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Abstract
The vision-and-language navigation (VLN) task necessitates
an agent to perceive the surroundings, follow natural lan-
guage instructions, and act in photo-realistic unseen envi-
ronments. Most of the existing methods employ the entire
image or object features to represent navigable viewpoints.
However, these representations are insufficient for proper ac-
tion prediction, especially for the REVERIE task, which uses
concise high-level instructions, such as ”Bring me the blue
cushion in the master bedroom”. To address enhancing rep-
resentation, we propose an augmented commonsense knowl-
edge model (ACK) to leverage commonsense information
as a spatio-temporal knowledge graph for improving agent
navigation. Specifically, the proposed approach involves con-
structing a knowledge base by retrieving commonsense infor-
mation from ConceptNet, followed by a refinement module to
remove noisy and irrelevant knowledge. We further present
ACK which consists of knowledge graph-aware cross-modal
and concept aggregation modules to enhance visual represen-
tation and visual-textual data alignment by integrating visi-
ble objects, commonsense knowledge, and concept history,
which includes object and knowledge temporal information.
Moreover, we add a new pipeline for the commonsense-
based decision-making process which leads to more accu-
rate local action prediction. Experimental results demonstrate
our proposed model noticeably outperforms the baseline and
archives the state-of-the-art on the REVERIE benchmark.
The source code is available at https://github.com/Bahram-
Mohammadi/ACK.

Introduction
Navigating an embodied agent through complex and unseen
environments by following natural language instructions is
a challenging problem in artificial intelligence research. In
this regard, vision-and-language navigation (VLN) (Ander-
son et al. 2018) has drawn the attention of many researchers
in recent years (Fried et al. 2018; Tan, Yu, and Bansal 2019;
Hao et al. 2020; Zhu et al. 2021; Chen et al. 2022; Li et al.
2023) and a variety of VLN tasks have been introduced
in different levels, such as room-to-room (R2R) (Anderson
et al. 2018) and remote embodied visual referring expression
in real indoor environments (REVERIE) (Qi et al. 2020b). In
R2R, the agent aims to reach a pre-specified location from a

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Instruction

Observation

…….

Go clean the counter to the right of the fridge in the kitchen

Query

Scene Graph:

Refrigerator
Table …

Knowledge Base

Knowledge Graph:

Kitchen
Counter …

Baseline

ACK

Action

Action

<start node, relationship, end node>

<refrigerator, synonym, fridge>           <table, is a, counter>
<counter, used for, kitchen>   <fridge, at location, kitchen>
<table, at location, kitchen>           <table, related to, chair>

Figure 1: Action prediction by the baseline and our method.
Utilizing visible objects alongside commonsense knowledge
as a spatio-temporal knowledge graph improves visual rep-
resentation and action prediction. Best viewed in color.

starting point by following fine-grained instructions. How-
ever, To be more practical, REVERIE introduces a goal-
oriented task in which the agent needs to explore the envi-
ronment and localize the target object according to concise
instructions, e.g., ”Go to the living room and clean the table
next to the couch”. Therefore, the agent cannot complete the
task successfully just by strictly following instructions and
requires more information about the environment to predict
the correct action at each step.

Many of the proposed methods exploit scene-level fea-
tures to represent visual perception (Qiao et al. 2022; Guhur
et al. 2021; Chen et al. 2021). To provide the agent with
richer visual clues, a wide range of previous works (Hong
et al. 2020; Qi et al. 2020a, 2021) use object-level features.
It is very common to use an object as a landmark in the in-
structions which means they can also be utilized as visual
landmarks. Hence, object localization along with their orien-
tation encoding regarding the heading and elevation angles
of the agent is very beneficial to align the detected objects in
the scene with the object labels in the instruction. For exam-
ple, Given the instruction ”With the fireplace on your right
walk down the walkway and stop at the end before you enter
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the next room”, the agent first needs to detect the fireplace
and then correctly identify it as the visual landmark on the
right to predict the proper action. High-level instructions and
the lack of sufficient data in REVERIE disturb the naviga-
tion performance. This problem motivated us to provide the
agent with additional information that is not present in the
scene but can be inferred from the visible content of naviga-
ble directions. As Humans need to reason over complemen-
tary information to make a more precise decision, we aim to
introduce commonsense knowledge into the REVERIE task
to improve navigation. Employing external knowledge has
shown significant performance in other vision-and-language
problems such as image captioning and visual question an-
swering (VQA) (Marino et al. 2019, 2021; Ding et al. 2022).
Not only does such information enhance the vision and text
alignment, but it also generalizes the action reasoning of the
agent. Furthermore, the spatial and temporal connection be-
tween objects and knowledge during navigation boosts the
exploration and generalization ability of the agent in un-
seen environments. For instance, hallway is followed by liv-
ing room in the training environment, thus learning this se-
quence helps the agent to take the right action by observing
the same concept, hallway, in an unseen environment.

In this work, to fulfill the above-mentioned requirements,
we incorporate commonsense knowledge into the REVERIE
task as a spatio-temporal knowledge graph by construct-
ing a knowledge base followed by our proposed method
ACK. We build an internal knowledge base according to
the visible contents of the image and ConceptNet (Liu and
Singh 2004) as the external knowledge base. Then, the
pre-trained contrastive language-image pre-training (CLIP)
model (Radford et al. 2021) is utilized to collect and rank
the most pertinent knowledge to the scene and detected ob-
jects. These object and knowledge features are complemen-
tary to the existing visual representation and align the view-
point images with instructions. Afterward, we present ACK
which takes advantage of commonsense knowledge to en-
hance visual representation and action reasoning. ACK con-
sists of two modules to integrate object and knowledge fea-
tures along with their historical information. The knowledge
graph-aware cross-modal encoder models the relationship
between concepts and instructions while the concept history
of the previous step is taken into account. Subsequently, the
concept aggregation module outputs a single concept fea-
ture per each navigable direction which is utilized for vi-
sual representation enhancement and local action predic-
tion in the commonsense-based decision-making pipeline.
Figure 1 demonstrates the action prediction comparison be-
tween DUET (Chen et al. 2022) as the baseline and ACK. As
shown in this figure, our model can make the right decision
by exploiting object-level and knowledge-level features.

The experiments are conducted on the REVERIE dataset
and results show that our proposed approach, ACK, outper-
forms the state-of-the-art methods. In summary, the main
contributions of this work are as follows:

• We integrate object-level features with object-related
commonsense knowledge to complement the existing vi-
sual representation and enhance vision-text alignment.

• We propose ACK followed by the commonsense-based
decision-making pipeline for leveraging object and
knowledge features to provide a more informative repre-
sentation and hold their historical information for making
a sequence of correct decisions.

• We conduct experiments on REVERIE to validate the ef-
fectiveness and generalization ability of ACK and the re-
sults show the superiority of our approach over the state-
of-the-art methods and the baseline model.

Related Work
Vision-and-Language Navigation. In the VLN task, an
agent is required to find the optimal path toward the tar-
get location given the visual and textual input data. In re-
cent years, numerous approaches (Wang et al. 2021; Deng,
Narasimhan, and Russakovsky 2020; Lin et al. 2022; Liu
et al. 2021) have been proposed to improve the perfor-
mance of the agent. The first baseline for the VLN is in-
troduced by (Anderson et al. 2018) which designs a multi-
modal Seq2Seq model. Then (Fried et al. 2018) proposes the
speaker-follower method to augment the data and improve
the generalization. EnvDrop (Tan, Yu, and Bansal 2019) ex-
tends this work by presenting environmental dropout. (Wang
et al. 2019) presents a module for cross-modal grounding
which enables the agent to infer the essential parts of the
scenes and sub-instructions. (Ma et al. 2019) focuses on
progress monitoring regarding the instruction. In light of
the successes of vision-and-language pre-training PREVA-
LENT (Hao et al. 2020) pre-trains the navigation model us-
ing the self-learning approach and AirBERT (Guhur et al.
2021) improves cross-modality interaction. Many of the re-
cent works in VLN rely on the navigation history to achieve
superior performance. Some approaches condense the his-
tory into a single vector (Wang et al. 2019; Hong et al.
2021) while others attempt to explicitly store the previous
states (Pashevich, Schmid, and Sun 2021; Chen et al. 2022).
Most recently, (Zhao, Qi, and Wu 2023) propose to espe-
cially mind the passed target location in trajectory histories.
VLN with Commonsense Knowledge. In the context of
VLN, incorporating commonsense knowledge is rarely con-
sidered in previous works, however, it has recently drawn
the attention of researchers in this topic (Gao et al. 2021;
Li et al. 2022, 2023). The most widely-used large-scale
structured knowledge bases are ConceptNet (Liu and Singh
2004) and DBpedia (Auer et al. 2007) which are created
by automatic data extraction and manual annotation, respec-
tively. CKR (Gao et al. 2021) exploits ConceptNet to iter-
atively perform object- and room-entity reasoning through
internal and external graph reasoning during the training.
In another line of work, KERM (Li et al. 2023) proposes
a knowledge-enhanced reasoning model to take advantage
of external knowledge which is retrieved from the visual
genome (Krishna et al. 2017) by parsing the region descrip-
tions. In this work, we leverage commonsense knowledge
to properly align viewpoints with instructions and improve
visual representation as well as local action prediction. The
architecture of DUET (Chen et al. 2022) is followed as the
main baseline of our proposed method.
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Figure 2: Main architecture of our proposed method. (a) Retrieving and refining the commonsense knowledge. (b) Initializing
the concept history which represents the entire instruction and obtaining the text embedding. (c) ACK receives the detected
objects, commonsense knowledge, and their temporal information to output weighted raw concept features which are utilized
in the commonsense-based decision-making pipeline and the baseline model. (d) Inspired by the baseline agent, we add a new
pipeline to produce the local action score and predict the object. Best viewed in color.

Method
In this section, we first explain the problem formulation and
the overview of our proposed approach. Then, we present
commonsense knowledge retrieval and ACK in detail and
describe the commonsense-based decision-making pipeline
for local action prediction.
Problem Formulation. In the context of REVERIE (Qi
et al. 2020b), given a language instruction as a sequence of
words denoted as I = {wi}

L
i=1, where wi represents the ith

word and L is the length of the sequence, the agent navigates
through an undirected connectivity graph G = {V ,E}, where
V corresponds to viewpoints and E shows the connection be-
tween nodes. At time step t, the agent is located at node Vt
and perceives a panoramic view Vt = {vt,i}36i=1. The agent
infers an action at to transfer from state st to state st+1 only
based on the navigable directions N (Vt) = {vt,i}Ki=1, where
N (Vt) ⊆ Vt. Each state includes a triplet {vt,i, θt,i, ψt,i},
where vt,i is the viewpoint image, and {θt,i, ψt,i} are angels
of heading and elevation, respectively, to determine the ori-
entation of the image with respect to the agent. The agent
is required to walk on the connectivity graph by selecting
the next location at each node until it decides to stop or the
number of action steps exceeds the threshold. The episode
ends when the agent identifies the position of the target ob-
ject within the panoramic view.

Method Overview. We follow DUET(Chen et al. 2022) ar-
chitecture as the main baseline. This method includes two
modules, topological mapping and global action planning.
The former module is responsible for the gradual construc-
tion of a map over time by adding new observed locations
during the path and updating the representation of each
node. Afterward, the action, including the next location or
stop action, is predicted by the latter module. DUET dy-
namically fuses action prediction of two scales: a fine-scale
representation of the current location and a coarse-scale rep-
resentation of the topological map to balance fine-grained
language grounding against reasoning over the graphs.

In this work, we aim to improve the visual representation,
which affects both fine- and coarse-scale encoders, and local
action prediction. To do so, we incorporate commonsense
knowledge into the baseline agent by leveraging the visible
entities in viewpoint images and adding a new pipeline for
local action reasoning. Through this paper, we use concepts
and objects/knowledge interchangeably. To achieve more
accurate alignment between instructions and candidate di-
rections, we utilize object labels rather than their bounding
boxes. As shown in Figure 2(a) we first build a knowledge
base using detected objects and an external knowledge base
followed by a filtering module to refine it by removing noisy
and irrelevant data according to the entire image and objects.
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In the initialization phase Figure 2(b), we obtain the text em-
bedding and initialize concept history as a representation of
the entire instruction. Then, we exploit ACK, Figure 2(c), to
generate weighted raw concept features. Finally, we add a
new pipeline to reason over the concept features and output
the scores for object and local action prediction as illustrated
in Figure 2(d). These scores are used as inputs for dynamic
fusion to help the agent predict the correct local action.

Commonsense Knowledge Retrieval
Inspired by the human decision-making process which is
based on background knowledge, we aim to provide the
agent with complementary information to scene-level and
object-level data. Commonsense knowledge not only helps
the agent to understand the surroundings comprehensively,
but it also facilitates data matching between the images and
instructions. To obtain appropriate external knowledge, we
first construct a knowledge base and then filter out the irrele-
vant information regarding visible content in each direction.
Object Detection. For vt,i which is the ith view at time step
t, the Faster R-CNN model (Ren et al. 2015) pre-trained on
visual genome (VG) (Krishna et al. 2017) is utilized to ob-
tain the object-set Ovt,i . To avoid overlooking helpful in-
formation we use all of the objects not just the most salient
ones. During navigation, the adopted object detector is ca-
pable of differentiating 1600 categories {oi}1600i=1 , including
those that have been annotated in the REVERIE dataset.
Knowledge Base Construction. To build the internal
knowledge base, we employ ConceptNet (Liu and Singh
2004) as the external source of information. Each query we
send to ConceptNet contains three parameters, start node,
end node, and relationship type. The response from the Con-
ceptNet is represented by a tuple fi,j = (si, ri,j , ej), which
indicates that the start node si is connected to the end node
ej through the relationship ri,j . More than 30 different re-
lationships are available in ConceptNet, but we only use 8
most relevant ones based on their descriptions1. For each
object set Ovt,i , all related data is extracted from the knowl-
edge base. For example, if Ovt,i contains bed, then Kvt,i

includes bedroom according to the triplet (bed, AtLocation,
bedroom) and the agent can infer it faces the bedroom.
Knowledge Selection. The extracted knowledge may be ir-
relevant or noisy, which could potentially impact the ac-
curacy of the downstream task. To address this issue, we
consider a refinement module to select the top-k pertinent
supporting facts for viewpoints {kt,i}Ki=1. To do so, the pre-
trained CLIP model (Radford et al. 2021) is used which con-
sists of CLIP-I and CLIP-T encoders for encoding image and
text, respectively, into a joint embedding space. We employ
CLIP-I to encode entire images while object and knowledge
labels are encoded by CLIP-T. Afterward, we calculate the
similarity score for each fact according to its average cosine
similarity with the whole image and its objects. The higher
score means the corresponding knowledge is more suitable
to be utilized. Finally, we select top-k commonsense knowl-
edge. In this case, even for the same object sets we may re-
trieve different knowledge sets.

1https://github.com/commonsense/conceptnet5/wiki/Relations
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Figure 3: Encoding the relative position of objects with re-
spect to the heading and elevation angles of the agent.

Augmented Commonsense Knowledge Model
At time step t, the object features Ot, knowledge features
Kt, concept history features ht−1, and instruction features
It are fed into our proposed model to either improve visual
representation or local action prediction.

Knowledge Graph This study intends to treat objects,
knowledge, and their history as a spatio-temporal knowledge
graph. We first generate a fully-connected scene graph using
detected objects and then expand it to construct the knowl-
edge graph by adding extracted knowledge. To provide the
agent with temporal insights about concepts during naviga-
tion, we consider an extra node that is connected to all the
others. In the lines below, we elucidate the node representa-
tion and adjacency matrix generation.
Node Embedding. The acquired knowledge exists in tex-
tual format, thus, in order to maintain consistency between
objects and knowledge and also to provide a better vision-
text alignment, object labels are used instead of their visual
features. To encode the object and knowledge labels CLIP-
T is used. Node type encoding and directional encoding are
added to each node feature. The node type encoding em-
beds 0 for history, 1 for objects, and 2 for knowledge to dis-
tinguish between different nodes. The directional encoding
embeds the relative position of objects with respect to the
heading and elevation angles of the agent. We aim to use
objects as visual landmarks to improve alignment between
textual and visual data. As shown in Figure 3, the relative
orientation of objects is encoded as follows:

{Dt,Oi,j}
N
j=1 =(sin (θi ± αi,j), cos (θi ± βi,j),

sin (ψi ± α
′
i,j), cos (ψi ± β

′
i,j))

(1)

where Dt,Oi,j is the directional encoding of jth object in
the viewpoint vi at time step t and N is the number of ob-
jects. The directional encoding for knowledge is set to zero
{Dt,Ki,j}

K
j=1 = 0⃗, where K is the number of knowledge.

Adjacency Matrix. At time step t, we generate a fully-
connected scene graph for each navigable direction vt,i us-
ing the detected object set Ovt,i . We then add knowledge
nodes and establish the connections between concepts if
they are correlated in the knowledge base. Specifically, we
connect two nodes that represent either objects or knowl-
edge if their relationship is defined in the knowledge base
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as the triplet (ci, ri,j , cj), where ci and cj denote concept
nodes and ri,j denotes the relationship between them. The
connections between nodes are considered undirected.

History Initialization It is not necessary to encode in-
structions during the navigation t > 0. Therefore, to encode
the entire instructions at the initialization step t = 0, they are
fed to a multi-layer transformer as the text encoder. The em-
bedded [CLS] token is defined as the initial representation
of concept history h0 that represents the entire instruction.

h0, Î = TextEncoder([CLS], I,[SEP]) (2)
where [CLS] and [SEP] are pre-defined tokens in BERT
model (Devlin et al. 2019) and I is the language instruction.

Knowledge Graph-aware Cross-modal Encoder Hav-
ing obtained concept features [Ct], including object and
knowledge features [Ot;Kt], and the history feature of pre-
vious time step ht−1, we use a multi-layer cross-modal trans-
former to model the interaction between concepts, history,
and instruction. Each layer of this transformer consists of a
cross-attention layer and a self-attention layer. In the cross-
attention layer, the concatenation of concept and history fea-
tures [ht−1;Ct] serves as queries while instruction embed-
ding Î is fed to the transformer as keys and values. The
cross-attention between [ht−1;Ct] and Î is calculated as:

[h
′

t−1;C
′

t] = CrossAttention([ht−1;Ct], Ît) (3)
In general, transformers do not consider the structure of

the input features. To address this problem, we introduce
a knowledge graph-aware self-attention that slightly differs
from the standard attention mechanism in standard trans-
formers. In this case, the constructed knowledge graph struc-
ture is exploited to compute the attention as follows:

[ht;At,C] = KGS([h
′

t−1;C
′

t])

KGS(X) = Softmax(
XWq(XWk)

T

√
d

+M)XWv

M = AtWa + ba

(4)

where ht is the concept history of the current step, At,C is
concept self-attention scores, X is the node representation
[ht−1;Ct], A is the adjacency matrix, and Wa, ba are two
learnable parameters.

Concept Aggregation At time step t, Ckt is the concept
tokens at head k and Ak

t,C is the attention scores over the
concept tokens. Then, we average the score over all the at-
tention heads (K = 12) and apply a Softmax function to get
the overall concept attention weights as:

Ât,C = Softmax(Āt,C) = Softmax(
1

K

K

∑
k=1
A

k
t,C) (5)

Now, we perform a weighted sum over the input concept
tokens to retrieve the weighted raw concept features as:

C
′′

t = Ât,C Ct (6)

where C
′′

t is the aggregated concept features since we need
one concept feature per each viewpoint image.

Commonsense-based Decision-making Pipeline In-
spired by the baseline agent, we add a new commonsense-
based decision-making pipeline to predict a navigation
score sfC and an object score sO to enhance local action
reasoning. Afterward, these scores are used in the dynamic
fusion module of the baseline model to calculate the final
score and predict the next action.

Training and Inference We pre-train the baseline model
on single-step action prediction (SAP) (Krantz et al. 2020),
masked language modeling (MLM) (Devlin et al. 2019),
masked region classification (MRC) (Lu et al. 2019), and
object grounding (OG) (Lin, Li, and Yu 2021) tasks. How-
ever, our proposed model is only incorporated into policy
learning. Analogous to the baseline, in addition to SAP loss
LSAP and OG loss LOG, fine-tuning is guided by supervi-
sion provided by a pseudo-interactive demonstrator instead
of behavioral cloning. In this case, the agent selects the next
location with the overall shortest distance to the destination.
We also use the loss calculated through the commonsense-
based decision-making pipeline LCD.

For inference, an action is predicted by the agent in each
time step. If the agent exceeds the maximum number of ac-
tion steps or the predicted action is the stop action, it stops
at the current node. Otherwise, the agent moves to the pre-
dicted state. Eventually, when the agent stops at the final
location, the object with the highest score is selected as the
designated target object.

Experiments
Implementation Details
The ACK is not incorporated into pre-training tasks of
DUET (Chen et al. 2022) and we only fine-tune the pro-
posed model for 20k iterations on a single NVIDIA 3090
GPU. We use AdamW optimizer (Loshchilov and Hutter
2018) and the learning rate is 10−5 during the training. Sim-
ilar to the baseline, viewpoint images and object bounding
boxes, which have been provided by REVERIE, are encoded
by ViT-B/16 (Dosovitskiy et al. 2020) pre-trained on Ima-
geNet (Russakovsky et al. 2015). For the object detection
task, we use the Faster R-CNN model (Ren et al. 2015) pre-
trained on VG (Krishna et al. 2017). ConceptNet (Liu and
Singh 2004) is utilized as the external commonsense knowl-
edge base. To encode object and knowledge labels we em-
ploy the pre-trained CLIP model (Radford et al. 2021).

Dataset and Evaluation Metrics
REVERIE is a goal-oriented task with concise and high-
level instructions that integrates R2R navigation with refer-
ring expression grounding. The agent navigates through the
environment to identify the referred object that is not visible
in the first view. In this dataset, the average length of instruc-
tions is 18 words. Also, there are more than 4,000 target ob-
jects falling into 489 categories. We utilize the widely-used
and standard metrics for performance evaluation. trajectory
length (TL), oracle success rate (OSR), success rate (SR),
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Methods
Validation Unseen Test Unseen

Navigation Grounding Navigation Grounding
TL OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑ TL OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑

Human - - - - - - 21.18 86.83 81.51 53.66 77.84 51.44
Seq2Seq (Anderson et al. 2018) 11.07 8.07 4.20 2.84 2.16 1.63 10.89 6.88 3.99 3.09 2.00 1.58
SMNA (Ma et al. 2019) 9.07 11.28 8.15 6.44 4.54 3.61 9.23 8.39 5.80 4.53 3.10 2.39
RCM (Wang et al. 2019) 11.98 14.23 9.29 6.97 4.89 3.89 10.60 11.68 7.84 6.67 3.67 3.14
FAST-MATTN (Qi et al. 2020b) 45.28 28.20 14.40 7.19 7.84 4.67 39.05 30.63 19.88 11.61 11.28 6.08
CKR (Gao et al. 2021) 26.26 31.44 19.14 11.84 11.45 - 22.46 30.40 22.00 14.25 11.60 -
SIA (Lin, Li, and Yu 2021) 41.53 44.67 31.53 16.28 22.41 11.56 48.61 44.56 30.80 14.85 19.02 9.20
ORIST (Qi et al. 2021) 10.90 25.02 16.84 15.14 8.52 7.58 11.38 29.20 22.19 18.97 10.68 9.28
Airbert (Guhur et al. 2021) 18.71 34.51 27.89 21.88 18.23 14.18 17.91 34.20 30.28 23.61 16.83 13.28
RecBERT (Hong et al. 2021) 16.78 35.02 30.67 24.90 18.77 15.27 15.86 32.91 29.61 23.99 16.50 13.51
HOP (Qiao et al. 2022) 16.46 36.24 31.78 26.11 18.85 15.73 16.38 33.06 30.17 24.34 17.69 14.34
HAMT (Chen et al. 2021) 14.08 36.84 32.95 30.20 18.92 17.28 13.62 33.41 30.40 26.67 14.88 13.08
TD-STP (Zhao et al. 2022) - 39.48 34.88 27.32 21.16 16.56 - 40.26 35.89 27.51 19.88 15.40
AZHP (Gao et al. 2023) 22.32 53.65 48.31 36.63 34.00 25.79 21.84 55.31 51.57 35.85 32.25 22.44
KERM (Li et al. 2023) 22.47 53.65 49.02 34.83 33.97 24.14 18.38 57.44 52.26 37.46 32.69 23.15
DUET (Chen et al. 2022) 22.11 51.07 46.98 33.73 32.15 23.03 21.30 56.91 52.51 36.06 31.88 22.06
ACK (Ours) 22.86 52.77 47.49 34.44 32.66 23.92 20.65 59.01 53.97 37.89 32.77 23.15

Table 1: Comparison of the agent performance with state-of-the-art methods on REVERIE dataset in the single-run setting.

and success rate penalized by path length (SPL) indicate the
navigation performance. Moreover, remote grounding suc-
cess rate (RGS) and remote grounding success rate weighted
by path length (RGSPL) relate to object grounding task.

Comparison with State-of-the-Arts
Table 1 compares the single-run performance of ACK with
state-of-the-art methods on the REVERIE benchmark. Our
method achieves state-of-the-art performance and improves
all the metrics on test unseen split which demonstrates
the effectiveness and generalization ability of our proposed
method in unseen environments. According to Table 1, our
model remarkably outperforms DUET (Chen et al. 2022)
and consistently enhances all metrics on both validation un-
seen and test unseen splits. In particular, compared to the
baseline model on test unseen split, for navigation metrics,
OSR, SR, and SPL improved by 2.10%, 1.46%, and 1.83%,
respectively, and for grounding metrics, RGS and RGSPL
are improved by 0.89% and 1.09%, respectively. Note that
ACK is just incorporated into the fine-tuning stage of the
baseline. Hence, to have a fair comparison, we mentioned
the results of KERM (Li et al. 2023) while its pipeline is
only composed of the fine-tuning phase. We also evaluate
the performance of ACK on the R2R benchmark, however,
no significant improvement is achieved. R2R contains fine-
grained and detailed instructions which means the agent can
strictly follow instructions, and exploring the environment is
not essential. Thus, incorporating commonsense knowledge
as complementary data is not very helpful for this task.

Ablation Study
The contribution of each element is assessed through com-
prehensive experiments which are shown in Table 2 and Ta-
ble 3. The ACK is merely ablated on the validation unseen
split of REVERIE.

KGS CH CD OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑
× × × 51.01 45.92 33.77 31.30 23.31
✓ × × 51.36 46.18 33.81 32.04 23.33
✓ ✓ × 52.23 48.08 34.02 32.25 23.39
✓ ✓ ✓ 52.77 47.49 34.44 32.66 23.92

Table 2: Ablation of knowledge graph-aware self-attention,
concept history, and commonsense-based decision-making
pipeline on REVERIE validation unseen split. The perfor-
mance is continuously enhanced as the suggested modules
are gradually incorporated.

top-k OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑
0 51.49 46.72 33.91 32.42 23.56
10 52.77 47.49 34.44 32.66 23.92
20 51.66 47.25 33.98 32.49 23.67

Table 3: Ablation of utilizing top-k external knowledge in
the training stage on REVERIE validation unseen split.

Knowledge Graph-aware Self-attention. As mentioned in
Eq. 4 we ablate the transformer with and without knowledge
graph structure in Table 2. According to this table, if the
model is aware of the relationship between concepts, navi-
gation performance is improved.
Concept History. Table 2 ablates the impact of incorpo-
rating temporal information of concepts into the proposed
model. In REVERIE, it is essential to explore the environ-
ment more efficiently due to the lack of step-by-step in-
structions. Hence, As results in Table 2 suggest, holding a
memory of visited objects in the path alongside the extracted
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ACK (Ours) DUET (Baseline)

Top 10 Concepts

Grab the white basket on the floor next to the couch in the living room near the pool table

Instruction

Figure 4: Visualization example of navigation performance for comparing ACK and the baseline method. We can see that our
method predicts the correct action while DUET selects the wrong candidate direction. The concepts, including detected objects
and retrieved commonsense knowledge, with the highest weights are used as landmarks in the instruction. Therefore, taking
advantage of these concepts leads to visual representation enhancement and more accurate alignment between visual and textual
information. Best viewed in color
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Figure 5: Learned concept-to-concept correlation matrix

relevant commonsense knowledge helps the agent act more
properly in unseen environments.
Commonsense-base Decision-making. To show the effec-
tiveness of incorporating commonsense knowledge in the
decision-making process, we evaluate the ACK with and
without utilizing the new pipeline for action prediction. Ta-
ble 2 demonstrates that incorporating the commonsense-
based decision-making pipeline into the dynamic fusion
module of the baseline makes the agent learn from the
knowledge graph and improves local action reasoning.
External Knowledge Capacity. To show the impact of
commonsense knowledge capacity on agent performance,
we evaluate our method by different numbers of knowledge
as illustrated in Table 3. Note that, k = 0 means that we
only use the fully-connected scene graph constructed by vis-
ible objects in viewpoint images. Increasing the number of
knowledge, k = 10, results in better performance, however,
by continuously increasing the number of extracted knowl-
edge, k = 20, the performance of the agent is deteriorated. It
shows extra information may cause noise in the output.

Qualitative Analysis
To visualize our proposed method, we use an example in the
validation unseen split of REVERIE. According to the in-
struction, the target object is the white basket. Figure 4 illus-
trates an example where ACK selects the correct candidate
direction by detecting objects and retrieving commonsense
knowledge, while the baseline model makes the wrong deci-
sion without the supporting facts. In this figure, a heat map is
used to visualize the weight distribution over the top 10 con-
cepts of the selected viewpoint, including objects and knowl-
edge, after the knowledge graph-aware cross-modal encoder.
Regarding the instruction, couch and table are used as land-
marks. We can see that annotated concepts in red, e.g., living
room, couch, and table, can be leveraged as visual landmarks
as well as improve the alignment between textual and visual
data. Furthermore, the other retrieved concepts such as chair
and fireplace, with higher weights can also be useful for nav-
igation in this example. Also, the learned concept-to-concept
correlations for this example are visualized in Figure 5.

Conclusion
In this paper, we propose ACK to enhance visual repre-
sentation and local action prediction by incorporating com-
monsense knowledge into the REVERIE task as a spatio-
temporal knowledge graph. At first, a knowledge base is
constructed and then refined to output purified common-
sense information. We further design ACK to leverage the
refined commonsense knowledge, which consists of two
modules, the knowledge graph-aware cross-modal encoder,
and the concept aggregator. The absence of step-by-step
instructions in the REVERIE motivated us to hold a con-
cept history during the navigation for more efficient explo-
ration. The experimental results demonstrate the superior-
ity of ACK over the state-of-the-art methods on REVERIE
which shows that taking advantage of commonsense knowl-
edge is a promising direction for the REVERIE task. For
future work, we aim to exploit other external repositories as
well as different formats of commonsense knowledge.
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