achieving op-
timal performance with each input modalities on PICAI/IH. (b) Visualized segmentation results for three cases using different
input modalities, with each row for one case. The red contours indicate ground truth, and the yellow contours show segmen-
tation output. The the input modality with the best performance in each case is highlighted by the red boxes. The results of
‘T’,‘T+D’,‘T+A’ and ‘T+D+A’ are overlaid on T2WIs, the results of ‘D’ and ‘D+A’ are overlaid on DWIs, and the results of
‘A’ are overlaid on ADC maps.

of efforts have been devoted to developing automated tumor
segmentation methods. Although in recent years many deep
learning-based methods have been proposed for tumor seg-
mentation from multi-modal MR images, existing methods
are usually limited in handling 1) effective fusion of multi-
modal MR images, and 2) semantically consistent segmen-
tation of 3D tumor across thick MR slices. All these limita-
tions will be explained below.

With regard to multi-modal fusion, many works employ
early, intermediate, or late fusion scheme (Pereira et al.
2016; Havaei et al. 2015) to integrate model-specific infor-
mation for improved segmentation. However, the segmenta-
tion performances of such methods are usually affected by
1) unpredictable changes of image quality in the involved
imaging modalities among different subjects, and 2) over-
dependency of the segmentation model on certain modali-
ties. These limitations are clearly revealed in our prelimi-
nary studies performed on both the in-house (IH) dataset and
public dataset from PI-CAI2022 challenge (PICAI). First, as
shown in Fig. 1(a), we illustrate the ineffectiveness of using
a DWI image (with image noise and artifacts) cause inac-
curate tumor segmentation. Actually, we find that only 18
cases (5.07%) in IH dataset and 11 cases (5.12%) in PICAI
dataset possess superior performance when using all modal-
ities, while other instances achieve good outcomes with only
one or two modalities as depicted in Fig. 2(a). Second, we
find that the segmentation results are biased towards the fea-
tures from DWI and ADC maps as shown in Fig. 2(b), while
the T2WIs usually contribute less to the segmentation re-
sults. However, there exist cases showing that results based
on T2WIs agree better with the ground truth, with one exam-
ple shown in the second row of Fig. 2(b). Therefore, more
advanced segmentation method is required to adaptively find
more reliable modalities for multi-modal segmentation.

Besides multi-modal fusion, semantically-consistent seg-
mentation of tumors across thick slices is also critical for

high-quality tumor segmentation. Several studies (Li et al.
2021a; Chen et al. 2020) have developed 3D tumor seg-
mentation methods by modifying existing methods origi-
nally proposed for organ segmentation. However, existing
3D segmentation networks are typically designed for nearly-
isotropic 3D images, and their application to clinical prostate
MR images with thick slices usually results in limited per-
formance (Zhang et al. 2020a) as shown in Fig. 1(b). Since
MR images are mostly anisotropic, 2D CNN is often used
in the current mainstream for tumor segmentation. Although
some 2D CNN based methods leverage global or local inter-
slice correlations to capture the spatial context (i.e., 2.5D
strategy), these 2.5D methods still lack effective feature ag-
gregation strategy when dealing with complex anatomical
variations and irregular tumor shapes.

To tackle the aforementioned challenges, in this study, we
present a novel neighbor-aware multi-modal adaptive learn-
ing network (NaMa) to accurately segment prostate tumors
from multi-modal anisotropic MR images. Specifically, we
design a modality-informativeness adaptive learning mod-
ule (MIAL) to implicitly assess the reliability of features in
each modality, and adaptively fuse reliable representations
across different modalities. Additionally, an activation map-
ping guidance module (AMG) is proposed to enable stable
and consistent segmentation performance across slices in 3D
space. Finally, to more effectively learn feature represen-
tations of different modalities, we apply the random mask
strategy to the features of each modality in the network train-
ing stage. In summary, our main contributions are threefold:

• We propose a multi-modal adaptive learning strategy
for modeling modal-specific informativeness to enable
individual-effective multi-modal fusion.

• We propose an activation map guidance module to cap-
ture inter-slice relationship in anisotropic MR images to
produce semantically consistent volumetric result.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4199



• Extensive experiments on both in-house and public
prostate tumor MRI datasets demonstrate that our model
achieves significant improvement over many state-of-
the-art methods.

Related Work
Multi-modal Fusion
In medical image analysis, accurate disease diagnoses could
be achieved by exploring complementary information from
multiple modalities. Early works distinguished fusion ap-
proaches into early fusion, intermediate fusion and late fu-
sion, depending on where fusion is performed in the model
(Zhang et al. 2020c). As early fusion suppresses intra-modal
interactions and late fusion only aggregates the outputs from
each modality without effectively capturing inter-modal in-
teractions, the intermediate fusion strategy is the most preva-
lent in multi-modal learning, which can effectively model
both intra- and inter-modality interactions.

To obtain more effective multi-modal representations, it
is important to exploit cross-modal complementary infor-
mation while mitigating modality-specific noises. Several
methods (Zhan et al. 2021; Xing et al. 2022) introduce a gate
mergence mechanism to automatically learn the weights of
different modalities to enhance the task-related information.
Additionally, several other methods (Zhang et al. 2022b;
Jiale et al. 2023; Man, Gui, and Wang 2023) explore the
complementary information from intra- and inter-modality
by adopting various attention mechanisms. Wang et al.
(Wang et al. 2023) adopt the contrastive learning strategy to
encourage the interaction of multi-modal features. However,
these methods overlook the potential over-dependency of the
model on specific modalities, and the changes in the infor-
mative validity of each modality across various cases. To
this end, our proposed multi-modal adaptive learning mod-
ule could eliminate such limitations to some extent.

2.5D Medical Image Segmentation
Advances in medical imaging have led to widespread clin-
ical usage of 3D medical images like MRI and Computed
Tomography (CT). When handling volumetric inputs, two
prominent strategies emerge: the first involves dividing the
3D volume into 2D slices, and training 2D CNNs for seg-
mentation; the second expands network architecture with 3D
convolutions, enabling segmentation across the entire vol-
umetric dataset. Both methods possess distinct advantages
and drawbacks (Zhang et al. 2020b). 2D CNNs reduce com-
putational load and offer faster inference, but can miss the
information among adjacent slices. Conversely, 3D CNNs
capture volumetric spatial relationships, yet their high com-
putational demands and limited performance on anisotropic
MR images limit their practicality.

To bridge the 2D-3D CNN gap, innovative 2.5D segmen-
tation methods are proposed for enhancing volumetric med-
ical image segmentation, via novel architectures or strate-
gies fusing volumetric information into 2D CNNs. A multi-
view fusion strategy has been utilized to encompass features
from sagittal, coronal, and axial images (Ding et al. 2021;
Liu et al. 2022). However, the effectiveness of this strategy

is still curtailed when dealing with anisotropic volumes, as
it struggles to effectively capture spatial relationships and
coherent structural information across different image ori-
entations. Another strategy is to integrate volumetric infor-
mation by incorporating adjacent slices as multi-channel in-
put (Duan et al. 2019; Zhou et al. 2021; Li et al. 2021b).
However, such operation frequently introduces redundant
and potentially conflicting data from adjacent slices, lead-
ing to potential negative effects on segmentation accuracy,
and an increased overfitting risk due to the expanded input
dimensionality. Consequently, the current researches focus
on inter-slice context extraction, treating 2D slices in a 3D
volume as a time series sequence to distill information using
recurrent neural networks or attention mechanisms.

Methods
Approach Overview
As shown in Fig. 3, the proposed model is designed based
on the encoder-decoder structure, which mainly consists of
two modules: 1) modality-informativeness adaptive learn-
ing (MIAL) module, and 2) activation mapping guidance
(AMG) module. Given N consecutive slices with three
modalities (including T2WI, DWI, and ADC),a two-layer
convolution operation is performed to obtain the representa-
tion of each modality. As T2WI, DWI, and ADC are dis-
tinctly represented and have their own emphases, the ini-
tial encoding stage uses a separate encoding branch for each
modality. The encoded representations of the three modali-
ties are then fed into the MIAL, which judiciously integrates
informative components to mitigate the impact of noisy fea-
tures and modalities. Considering tumor(s) often appear-
ing in neighboring slices, we borrow the sequence layer
(Blattmann et al. 2023) into the deep encoder and decoder
to coarsely capture the inter-slice relationship on a global
scale, and then we fed the features into AMG module to re-
fine the slice-wise features with low confidence by adopting
leverage activation mapping. Notably, with loss of general-
izability, we employ the Unet (Hung et al. 2015) architecture
as our backbone.

Modality-Informativeness Adaptive Learning
For multi-modal MR images collected from different
subjects, the informativeness of each modality, and each
feature extracted from a modality, can vary significantly.
Therefore, it is crucial to adaptively enhance informative
modalities and features, while suppressing confusing ones,
to promote stability in cross-modality and within-modality
representation.

Masked Image Modeling Let XT ∈ RH×W×C , XD ∈
RH×W×C , and XA ∈ RH×W×C represent the features ex-
tracted by the initial encoder from three modalities such as
T2WI, DWI, and ADC, where H , W , and C denote the
height, width, and channel numbers, respectively. In order to
comprehensively exploit discriminative features within each
modality and mitigate the network’s potential modality-
dependent bias, we introduce a mask modeling strategy. The
features of three modalities are divided equally into multiple
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Figure 3: (a) Overview of the proposed NaMa model composed of MIAL and AMG modules. The AMG is adopted to refine
the slice-wise low-confidence features using features from adjacent slices. (b) The detailed architecture of MIAL, where the
effectiveness of each modality is adaptively evaluated and then cross-modality features are fused accordingly. (c) The detailed
structure of sequence layer, which can coarsely capture inter-slice relationship at the global scale.

non-overlapping sub-patches, each of which is subsequently
subjected to random masking. The mask Mi with i ∈
{T,D,A} is drawn from a uniform distribution followed by
a predefined thresholding process. The masked i-th modal-
ity XM

i is then obtained by element-wise multiplication be-
tween the mask and image by:

XM
i = Xi ⊙Mi. (1)

The network has to learn to predict the masked regions
by considering contextual relationship within each modal-
ity. In such a way, our model obtains improved representa-
tion learning. Furthermore, by masking random regions in
each modality, this procedure contributes to alleviating the
influence of redundant information and perplexing elements,
consequently enhancing the overall performance.

Modality-wise Adaptive Learning After feature embed-
ding on the encoded representations XM

i , we can obtain the
embedded modalities X̂i, and then the inter-modality rele-
vance Rij between X̂i and X̂j can be calculated using a
learnable matrix I by:

Rij = X̂iIX̂
⊤
j , I ∈ RC×C . (2)

High correlation coefficients in Rij denote high rele-
vance between the corresponding representations in dif-
ferent modalities, indicating the presence of informative
modalities. Conversely, low correlation coefficients suggest
the presence of at least one modality with confusing re-
gions. Then, Rij is used as the correlation map to refine

each modality. Formally, the correlation-weighted modality
X̃ij can be obtained by:

X̃ij = X̂jRij . (3)

To mitigate the adverse impact of uninformative modalities
on the informative ones, we develop a gating controllerGi(·)
to selectively inhibit uninformative modalities from being
transferred into the informative modality branch. The gate
layer comprises fully connected layers that utilize soft-max
with a small temperature (Maddison, Mnih, and Teh 2016)
as an activation function σ. For uninformative modality Xi,
its representations are transferred on its own branch in the
following network, due to its low correlation coefficient
with other modalities. In contrast, for informative modali-
ties, we fuse informative features across their branches with
the weights provided by the gating controller. The fused
modality representations X̃i can be obtained by:

X̃i =
∑

j∈{T,D,A}

X̃ij ⊙ σ [Gi(Rij)] . (4)

Finally, we can obtain the fused informative modality
features by performing multi-layer perceptron (MLP) and
residual operation:

X̃
′

i = X̃i +MLP(X̃i). (5)

Activation Mapping Guidance Module
To further ensure the consistency of volumetric segmen-
tation, we evaluate the feature confidence to identify fea-
tures in need of refinement. According to the confidence
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scores, we input inadequately qualified features, alongside
their neighbors, into the network to generate a refined slice-
wise representation. Given that activation maps depict the
network’s focus on target regions, we leverage these activa-
tion maps to conduct an assessment of feature confidence.

To be specific, as shown in Fig. 3(a), we can obtain fea-
tures Fn ∈ {F1, ...,Fl} from consecutive slices within
a subject, along with their corresponding activation maps
An ∈ {A1, ...,Al}. For the feature Fn, its confidence
score can be obtained through the calculation of the Wasser-
stein distances WD1 between Fn and Fn−1 as well as
WD2 between Fn and Fn+1. Given the inherent conti-
nuity of tumors, it is highly likely that the tumor regions
across neighboring slices exhibit considerable similarity,
with small Wasserstein distances. Therefore, when any WD
surpasses the threshold, it signifies low confidence in the re-
liability of Fn. It should be noted that activation maps only
provide a confidence evaluation of slice-wise features with
no gradient back propagation.

Assuming Fn is evaluated as the features with low con-
fidence, then we can utilize the closest slice-wise features
Fn−1 and Fn+1 as teachers to refine it. To make the net-
work smoothly refine the target feature, we treat the feature
with smaller WD as T1 and the other is T2. Subsequently,
T1 is used as key and value, and Fn is used as query for the
attention scheme:

Qn = FnWQ,K = T1WK ,V = T1WV , (6)

where WQ, WK , and WV are weights of different inputs
of attention scheme. Then, the initial guidance information
GIn and refined feature are calculated by:

GIn = σ

[
ψ

(
Qn

⊤K√
C

)]
V⊤, (7)

F̃n = GIn +MLP(Qn +GIn) . (8)

After that, the initial refined feature F̃n is used as query,
and T2 is used as key and value for the further refinement by
utilizing the same strategy as T1 does.

Loss Function
Following previous methods (Zhang et al. 2022a; Zhuang
et al. 2022; Yang et al. 2023), we formulate our training
loss (L) by combining the Dice loss (LDice) and the Focal
loss (LF ) with deep supervision. Given predicted mask Ŷ ,
ground-truth mask Y , and voxel number P , the loss function
is formulated as follows.
L = LDice + LF

= 1−
2
∑P

p=1 ypŷp∑P
p=1(yp + ŷp + ϵ)

−
P∑

p=1

(λyp log ŷp + (1− λ)(1− yp) log(1− ŷp)),

(9)

where yp ∈ Y and ŷp ∈ Ŷ are their p-th pixel. ϵ is a smooth-
ing factor for numerical stability, and the weight λ is set to
0.95 in our experiments.

Experiments
Datasets
Both in-house and public datasets are used to evaluate our
proposed model. Specifically, the in-house dataset (IH) com-
prises multi-modal prostate tumor MR images, encompass-
ing T2WI, DWI, and ADC modalities, sourced from 355 pa-
tients. The tumor annotations were meticulously annotated
on the axial T2WIs by three proficient radiologists, leverag-
ing insights from biopsy pathology. These annotations un-
derwent thorough cross-validation among the radiologists to
establish a definitive and reliable ground truth. Within the
IH dataset, we partitioned 249 cases for training, 35 cases
for validation, and 71 cases for testing purposes. The public
PICAI dataset consists of prostate tumor MR images cap-
tured via T2WI, DWI, and ADC modalities, sourced from
215 patients. For the PICAI dataset, we performed a random
split, assigning 150 cases for training, 21 cases for valida-
tion, and 44 cases for testing.

Implementation Details
Data preprocessing. In order to achieve spatial alignment
across three modalities, a rigid transformation is imple-
mented to register the DWIs and ADC maps to the T2WIs.
All images are interpolated to the resolution of T2WIs,
which is 0.3 × 0.3 × 3.0 mm3 for the IH dataset and
0.5 × 0.5 × 3.0 mm3 for the PICAI dataset, respectively.
The images are cropped into 256 × 256 pixels for noise re-
duction and memory conservation. The effectiveness of im-
age cropping has been demonstrated in our pre-experiment.
Detailed information of the pre-experiment can be found in
the supplementary material.

Data augmentation. To balance the number of normal
and tumor slices in the training dataset, we apply various
data augmentation techniques (e.g., zoom, horizontal/verti-
cal shift, and gaussian blur) to the tumor slices. Given that
3D methods utilize 3D volumes as input, the consideration
of the normal-to-tumor ratio on a slice-by-slice basis be-
comes unnecessary. Consequently, 3D-wise data augmenta-
tion is employed to enhance 3D approaches.

Two-stage network training. We first train the network
backbone with MIAL module until stable segmentation re-
sults are obtained. Subsequently, the sequence layers and the
AMG module are added to the segmentation network, and
their parameters are optimized in the second training ses-
sion, where the backbone and MIAL module are fixed. All
networks and experiments are implemented using Pytorch
on 2 NVIDIA Tesla V100S (40GB) GPUs. All models are
trained with mini-batches for 500 epochs using Adam opti-
mizer with an initial learning rate of 5e−5. The temperature
in soft-max activation function is set as 0.1.

Quantitative analysis. The segmentation maps are quan-
titatively evaluated using four metrics, namely the Dice Sim-
ilariy Coefficient (DSC), 95% Hausdorff Distance (HD95),
Average Surface Distance (ASD), and mean Intersection
over Union (mIoU). To make the results more convincing,
we conduct each experiment for five times and report the
mean and standard deviation of each metric.
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Method IH PICAI
DSC [%]↑ HD95 [mm]↓ ASD [mm]↓ mIoU [%]↑ DSC [%]↑ HD95 [mm]↓ ASD [mm]↓ mIoU [%]↑

2D nnUnet 54.28 ± 0.79 15.93 ± 1.12 6.92 ± 0.45 42.43 ± 0.56 47.15 ± 0.38 21.67 ± 2.19 9.52 ± 0.78 34.59 ± 0.48

3D nnUnet 58.48 ± 0.49 10.26 ± 1.41 4.75 ± 0.26 46.46 ± 0.28 55.24 ± 0.24 14.60 ± 1.46 5.93 ± 0.32 42.14 ± 0.16

ProCDet 54.48 ± 0.48 15.26 ± 1.68 7.75 ± 0.68 42.46 ± 0.32 46.19 ± 0.44 23.47 ± 2.26 13.15 ± 0.44 34.43 ± 0.26

MFSL-Net 58.56 ± 0.23 13.00 ± 0.89 4.19 ± 0.41 45.37 ± 0.39 49.02 ± 0.30 14.01 ± 0.98 6.02 ± 0.24 36.45 ± 0.38

CSAD 59.06 ± 0.29 12.04 ± 0.46 3.69 ± 0.30 46.07 ± 0.16 55.89 ± 0.25 13.12 ± 0.82 5.01 ± 0.34 42.77 ± 0.16

F2Net 58.56 ± 0.22 13.00 ± 0.71 4.19 ± 0.29 45.37 ± 0.18 54.42 ± 0.22 13.45 ± 1.23 5.46 ± 0.28 41.25 ± 0.20

ACMINet 57.49 ± 0.32 13.24 ± 1.23 5.02 ± 0.46 44.84 ± 0.28 50.17 ± 0.46 16.93 ± 1.79 7.94 ± 0.45 37.94 ± 0.28

CAT-Net 58.67 ± 0.47 12.05 ± 0.82 3.31 ± 0.82 45.86 ± 0.58 52.67 ± 0.27 16.45 ± 1.07 7.03 ± 0.26 40.98 ± 0.36

Ours 63.76 ± 0.24 8.64 ± 0.44 2.13 ± 0.21 49.46 ± 0.14 59.01 ± 0.17 11.95 ± 0.79 3.99 ± 0.22 45.27 ± 0.19

Table 1: Results of comparison experiments, where the best results are in bold.

Figure 4: Comparison of tumor segmentation results by different methods on two representative cases in three consecutive
slices. The segmentation results are overlaid on T2WI images.

Comparison with State-of-the-art Methods

To validate the effectiveness of our proposed model, we
conduct comparative experiments with several state-of-the-
art segmentation methods on both IH and PICAI datasets,
and present quantitative and qualitative comparison results
in Table 1 and Fig. 4, respectively. These methods can
be roughly divided into three categories: 1) universal seg-
mentation methods, including 2D nnUnet, and 3D nnUnet
(Isensee et al. 2021); 2) previous prostate tumor segmen-
tation approaches, including ProCDet (Qian, Zhang, and
Wang 2021), MFSL-Net (Zhang et al. 2021) and CSAD
(Zhang et al. 2022a); and 3) other multi-modal and cross-
slice interaction techniques, including F2Net (Yang et al.
2023), ACMINet (Zhuang et al. 2022), and CAT-Net (Hung
et al. 2022). For methods not designed for multi-modalities,
we adapt them by concatenating three modalities as multi-
channel inputs while maintaining the original network struc-
ture.

The quantitative results are provided in Table. 1 with the
best results boldfaced. Our model achieves the best perfor-
mance in terms of all evaluated metrics, even against the
state-of-the-art CSAD (63.76% vs. 59.06% in DSC on IH
and 59.01% vs. 55.89% in DSC on PICAI), demonstrating
its advantage in multi-modal MRI prostate tumor segmenta-
tion. It is worth noting that our approach showcases substan-
tial superiority over other multi-modal segmentation tech-
niques with cross-slice interaction. For example, in com-
parison with ACMINet, we achieved noteworthy enhance-
ments in DSC values of 6.27% and 8.84% on the IH and
PICAI datasets, respectively. These improvements can be at-
tributed to the elimination of modality-independent bias and
the adept capture of the global-to-local cross-slice relation-
ship in anisotropic MR slices.

We further present qualitative results of two typical cases
in Fig. 4, each consisting of three consecutive slices. In the
case with sizable tumor (the first case), all methods success-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4203



Method IH PICAI
DSC [%]↑ HD95 [mm]↓ ASD [mm]↓ mIoU [%]↑ DSC [%]↑ HD95 [mm]↓ ASD [mm]↓ mIoU [%]↑

bNet-T 39.28 ± 0.34 20.28 ± 0.89 8.43 ± 0.25 20.64 ± 0.34 32.41 ± 0.32 37.30 ± 0.84 18.95 ± 0.32 14.66 ± 0.31

bNet-D 43.32 ± 0.28 21.81 ± 0.54 8.47 ± 0.25 23.53 ± 0.38 38.78 ± 0.34 29.42 ± 0.68 12.02 ± 0.29 26.98 ± 0.29

bNet-A 43.73 ± 0.29 19.60 ± 0.59 8.38 ± 0.34 24.61 ± 0.35 38.32 ± 0.45 29.30 ± 0.76 13.66 ± 0.33 27.31 ± 0.39

bNet-Full 56.44 ± 0.16 12.39 ± 0.46 4.26 ± 0.13 43.14 ± 0.14 50.55 ± 0.13 18.59 ± 0.32 7.47 ± 0.19 38.58 ± 0.11

bNet-Full-M 61.57 ± 0.15 11.13 ± 0.41 3.32 ± 0.12 47.02 ± 0.16 57.44 ± 0.09 15.20 ± 0.38 5.62 ± 0.11 43.09 ± 0.12

bNet-Full-A 60.63 ± 0.11 10.45 ± 0.24 2.95 ± 0.18 46.30 ± 0.17 55.16 ± 0.14 13.80 ± 0.32 4.93 ± 0.17 41.79 ± 0.14

bNet-Full-M-A 63.76 ± 0.24 8.64 ± 0.44 2.13 ± 0.21 49.46 ± 0.14 59.01 ± 0.17 11.95 ± 0.79 3.99 ± 0.22 45.27 ± 0.19

Table 2: Ablation study of key components. The best results are in bold.

Figure 5: 3D visualization for the results of our proposed
method using different components. The two rows show re-
sults from the same two cases as Fig. 4. The part circled in
green represents the over- or under-segmented regions and
arrows point to discontinuous segmentations.

fully delineate a portion of the tumor. But our model is more
consistent with the ground truth, not only in the global shape
but also in the local details. For the challenging case (the
second case), our proposed method outperforms the compet-
ing methods by a significant margin. Intuitively, the possible
reason is that MIAL effectively explores informative modal-
ities and features, and AMG efficiently enhances inter-slice
segmentation consistency.

Ablation Studies
We perform ablation studies to evaluate the effective of each
component in the whole segmentation framework. This in-
volves utilizing three different configurations of a baseline
Unet model with sequence layers for tumor segmentation: 1)
from a single modality (bNet-T, bNet-D, bNet-A for T2WI,
DWI and ADC map, respectively), 2) from three concate-
nated modalities (bNet-Full), and 3) from three modalities
after adding MIAL module (bNet-Full-M) or the AMG mod-
ule (bNet-Full-A) .

As shown in Table 2, the multi-modal information can
significantly improve segmentation accuracy (DSC) from
39.28% to 63.76% on IH and 32.41% to 59.01% on PI-
CAI, compared to the case of using single-modality. More-
over, additional components have a significant impact on im-
proving performance of the model in terms of segmentation
results. As expected, the incorporation of the MIAL aids
the network in prioritizing informative aspects of different
modalities and features, resulting in improved performance

in accurately capturing the shape and location of prostate tu-
mors in multi-modal MR images, as demonstrated by higher
DSC scores (5.13% improvement on IH and 6.89% improve-
ment on PICAI) and higher mIoU scores (3.88% improve-
ment on IH and 4.51% improvement on PICAI). This ob-
servation can also be confirmed by the visualization result
from the fourth column of Fig. 5. Additionally, incorporating
AMG module leads to outstanding improved performance
in HD95 (10.45 mm vs. 12.39 mm on IH and 13.80 mm
vs. 18.59 mm on PICAI) and ASD (2.95 mm vs. 4.26 mm
on IH and 4.93 mm vs. 7.47 mm on PICAI), demonstrating
its ability in capturing the cross-slice relationship and aiding
the model in generating consistent results. The incorporation
of MIAL with AMG yields substantial improvements for all
evaluation metrics compared to the baseline.

As shown in Fig. 5, we present the 3D visualization re-
sults for two subjects, showcasing the segmentation per-
formance of the ablation study. The presence of green cir-
cles and arrows indicate those inaccurately segmented tu-
mors, highlighting the subpar performance of the baseline
model without considering the multi-modal adaptive fusion
and cross-slice relationship. In contrast, with incorporation
of the MIAL and AMG modules, a noticeable enhancement
in contour and shape consistency can be observed. These
findings underscore significance of capturing complemen-
tary information across multiple modalities and cross-slice
relationship in prostate tumor segmentation.

Conclusion
In this paper, we have proposed a novel model, namely
neighbor-aware multi-modal adaptive learning network,
for automatic prostate tumor segmentation in multi-modal
anisotropic MR images. Our model adaptively selects effec-
tive modalities and features for each subject by the proposed
MIAL module. Furthermore, we introduce a novel AMG
module to systematically learn and leverage inter-slice infor-
mation to mitigate segmentation discontinuities across slices
in prostate tumors. We have conducted extensive experi-
ments on both in-house and public datasets to evaluate our
proposed model quantitatively and qualitatively from vari-
ous perspectives. It is shown that our method outperforms
the existing state-of-the-art segmentation methods by a large
margin. Our future study will focus on investigating the im-
pact of prostate tumor segmentation performance on surgical
treatment, radiotherapy planning, and predictive analysis.
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Deep multimodal fusion for semantic image segmentation:
A survey. Image Vis. Comput., 105: 104042.
Zhou, H.; Xiao, J.; Fan, Z.; and Ruan, D. 2021. Intracranial
Vessel Wall Segmentation For Atherosclerotic Plaque Quan-
tification. In 2021 IEEE 18th International Symposium on
Biomedical Imaging (ISBI), 1416–1419.
Zhuang, Y.; Liu, H.; Song, E.; and Hung, C.-C. 2022. A 3D
Cross-Modality Feature Interaction Network With Volumet-
ric Feature Alignment for Brain Tumor and Tissue Segmen-
tation. IEEE Journal of Biomedical and Health Informatics,
27: 75–86.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4206


