
Out-of-Distribution Detection in Long-Tailed Recognition
with Calibrated Outlier Class Learning

Wenjun Miao1, Guansong Pang2*, Xiao Bai1,3, Tianqi Li1, Jin Zheng1, 4*

1School of Computer Science and Engineering, Beihang University
2School of Computing and Information Systems, Singapore Management University

3State Key Laboratory of Software Development Environment, Jiangxi Research Institute, Beihang University
4State Key Laboratory of Virtual Reality Technology and Systems, Beihang University

{miaowenjun, jinzheng, baixiao, tianqili}@buaa.edu.cn, gspang@smu.edu.sg

Abstract

Existing out-of-distribution (OOD) methods have shown
great success on balanced datasets but become ineffective in
long-tailed recognition (LTR) scenarios where 1) OOD sam-
ples are often wrongly classified into head classes and/or 2)
tail-class samples are treated as OOD samples. To address
these issues, current studies fit a prior distribution of auxil-
iary/pseudo OOD data to the long-tailed in-distribution (ID)
data. However, it is difficult to obtain such an accurate prior
distribution given the unknowingness of real OOD samples
and heavy class imbalance in LTR. A straightforward solu-
tion to avoid the requirement of this prior is to learn an out-
lier class to encapsulate the OOD samples. The main chal-
lenge is then to tackle the aforementioned confusion between
OOD samples and head/tail-class samples when learning the
outlier class. To this end, we introduce a novel calibrated
outlier class learning (COCL) approach, in which 1) a debi-
ased large margin learning method is introduced in the outlier
class learning to distinguish OOD samples from both head
and tail classes in the representation space and 2) an outlier-
class-aware logit calibration method is defined to enhance the
long-tailed classification confidence. Extensive empirical re-
sults on three popular benchmarks CIFAR10-LT, CIFAR100-
LT, and ImageNet-LT demonstrate that COCL substantially
outperforms state-of-the-art OOD detection methods in LTR
while being able to improve the classification accuracy on ID
data. Code is available at https://github.com/mala-lab/COCL.

Introduction
Deep neural networks (DNNs) have achieved remark-
able success in various fields (Russakovsky et al. 2015;
Krizhevsky, Sutskever, and Hinton 2017). However, their ap-
plication in real-world scenarios, such as autonomous driv-
ing (Kendall and Gal 2017) and medical diagnosis (Leibig
et al. 2017), remains challenging due to the presence of long-
tailed distribution and unknown classes (Huang and Li 2021;
Wang et al. 2020b). In particular, DNNs often have high con-
fidence predictions that classify out-of-distribution (OOD)
samples from unknown classes as one of the known classes.
This issue is further amplified when the in-distribution (ID)
data has a class-imbalanced/long-tailed distribution (Zhu
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(a) Feature representations of CIFAR100-LT test data

(b) Prediction confidence (c) OOD score for ID samples

Figure 1: Visualization and qualitative results on test data of
CIFAR100-LT using an LTR model augmented with an out-
lier learning module (see Eq. 2) for OOD detection. (a) Fea-
ture representations of samples randomly selected from head
class, tail class, and OOD samples. The gray areas highlight
obscure regions between head/tail samples and OOD sam-
ples. (b) The mean prediction confidence of the model clas-
sifying six OOD datasets into one of the ID classes. (c) The
mean OOD score (i.e., the softmax probability of the outlier
class) of samples from each ID class.

et al. 2023; Li et al. 2022; Li, Cheung, and Lu 2022; Wang
et al. 2022). This is because, as illustrated in Fig. 1a, DNNs
trained on long-tailed data can be heavily biased towards
head classes (the majority classes) due to the overwhelm-
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ing presence of samples from these classes, and as a re-
sult, long-tailed recognition (LTR) models often misclassify
OOD samples into head classes with high confidence (see
Fig. 1b); further, the LTR models tend to treat tail samples
as part of OOD samples due to the rareness of tail samples
in the training data, i.e., the tail samples often have a much
higher OOD score than the head samples (see Fig. 1c).

Compared to OOD detection on balanced ID datasets, sig-
nificantly less work has been done in the LTR scenarios.
Recent studies (Wang et al. 2022; Wei et al. 2022a; Jiang
et al. 2023; Choi, Jeong, and Choi 2023) are among the
seminal works exploring OOD detection in LTR. Current
methods in this line focus on distinguishing OOD samples
from ID samples using an approach called outlier exposure
(OE) (Hendrycks, Mazeika, and Dietterich 2018) that fits
auxiliary/pseudo OOD data to a prior distribution (e.g., uni-
form distribution) of ID data. However, unlike balanced ID
datasets, LTR datasets heavily skewed the distribution of ID
data, so using the commonly-adopted uniform distribution
as the prior becomes ineffective. Estimating this prior from
the sample size of ID classes is a simple solution to alleviate
this issue, but it can intensify the LTR models’ bias toward
head classes. Another line of approach is focused on learn-
ing discriminative representations to separate OOD samples
from tail samples. However, the lack of sufficient samples in
the tail classes renders this approach less effective, further-
more, it often fails to distinguish head and OOD samples.

In this work, we aim to synthesize both approaches and
introduce a novel approach, namely calibrated outlier class
learning (COCL). Intuitively, a straightforward solution to
avoid the requirement of this prior in the OE-based ap-
proach is to learn an outlier class to encapsulate the OOD
samples. The main challenge is then mainly about tackling
the aforementioned confusion between OOD samples and
head/tail-class samples when learning the outlier class. To
address this challenge, we introduce a debiased large margin
learning method, which is jointly optimized with the outlier
class learning to distinguish OOD samples from both head
and tail classes in the representation space. We further in-
troduce an outlier-class-aware logit calibration method that
takes into account the outlier class when calibrating the ID
prediction probability. This helps enhance long-tailed classi-
fication confidence while improving OOD detection perfor-
mance. In summary, our main contributions are as follows:

• We show that outlier class learning is generally more ef-
fective for OOD detection in LTR than fitting to a prior
distribution when auxiliary OOD data is available.

• We then introduce a novel calibrated outlier class learn-
ing (COCL) approach that learns an accurate LTR model
with a strong OOD detector that effectively mitigates the
biases towards head and OOD samples. To this end, we
introduce two components, including the debiased large
margin learning and the outlier-class-aware logit calibra-
tion, which work in the respective training and inference
stages, enabling substantially improved OOD detection
and long-tailed classification performance.

• Extensive empirical results on three popular benchmarks
CIFAR10-LT, CIFAR100-LT, and ImageNet-LT demon-

strate that COCL substantially outperforms state-of-the-
art OOD detection methods in LTR while improving the
classification accuracy of ID data.

Related Work
OOD Detection The objective of this task is to determine
whether a given input sample belongs to known classes (in-
distribution) or unknown classes (out-of-distribution). In re-
cent years, OOD detection has been extensively developed,
including post hoc strategies (Sun, Guo, and Li 2021; Wang
et al. 2023; Zhang and Xiang 2023) and training-time strate-
gies (Liu et al. 2020; Wei et al. 2022b; Tian et al. 2022;
Yu et al. 2023; Li et al. 2023; Liu et al. 2023). The post
hoc methods focus on devising new OOD scoring functions
in the inference phase. The training-time methods focus on
separating OOD samples from ID samples by utilizing auxil-
iary data during training. Outlier exposure (OE) (Hendrycks,
Mazeika, and Dietterich 2018) is arguably the most popular
approach in this line that utilizes the OOD data by enforc-
ing a uniform distribution of its prediction probability to ID
classes. EnergyOE (Liu et al. 2020) improves OE and maxi-
mizes the free energy of OOD samples instead. However, all
these methods are focused on cases with balanced ID train-
ing data, which fail to work well on imbalanced ID datasets.

Long-Tailed Recognition (LTR) LTR aims to improve
the accuracy of the tail classes with the least influence on
the head classes. Re-sampling (Wang et al. 2020a; Tang et al.
2022; Bai et al. 2023) and re-weighting (Tan et al. 2020; Al-
shammari et al. 2022; Gou et al. 2023; Hong et al. 2023) that
focus on balancing the ratio between head and tail classes
are the most straightforward solutions for LTR. Additionally,
logit adjustment (LA) (Menon et al. 2020) emerges as an ef-
fective statistical framework that can be applied in both the
training and inference phases to further enhance ID recog-
nition performance. Although these LTR methods show ef-
fective performance in the long-tailed classification of ID
samples, they do not have an explicit design to handle OOD
samples.

OOD Detection in LTR PASCL (Wang et al. 2022) for-
mulates the OOD detection problem in LTR and reveals
the difficulty that simple combinations of existing OOD
detection and LTR methods do not work well. In particu-
lar, PASCL evaluates different baseline methods in the SC-
OOD benchmark (Yang et al. 2021) to establish perfor-
mance benchmarks for OOD detection in LTR. OS (Wei
et al. 2022a) finds that leveraging equivalent noisy labels
does not harm training, so it introduces a noisy labels as-
signment method for utilizing unlabeled auxiliary OOD data
to enhance the robustness of OOD detection and improve
ID classification accuracy. Recent studies (Choi, Jeong, and
Choi 2023; Jiang et al. 2023) find that fitting the predic-
tion probability of OOD data to a long-tailed distribution
in either the scratch or fine-tuning approach is more effec-
tive than using a uniform distribution. They specify this prior
distribution based on the number of samples in ID classes or
a pre-trained ID model to learn the OOD detection model.
However, it is difficult to obtain such an accurate prior dis-
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OOD
Method

LTR
Method

CIFAR10-LT CIFAR100-LT
AUC↑ AP-in↑ AP-out↑ FPR↓ ACC↑ AUC↑ AP-in↑ AP-out↑ FPR↓ ACC↑

OE +

None 89.76 89.45 87.22 53.19 73.59 73.52 75.06 67.27 86.30 39.42
Re-weight 89.34 88.63 86.39 56.24 70.35 73.08 73.86 66.05 87.22 39.45
τ -norm 89.58 88.21 85.88 52.84 73.33 73.62 74.67 66.59 86.02 40.87

LA 89.46 88.74 86.39 53.38 73.93 73.44 74.33 66.48 86.13 42.06

OCL +

None 89.91 88.15 90.38 41.13 74.48 73.56 74.12 69.65 81.93 41.54
Re-weight 90.45 89.12 90.58 38.86 74.84 74.23 74.29 70.68 79.45 42.06
τ -norm 90.95 89.59 91.11 37.91 75.14 74.57 75.12 70.76 81.27 44.21

LA 91.56 90.52 91.51 36.50 76.67 74.77 75.15 71.13 80.33 43.02
Our method COCL 93.28 92.24 92.89 30.88 81.56 78.25 79.37 73.58 74.09 46.41

Table 1: Comparison of outlier exposure (OE) and outlier class learning (OCL) approaches when combined with three LTR
methods. All methods are trained on CIFAR10/100-LT using ResNet18. Reported are the average performance across six
different OOD test sets (including CIFAR, Texture, SVHN, LSUN, Places365, and TinyImagenet) in the commonly-used SC-
OOD detection benchmark (Yang et al. 2021) (See the Experiments section for the description of evaluation measures).

tribution of OOD data in LTR. We instead utilize the outlier
class learning to eliminate the need for such a prior.

Outlier Class Learning vs. Outlier Exposure
Problem Statement Let X = Xin ∪Xout denote the in-
put space and Y in = {1, 2, . . . , k} be the set of k imbal-
anced ID classes in the label space. OOD detection in LTR
is to learn a classifier f that for any test data x ∈ X : if x
drawn from Xin (from either head or tail classes), then f
can classify x into the correct ID class; and if x is drawn
from Xout, then f can detect x as OOD data. It is normally
assumed that genuine OOD data Xout is not available dur-
ing training since OOD samples are unknown instances. On
the other hand, auxiliary samples that are not Xout but are
drawn from a different distribution other than Xin are often
available. These auxiliary samples can be used as pseudo
OOD samples to fine-tune/re-train the LTR models.

Outlier Exposure (OE) OE is a popular OOD detection
approach that uses auxiliary data as outliers to train ID clas-
sifiers for separating ID and OOD samples. Specifically,
given ID data Din = (Xin, Yin) and auxiliary data Dout =
(Xout, u) for training, where u is a uniform distribution-
based pseudo label for OOD data, OE then minimizes:
LOE = Ex,y∼Din [ℓ(f(x), y] + γEx∼Dout [ℓ(f(x), u], (1)

where γ denotes a hyper-parameter, and ℓ is a cross entropy
loss. During inference, it uses the maximum softmax proba-
bility (MSP) over the ID classes as an OOD score.

Outlier Class Learning (OCL) Outlier class learning
(OCL) aims at learning a new (outlier) class that encapsu-
lates OOD samples, rather than enforcing a uniform predic-
tion probability distribution as in the second term of Eq. 1.
Specifically, for a k-class classification problem, it extends
the label space by explicitly adding a separate class k + 1
as outlier class, i.e., ID data Din = (Xin, Yin) and auxiliary
data Dout = (Xout, k + 1) are used during training, and we
then minimize the following loss function:
LOCL = Ex,y∼Din

[ℓ(f(x), y] + γEx∼Dout
[ℓ(f(x), ỹ], (2)

where ỹ = k + 1 and γ denotes a hyper-parameter. The
softmax probability from the k + 1 class is used as an OOD
score during inference.

OCL Aligns Better with LTR Than OE We find empir-
ically that OE achieves promising performance in general
OOD detection scenarios, but works less effectively when
applied to LTR settings. It is mainly because the uniform
prediction probability prior in Eq. 1 does not hold in LTR.
OCL helps eliminate this prior input and learns the outlier
class that separates the OOD samples from the ID sam-
ples in the representation space. In Table 1, we compare the
performance of OE and OCL when combining with three
widely used LTR methods: Re-weight (Cui et al. 2019), τ -
norm (Kang et al. 2019), and logit adjustment (LA) (Menon
et al. 2020). The results show that OCL largely improves not
only ID classification accuracy but also OOD detection per-
formance on both datasets, substantially outperforming the
OE method. Motivated by the large performance gap, we
promote the use of OCL for LTR instead. However, there
are two main challenges in the OCL approach: 1) OOD
samples can often be wrongly classified into head classes
and/or 2) tail-class samples are often misclassified as OOD
samples. Our approach calibrated OCL (COCL) is focused
on addressing these two challenges, and as shown in Ta-
ble 1, it can help address the challenges and achieve largely
improved classification and detection performance over the
general OCL baselines.

Approach
Overview of Our Proposed Approach COCL
We introduce a novel COCL approach to tackle the afore-
mentioned two issues for OOD detection in LTR. COCL
consists of two components, namely debiased large margin
learning and outlier-class-aware logit calibration, as shown
in Fig. 2. The debiased large margin learning, as shown in
Fig. 2b, is designed to reduce the bias towards head classes
(leading to the misclassification of OOD samples into head
classes) as well as the bias towards OOD samples (leading to
the misclassification of tail samples as OOD samples) dur-
ing training. The outlier-class-aware logit calibration com-
ponent, as shown in Fig. 2c, is devised to utilize the logit
of the outlier class for calibration to enhance OOD detec-
tion and the confidence of long-tailed classification during
inference. Below we introduce each component in detail.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4218



OOD data

ID data
Head Tail

OOD

Debiased Large 
Margin Learning

Training

Outlier-Class-Aware 
Logit Calibration

Inference

…

Ta
il 

   
 ID

 c
la

ss
es

   
  H

ea
d

Outlier class

(a) Pipeline

OOD-Aware Tail Class 
Prototype Learning

Push

Pull

Pull

OOD

Push

Push

Debiased Head 
Class Learning

OOD Sample

Farthest OOD Sample

Random Head Sample

Pull

Push

Anchor

Negative

PositiveTail
Prototype

Tail
Prototype

(b) Debiased large margin learning

Calibration

… … …

(c) Outlier-class-aware
logit calibration

Figure 2: Overview of our approach COCL. (a) presents a high-level pipeline of our two components in our approach COCL, (b)
illustrates the key idea of debiased large margin learning which includes OOD-aware tail class prototype learning and Debiased
Head Class Learning to reduce biases towards OOD samples and head classes respectively, and (c) shows the outlier-class-
aware logit calibration that utilizes the logit of the outlier class to calibrate the prediction results during inference.

Debiased Large Margin Learning
The debiased large margin learning component includes two
modules, namely OOD-aware tail class prototype learning
and Debiased Head Class Learning, to respectively reduce
the model bias towards OOD samples and head classes. Be-
low we elaborate on how these two modules can help reduce
the two types of model bias.

OOD-Aware Tail Class Prototype Learning Since tail
class samples are rare in the training data, the LTR models
lack confidence in classifying them. As a result, they tend
to exhibit high OOD scores during LTR inference, i.e., the
LTR models’ bias towards OOD samples when classifying
tail class samples. The seminal work PASCL (Wang et al.
2022) attempts to utilize diverse augmentations to push
tail samples away from OOD samples, but it often learns
non-discriminative representations between OOD samples
and tail samples due to the limited size of tail classes. To
address this issue, we utilize a learnable prototype of one tail
class as positive sample to pull tail samples closer to their
prototype, with OOD samples and other tail class prototypes
as negative samples to push the samples and prototype of
the positive tail class away from OOD samples and other
tail prototypes. This strategy harnesses the tail prototypes
to increase the presence of representations for tail classes,
helping reduce the model bias towards the OOD samples.
Formally, let M ∈ RN×D be the learnable parameters of N
tail prototypes, with each prototype representation spanned
in a D-dimensional space, our tail class prototypes are
learned by minimizing the following loss:

Lt = Ex∼Dtail
[Lt(x,M)], (3)

where Dtail is all tail samples in Din, and Lt(x,M) is de-
fined as:

Lt(x,M) =
1

|B|
∑
x∈B

log
exp(z(x)m⊺

x/t)∑
m∈M

exp(z(x)m⊺/t) + P (x)
,

(4)
where B is a training sample batch, z(·) is the output of
a non-linear projection on the model’s penultimate layer,

i.e., the learned feature representation of x, P (x) =∑
x̂∈O exp(z(x)z(x̂)⊺/t) with O being a batch of OOD

samples from Dout, ⊺ is a transpose operation, m is a tail
prototype in M, mx is the tail prototype corresponding to
the tail class of sample x, and t is the scaling temperature.

As illustrated on the left in Fig. 2b, we only apply this
tail class prototype learning to the tail-class in-distribution
data and OOD data, as it is specifically designed to tackle
the problem that tail samples exhibit high OOD scores. As
for the head samples, they are normally easily distinguished
from the OOD samples as there are sufficient head class
samples in the training set. Note that we exclusively calcu-
late the loss only when taking tail samples as input; the loss
is not calculated for auxiliary OOD samples, since we have
already pulled OOD samples together in the joint LTR and
outlier class learning in Eq. 2. Thus, this module introduces
only minor computation overheads to the general OCL.

Debiased Head Class Learning Due to the overwhelming
presence of head class samples, LTR models demonstrate a
strong bias towards head classes when performing OOD de-
tection, i.e., OOD samples are often misclassified as one of
the head classes. To address this issue, we introduce the de-
biased head class learning module that performs a one-class
learning of OOD samples, where we aim to learn a large
outlier-class description region for OOD samples to alleviate
the dominant influence of head samples in the feature space.
To this end, as illustrated on the right in Fig. 2b, we use
only the OOD samples as anchors, with randomly sampled
head samples as negative samples and the OOD samples that
are distant from the anchors in the feature space as positive
samples, and then we perform a semi-supervised one-class
learning for OOD samples by minimizing the following loss:

Lh = Ex∼Dout
[Lh(x)], (5)

where Lh(x) is defined as:

Lh(x) =
1

|B|
∑
x∈B

max(0, ∥z(x)− z(xp)∥22

−∥z(x)− z(xn)∥22 +margin),

(6)
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where B is a batch of OOD training samples from Dout, xp

is a positive sample that is set to the most distance OOD
sample from the anchor sample x in B, xn is a randomly
head sample in the same batch, and margin is a user-defined
hyperparameter that specifies the margin between the one-
class OOD description region and the head samples. Note
that since popular contrastive learning is a two-way learn-
ing method, the model would be reinforced to bias towards
the head class if the original contrastive learning is directly
applied. Our design in Eq. 6 is to explicitly correct this bias
and refine the learning of the outlier class.

Lastly, the overall objective of our debiased large margin
learning is as follows:

Ltotal = LOCL + αLt + βLh

= Ex,y∼Din
[ℓ(f(x), y] + γEx∼Dout

[ℓ(f(x), ỹ]

+ αEx∼Dtail
[Lt(x,M)] + βEx∼Dout

[Lh(x)],

(7)

where LOCL is the same as the outlier class learning in Eq.
(2), Lt is as defined in Eq. (4), and Lh is as defined in Eq.
(6). α and β denote two hyperparameters to control the re-
duction of biases towards the OOD data and head classes.

Outlier-Class-Aware Logit Calibration
Our LTR model is then equipped with an OOD detector by
minimizing Eq. 7 on the training data. However, due to the
inherent class imbalance in the training data, the LTR model
often tends to have a higher confidence on the prediction of
head samples than both the tail samples and the OOD sam-
ples. To avoid this issue, we propose the outlier-class-aware
logit calibration component that calibrates the predictions
using the model logits and prior probability of both ID and
outlier classes in the inference stage. This is different from
existing LTR calibration methods that focus on ID classes
only. Specifically, given a test sample x, we calibrate its pos-
terior probability via:

P (y = i|x) = efi(x)−τ ·log ni∑k+1
j=1 e

fj(x)−τ ·log nj

, (8)

where fi(x) denotes the predicted model logit of x belong-
ing to the class i, τ is a hyperparameter to balance how much
we want to bring in the prior of the outlier class, and ni is a
prior probability for the class i and it is estimated by

ni =
Ni

N1 +N2 + · · ·+Nk
, (9)

where Ni is the training sample size for class i. We do not
have genuine OOD samples during training, so their prior
probability can not be estimated in the same way as ID
classes. Motivated by the fact that detecting OOD samples
should be as important as ID classification, we set nk+1 = 1
for the outlier class, which equals the summation of the
prior probabilities of all ID classes. In doing so, our model’s
prediction is calibrated to decrease the probability of head
classes and increase that of tail classes, while taking into
account the influence of OOD samples on the prediction.
Thus, this calibration is beneficial both for ID classification
and OOD detection. This effect cannot be achieved using the
general logit calibration used in LTR.

OOD Method AUC↑ AP-in↑ AP-out↑ FPR↓

Texture
OE 92.30 96.01 82.57 48.65

OCL 93.71 95.95 91.07 27.22
COCL 96.81 98.21 93.86 14.65

SVHN
OE 94.86 91.59 97.00 29.11

OCL 95.14 90.88 97.73 25.47
COCL 96.98 93.25 98.61 12.59

CIFAR100
OE 83.32 84.06 80.83 65.82

OCL 82.04 82.52 81.92 63.35
COCL 86.63 86.66 86.28 52.21

Tiny
ImageNet

OE 86.35 89.88 79.30 64.50
OCL 85.90 88.98 82.17 57.46

COCL 90.43 92.52 87.03 46.12

LSUN
OE 91.57 93.06 88.37 53.99

OCL 92.75 92.69 93.10 30.95
COCL 94.85 95.43 93.98 27.48

Place365
OE 90.20 82.09 95.24 57.06

OCL 89.91 77.91 96.28 42.33
COCL 93.97 87.36 97.56 32.25

(a) Comparison of COCL with OE and OCL on six OOD datasets.
Method AUC↑ AP-in↑ AP-out↑ FPR↓ ACC↑

MSP 74.33 73.96 72.14 85.33 72.17
OE 89.76 89.45 87.22 53.19 73.59

EnergyOE 91.92 91.03 91.97 33.80 74.57
OCL 89.91 88.15 90.38 41.13 74.48

PASCL 90.99 90.56 89.24 42.90 77.08
OS 91.94 91.08 89.35 36.92 75.78

Class Prior 92.08 91.17 90.86 34.42 74.33
BERL 92.56 91.41 91.94 32.83 81.37
COCL 93.28 92.24 92.89 30.88 81.56

(b) Comparison results with different competing methods. The
results are averaged over the six OOD test datasets in (a).

Table 2: Comparison results on CIFAR10-LT.

Experiments
Experiment Settings
Datasets We use three popular long-tailed image classi-
fication datasets as ID data, including CIFAR10-LT (Cao
et al. 2019), CIFAR100-LT (Cao et al. 2019), and ImageNet-
LT (Liu et al. 2019). Following (Wang et al. 2022; Choi,
Jeong, and Choi 2023), TinyImages 80M (Torralba, Fer-
gus, and Freeman 2008) dataset is used for auxiliary OOD
data to CIFAR10-LT and CIFAR100-LT, and ImageNet-
Extra (Wang et al. 2022) is used for auxiliary OOD data to
ImageNet-LT. The default imbalance ratio is set to ρ = 100
on CIFAR10-LT and CIFAR100-LT as (Wang et al. 2022).
For OOD test set, we use six datasets CIFAR (Krizhevsky,
Hinton et al. 2009), Texture (Cimpoi et al. 2014), SVHN
(Netzer et al. 2011), LSUN (Yu et al. 2015), Places365
(Zhou et al. 2017), and TinyImagenet (Le and Yang 2015)
introduced in the SC-OOD benchmark (Yang et al. 2021) for
the LTR task on CIFAR10-LT and CIFAR100-LT. Following
(Wang et al. 2022), we use ImageNet-1k-OOD (Wang et al.
2022) as the OOD test set for ImageNet-LT.

Evaluation Measures Following (Yang et al. 2021; Wang
et al. 2022), we use the below common metrics for OOD
detection and ID classification: (1) FPR is the false posi-
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OOD Method AUC↑ AP-in↑ AP-out↑ FPR↓

Texture
OE 76.01 85.28 57.47 87.45

OCL 75.92 82.99 66.48 70.01
COCL 81.99 88.05 74.38 59.79

SVHN
OE 81.82 73.25 89.10 80.98

OCL 78.64 69.21 86.26 86.38
COCL 89.20 81.57 94.21 54.46

CIFAR10
OE 62.60 66.16 57.77 93.53

OCL 60.29 63.21 55.71 94.22
COCL 62.05 66.14 56.82 93.88

Tiny
ImageNet

OE 68.22 79.36 51.82 88.54
OCL 69.56 79.97 54.47 85.91

COCL 71.87 81.89 57.12 83.93

LSUN
OE 76.81 85.33 60.94 83.79

OCL 79.14 86.56 66.58 75.07
COCL 84.10 89.89 69.80 74.67

Place365
OE 75.68 60.99 86.51 83.55

OCL 77.81 62.80 88.39 79.97
COCL 80.30 68.65 89.16 77.83

(a) Comparison of COCL to OE and OCL on six OOD datasets.
Method AUC↑ AP-in↑ AP-out↑ FPR↓ ACC↑

MSP 63.93 64.71 60.76 89.71 40.51
OE 73.52 75.06 67.27 86.30 39.42

EnergyOE 76.40 77.32 72.24 76.33 41.32
OCL 73.56 74.12 69.65 81.93 41.54

PASCL 73.32 74.84 67.18 79.38 43.10
OS 74.37 75.80 70.42 78.18 40.87

Class Prior 76.03 77.31 72.26 76.43 40.77
BERL 77.75 78.61 73.10 74.86 45.88
COCL 78.25 79.37 73.58 74.09 46.41

(b) Comparison results with different competing methods. The
results are averaged over the six OOD test datasets in (a).

Table 3: Comparison results on CIFAR100-LT.

tive rate of OOD examples when the true positive rate of ID
examples is at 95% (as is typically done in previous OOD
detection studies (Huang and Li 2021; Yang et al. 2022;
Zhang and Xiang 2023)), (2) AUC computes the area under
the receiver operating characteristic curve of detecting OOD
samples, (3) AP measures the area under the precision-recall
curve. Depending on the selection of the positive class, AP
contains AP-in which ID class samples are treated as posi-
tive, as well as AP-out where the OOD samples are regarded
as positive, and (4) ACC calculates the classification accu-
racy of the ID data. The reported results are averaged over
six runs with different random seeds by default.

Implementation Details We compared our approach
COCL with several existing OOD detection methods on
long-tailed training sets, including classical methods MSP
(Hendrycks and Gimpel 2016), OE (Hendrycks, Mazeika,
and Dietterich 2018), EnergyOE (Liu et al. 2020), and very
recently published methods PASCL (Wang et al. 2022), OS
(Wei et al. 2022a), Class Prior (Jiang et al. 2023), and BERL
(Choi, Jeong, and Choi 2023). The OCL method in our re-
sults is a baseline that is trained based on Eq. 2 only. Follow-
ing PASCL (Wang et al. 2022) and BERL (Choi, Jeong, and
Choi 2023), we use ResNet18 as our backbone on CIFAR10-
LT and CIFAR100-LT, and use ResNet50 on ImageNet-LT.

Method AUC↑ AP-in↑ AP-out↑ FPR↓ ACC↑
MSP 55.78 35.60 74.18 94.01 45.36
OE 68.33 43.87 82.54 90.98 44.00

EnergyOE 69.43 45.12 84.75 76.89 44.42
OCL 68.67 43.11 84.15 77.46 44.77

PASCL 68.00 43.32 82.69 82.28 47.29
OS 69.23 44.21 84.12 79.37 45.73

Class Prior 70.43 45.26 84.82 77.63 46.83
BERL 71.16 45.97 85.63 76.98 50.42
COCL 71.85 46.76 86.21 75.60 51.11

Table 4: Comparison results on ImageNet-LT with
ImageNet-1k-OOD as OOD test dataset.

Metric CIFAR10-LT CIFAR100-LT
OE OCL COCL OE OCL COCL

AUC↑ 82.60 84.84 91.91 64.08 66.11 74.85
AP-in↑ 60.47 61.56 76.98 34.07 34.97 47.76
AP-out↑ 92.28 94.75 97.15 83.19 85.74 87.59

FPR↓ 72.10 52.73 34.30 92.48 82.53 77.01

(a) On separating tail samples from OOD data.

Metric CIFAR10-LT CIFAR100-LT
OE OCL COCL OE OCL COCL

AUC↑ 95.97 95.79 96.34 84.42 83.85 87.73
AP-in↑ 91.09 88.72 93.34 70.16 68.44 73.84
AP-out↑ 98.17 98.54 98.67 92.85 92.83 93.94

FPR↓ 20.57 22.67 19.59 70.17 67.94 66.01

(b) On separating head samples from OOD data.

Table 5: Comparison results on separating tail/head samples
from OOD samples. The results are averaged over six OOD

test datasets in the SC-OOD benchmark.

Main Results
Table. 2a and Table. 3a presents the comparison of our
COCL with the baseline OE and OCL on CIFAR10/100-LT
using six commonly used OOD test datasets. COCL sub-
stantially outperforms OE and OCL on both datasets across
six OOD datasets except CIFAR100-LT with the CIFAR10
OOD test set where OE performs slightly better than COCL
due to the difficulty of learning the outlier class given the
similarity between these two datasets, which slightly drags
down the performance of COCL in this case. OCL generally
achieves better performance than OE, especially in FPR, in-
dicating that OCL can detect OOD samples better with less
influence on ID classification accuracy. Our COCL improves
OCL further through the three components we introduced.

Table. 2b and Table. 3b show the comparison of COCL
to state-of-the-art OOD detectors in LTR on CIFAR10-LT
and CIFAR100-LT. To demonstrate the scalability of COCL,
we also perform experiments on the large-scale ID dataset
ImageNet-LT. The empirical results are presented in Table
4. COCL can improve not only OOD detection performance
but also ID classification accuracy, and achieves the SOTA
performance in both scenarios.

To show the effectiveness of COCL in improving the ca-
pability of distinguishing OOD data from head and tail sam-
ples, we perform two particular OOD detection settings: one
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ID Dataset TCPL DHCL OLC AUC↑ AP-in↑ AP-out↑ FPR↓ ACC↑ ACC-t↑

CIFAR10-LT

Baseline (OE) 89.76 89.45 87.22 53.19 73.59 55.91
✗ ✗ ✗ 89.91 88.15 90.38 41.13 74.48 56.52
✓ ✗ ✗ 91.23 89.47 91.51 34.27 74.58 57.10
✗ ✓ ✗ 91.08 89.40 91.10 35.28 74.61 56.92
✗ ✗ ✓ 92.06 91.29 91.78 34.41 79.40 76.57
✓ ✓ ✗ 91.74 89.91 92.04 33.85 75.20 57.30
✓ ✓ ✓ 93.28 92.24 92.89 30.88 81.56 77.90

CIFAR100-LT

Baseline (OE) 73.52 75.06 67.27 86.30 39.42 12.59
✗ ✗ ✗ 73.56 74.12 69.65 81.93 41.54 12.06
✓ ✗ ✗ 75.14 75.74 71.25 78.39 41.93 13.53
✗ ✓ ✗ 74.70 75.36 70.63 78.96 42.42 13.33
✗ ✗ ✓ 75.51 75.83 71.66 77.57 45.62 28.44
✓ ✓ ✗ 76.09 76.59 71.92 76.20 42.46 13.89
✓ ✓ ✓ 78.25 79.37 73.58 74.09 46.41 29.44

ImageNet-LT

Baseline (OE) 68.33 43.87 82.54 90.98 44.00 7.65
✗ ✗ ✗ 68.67 43.11 84.15 77.46 44.77 8.02
✓ ✗ ✗ 70.08 44.68 85.04 76.61 44.59 8.49
✗ ✓ ✗ 69.64 44.11 84.83 76.62 45.00 8.43
✗ ✗ ✓ 70.37 45.07 85.35 76.31 50.16 26.03
✓ ✓ ✗ 70.78 45.19 85.61 76.26 45.24 9.92
✓ ✓ ✓ 71.85 46.76 86.21 75.60 51.11 28.05

Table 6: Ablation study results on CIFAR10-LT, CIFAR100-LT and ImageNet-LT.

with only tail samples and OOD samples, and another one
with only head samples and OOD samples. The empirical re-
sults are shown in Table. 5a and Table. 5b respectively. It can
be observed that (1) differentiating tail and OOD samples is
often more difficult than differentiating head and OOD sam-
ples, as indicated by the AUC performance, which applies
to both COCL and the two baselines, and (2) COCL does a
better job than the two baselines in both scenarios, resulting
in significantly enhanced OOD performance.

Ablation Study Our COCL consists of OOD-Aware Tail
Class Prototype Learning (TCPL), Debiased Head Class
Learning (DHCL), and Outlier-Class-Aware Logit Calibra-
tion (OLC), as elaborated in the Approach section. Table 6
presents the results of the ablation study on these three com-
ponents on all three ID datasets to show the importance of
each component, with OE used as a baseline. The method
immediately below OE is another baseline OCL based on
Eq. 2. The results show that (1) TCPL can largely reduce
FPR, while at the same time increasing ACC-t, indicating
improved performance in handling tail classes, (2) DHCL
also largely reduces FPR while having similar ACC and
ACC-t as OCL, indicating its effect mainly on handling head
and OOD samples, (3) combining TCPL and DHCL helps
leverage the strengths of both components, (4) adding the
OLC component consistently improves not only the classifi-
cation accuracy but also the OOD detection performance.

Qualitative Analysis Fig. 3 presents a qualitative analysis
of the prediction confidence of our method COCL on OOD
samples belonging to each ID class in CIFAR10-LT (Left),
and the mean OOD scores for each ID class (Right), with the
results of OCL as the comparison baseline. It shows on the
left panel that OCL has high confidence in predicting OOD
samples as head classes, while COCL can significantly re-

Figure 3: Results on CIFAR10-LT. (Left) The mean predic-
tion confidence of six OOD datasets belonging to each ID
class. (Right) The mean OOD score for each ID class.

duce these over-confident predictions. On the right panel, it
is clear that our COCL can largely decrease the OOD scores
for all ID class samples, particularly for tail class samples.
These results justify that the aforementioned biases towards
head classes and OOD samples are effectively reduced in
our model COCL, significantly enhancing COCL in distin-
guishing OOD samples from both head and tail classes.

Conclusion
To address the OOD detection problem in LTR, we propose
a novel approach, calibrated outlier class learning (COCL),
to discriminate OOD samples from long-tailed ID samples.
COCL equips the general OCL with debiased large margin
learning to reduce the model biases towards head classes and
OOD samples. It also introduces outlier-class-aware logit
calibration to guarantee the long-tailed classification perfor-
mance when presented with OOD samples. Extensive exper-
iments show that COCL significantly enhances the perfor-
mance of both OOD detection and long-tailed classification
on three popular LTR and OOD detection benchmarks.
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