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Abstract

Neural Radiance Fields (NeRF) have demonstrated impres-
sive potential in synthesizing novel views from dense input,
however, their effectiveness is challenged when dealing with
sparse input. Existing approaches that incorporate additional
depth or semantic supervision can alleviate this issue to an
extent. However, the process of supervision collection is not
only costly but also potentially inaccurate. In our work, we
introduce a novel model: the Collaborative Neural Radiance
Fields (ColNeRF) designed to work with sparse input. The
collaboration in ColNeRF includes the cooperation among
sparse input source images and the cooperation among the
output of the NeRF. Through this, we construct a novel col-
laborative module that aligns information from various views
and meanwhile imposes self-supervised constraints to en-
sure multi-view consistency in both geometry and appear-
ance. A Collaborative Cross-View Volume Integration mod-
ule (CCVI) is proposed to capture complex occlusions and
implicitly infer the spatial location of objects. Moreover, we
introduce self-supervision of target rays projected in multiple
directions to ensure geometric and color consistency in ad-
jacent regions. Benefiting from the collaboration at the input
and output ends, ColNeRF is capable of capturing richer and
more generalized scene representation, thereby facilitating
higher-quality results of the novel view synthesis. Our exten-
sive experimental results demonstrate that ColNeRF outper-
forms state-of-the-art sparse input generalizable NeRF meth-
ods. Furthermore, our approach exhibits superiority in fine-
tuning towards adapting to new scenes, achieving competitive
performance compared to per-scene optimized NeRF-based
methods while significantly reducing computational costs.
Our code is available at: https://github.com/eezkni/ColNeRF.

Introduction
Novel view synthesis aims to generate new view images of
a scene based on a set of source images (Zhu, Xie, and Fang
2018). A prominent technique in this field is the Neural Ra-
diance Field (NeRF) (Mildenhall et al. 2021), which learns
an implicit neural representation of the scene. NeRF takes a
5D vector as input, comprising a 3D location x = (x, y, z)
and a 2D viewing direction d = (θ, ϕ) for each point, and
estimates the corresponding radiance value (c, σ). The RGB
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Figure 1: Comparing previous approaches (a), (b) with
our method (c): Previous approaches heavily depend on a
learned neural radiance field (Fθ) for synthesis. However,
these approaches result in undesirable outcomes with limited
utilization of source view features and their interrelation-
ships. ColNeRF leverages collaboration at both input and
output ends, providing richer supervision for training Fθ.

value of a target pixel is then rendered by accumulating ra-
diance from N sampled points along the target ray.

The excellent performance of NeRF comes with a price,
i.e. with a large amount of high-quality input source images
used for training. However, acquiring a substantial num-
ber of RGB images along with their corresponding accurate
camera parameters necessitates a complex process of cali-
brating. In real-world scenarios, not only is this difficult to
execute, but the accuracy of the results obtained is question-
able. In scenarios where input images are limited, the novel
view results generated by NeRF are degraded due to the lack
of dense supervision. Moreover, the optimization of NeRF
is typically conducted independently for each scene, result-
ing in notable time inefficiency. Significant research efforts
have been put into addressing these issues. An intuitive strat-
egy to improve geometric accuracy of sparse input NeRF is
by supervising the generated density values σ for sampled
points. However, obtaining ground truth for all these points
is unfeasible. An alternative strategy involves incorporating
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auxiliary supervisory information during training, such as
depth for geometry (Deng et al. 2022; Wang et al. 2023)
or semantic cues for appearance (Jain, Tancik, and Abbeel
2021). However, these supervisory signals themselves might
be inaccurate, which limits the potential effectiveness of this
route. Our work also aims to enhance the generalization abil-
ity of NeRF, by training a model that can infer across differ-
ent scenes with sparse source views. This allows us to flex-
ibly handle situations where training data for certain scenes
are limited, while maintaining photo-realistic rendering re-
sults. Approaches like MVSNeRF (Chen et al. 2021) and
PixelNeRF (Yu et al. 2021) have demonstrated improved
generalization capabilities by pre-training their models on a
diverse multi-view image dataset with various scenes. Pixel-
NeRF integrates pixel features from source views to enhance
network capabilities, but inaccuracies arise due to inconsis-
tent correspondence between 2D pixels in source images and
the queried 3D location. Therefore, these methods inevitably
lead to imprecise modeling, they fail to maintain consistency
in geometry and appearance across various views, as they do
not properly consider the correlation and cooperation among
different viewpoints.

To address these challenges, we propose a generalizable
sparse input neural radiance field (ColNeRF), a novel ap-
proach that gets rid of the need for additional supervision,
constructing the precise and generalized model with the con-
sideration of the collaboration among input source views.
Specifically, this method involves the extraction of feature
volumes from source images using a pre-trained encoder,
followed by the application of cross-view volume fusion
to adaptively integrate these features. The exact spatial lo-
cations of relevant patches can be determined by match-
ing and reprojecting them into 3D space using camera pa-
rameters. This spatial transformation is achieved implic-
itly through an attention mechanism, serving as a trainable
aggregation function that selectively emphasizes important
features within source views (Ni et al. 2020b). This mecha-
nism also corrects features of occluded regions by incorpo-
rating information from corresponding parts in alternative
viewpoints. Furthermore, the collaboration also pays atten-
tion to the output end, where the constraint is enforced in
both geometry and appearance reconstruction. For geomet-
ric regularization, we adopt a self-supervised approach (Ni
et al. 2020a) that aims to minimize discrepancies between
predicted depths of adjacent target rays. For appearance reg-
ularization, we leverage the insight that the most relevant
regions within the source views for each target ray should
ideally align with their corresponding epipolar lines. It is no-
table that we train a single model with potent generalization
capabilities applicable to all scenes. In summary, our main
contributions can be summarized as follows:

• We propose ColNeRF to integrate multi-view compen-
sation and consistency into NeRF at input/output ends,
making ColNeRF outperform other generalizable NeRF
methods with sparse input, and comparable to scene-
specific NeRF approaches with reduced complexity.

• We introduce self-supervised ray regularization to effec-
tively enforce multi-view consistency for effective model

guidance, which leads to more accurate geometry and ap-
pearance reconstruction.

• ColNeRF achieves superior performance over state-of-
the-art generalizable NeRF methods in sparse scenarios
and offers efficient adaptability to new scenes via fine-
tuning, showcasing comparable results to scene-specific
NeRF approaches with reduced computational burden.

Related Works
Preliminary of NeRF. NeRF generated novel view im-
ages through an implicit 5D neural radiation field construc-
tion process denoted as F(γ(x), γ(d)) = (c, σ), where
γ(·) signifies the position encoding procedure (Mildenhall
et al. 2021), x = (x, y, z) denotes a 3D locationand and
d = (θ, ϕ) denotes a 2D viewing direction. The output c
represents RGB values and σ denotes volume density, which
can be understood as the probability of a ray terminating at
a given particle. The volumetric radiation field produces 2D
images via pixel-wise rendering:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt, (1)

where T (t) = exp(−
∫ t

tn
σ(r(s))ds), representing accumu-

lated transmittance indicating ray traversal probability from
tn to t without encountering particles. Here, c(r(t), d) and
σ(r(t)) denote color and volume density at the sampled
point along ray r at distance t. The radiance field optimiza-
tion involves minimizing mean squared error between ren-
dered and ground truth colors:

Lrec =
∑

r∈R(P)

∥∥∥Ĉ(r)− C(r)
∥∥∥2
2
, (2)

where R(P) is the set of all camera rays of target pose P.

Sparse Input NeRF. Researchers that pursue accurate re-
constructed results with a reduced number of input views
(i.e. sparse input) have garnered significant attention (Chen
et al. 2023a; Xu, Zhong, and Neumann 2022). The chal-
lenge of sparse input 3D reconstruction arises from the
complex task of maintaining consistency in both geomet-
ric shape and appearance. Historically, approaches predom-
inantly relied on additional depth or semantics-based super-
visory cues to infer occluded regions. A pioneering effort by
PixelNeRF first integrated pixel features of source images
into vanilla NeRF that only use position information. Ad-
ditionally, IBRNet (Wang et al. 2021), SRF (Chibane et al.
2021) and MatchNeRF (Chen et al. 2023b) contributed to
scene reconstruction through the feature alignment of pro-
jected points from diverse perspectives. Besides, researchers
have also explored novel forms of explicit 3D represen-
tation established from sparse images (Fang et al. 2023),
such as voxel mesh (Maturana and Scherer 2015; Sun, Sun,
and Chen 2022; Huang et al. 2019; Deng et al. 2021),
multiplane images (MPI) (Li et al. 2021; Fontaine et al.
2022), or layered depth images (LDI) (Tulsiani, Tucker, and
Snavely 2018; Shih et al. 2020). To address the challenge
of inaccurate geometric information under sparse input set-
tings, regularization methods targeting volume density have
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Figure 2: The architecture of proposed ColNeRF. (a): The overview pipeline. (b) and (c): Collaborative Cross-View Volume
Integration (CCVI) and Ray Regularization, i.e. collaborative input fusion and output constraint. ColNeRF consists of four key
steps: 1) Feature volumes are extracted and processed with Anchor Selection (anc: anchor; aux: auxiliary) and Collaborative
Cross-View Volume Integration (CCVI) to yield affined feature volumes Ff . 2) Points are sampled and projected (π) onto Ff

to derive local features fp. fp are subsequently averaged (ρ) and fed into MLP Fθ, alongside (x, d), for predicting radiance
values (c, σ). 3) Ray Regularization is employed for predicted output alone for each target ray, encompassing both geometric
and appearance aspects. 4) Volume rendering produces final RGB values for pixels in novel views.

been introduced (Somraj and Soundararajan 2023; Somraj,
Karanayil, and Soundararajan 2023). For instance, Lom-
bardi et al. (Lombardi et al. 2019) enforced zero volume
density for the near camera plane using masks, while In-
foNeRF (Kim, Seo, and Han 2022) narrows the distribution
of σ within the front and back halves of the same ray, which
is more suitable for cases where objects are located in the
middle of a scene. RegNeRF (Niemeyer et al. 2022) applies
depth constraints on sampled image patches, which is evi-
dently unsuitable for a cross-scene training strategy. An in-
novative approach taken by FreeNeRF (Yang, Pavone, and
Wang 2023) involved the regularization of position encod-
ing frequency for 5D inputs, yielding noteworthy outcomes.

Collaborative Neural Radiance Fields
Motivation
Given a limited set of source images along with the corre-
sponding camera extrinsics {(Ii ∈ RH×W×3,Pi ∈ R3×4)},
we aim to address the following two issues:

• Limited Effectiveness. When the input is sparse, incor-
porating auxiliary supervision such as depth or seman-
tic cues can improve NeRF’s performance to an extent.
However, these guidance might be not reliable and diffi-

cult to obtain, which reduces the effectiveness.
• Limited Generalization. As most methods take the one-

scene-one-model paradigm. Although pre-training on di-
verse scenes can improves models’ generalization ability,
previous works have not fully consider the collaborative
relationship of different views systematically, which hin-
ders performance improvement.

Our core goal is to develop a collaborative NeRF model with
the capacity for cross-scene generalization and rendering
high-quality results with multi-view consistency when tak-
ing sparse input, without utilizing any auxiliary supervi-
sion. In the following, we introduce the overall framework
of our approach and then detailed our two contributions.

Overview
Our system pipeline is depicted in Fig. 2. At first, we use
a pre-trained encoder ResNet34 (He et al. 2016) to extract
feature volumes Fv ∈ RHv× Wv×d from the source views.
Hv , Wv , and d respectively represent the height, width, and
the channel dimension. Subsequently, we employ a collabo-
rative cross-view attention mechanism to integrate these fea-
ture volumes and obtain fused results Ff of N source views.

The next step involves sampling Nr target rays for train-
ing. To train a generalized model applicable across a variety
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Method Setting PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

DietNeRF (ICCV 2021)
Trained on DTU

and
Optimized per Scene

10.01 18.70 22.16 0.354 0.668 0.740 0.574 0.336 0.277 0.383 0.149 0.098
DS-NeRF (CVPR 2022) 16.50 20.50 - 0.540 0.730 - 0.480 0.310 - 0.194 0.113 -
InfoNeRF (CVPR 2022) 11.23 - - 0.445 - - 0.543 - - 0.312 - -
RegNeRF (CVPR 2022) 15.33 19.10 22.30 0.621 0.757 0.823 0.341 0.233 0.184 0.189 0.118 0.079
FreeNeRF (CVPR 2023) 18.02 22.39 24.20 0.680 0.779 0.833 0.318 0.240 0.187 0.146 0.094 0.068

SRF (CVPR 2021) Trained on DTU
and

Not Optimized per Scene

15.84 17.77 18.56 0.532 0.616 0.652 0.482 0.401 0.359 0.207 0.162 0.145
MVSNeRF (ICCV 2021) 16.33 18.26 20.32 0.602 0.695 0.735 0.385 0.321 0.280 0.184 0.146 0.114
PixelNeRF (CVPR 2021) 18.74 21.02 22.23 0.618 0.684 0.714 0.401 0.340 0.323 0.142 0.119 0.105
ColNeRF (Ours) 19.55 22.94 23.93 0.716 0.797 0.824 0.362 0.317 0.298 0.129 0.090 0.079

Table 1: Quantitative comparison on DTU. Our model demonstrates superior performance in sparse input synthesizing com-
pared to most existing methods. Our direct baseline is PixelNeRF. For ease of identification, the entries with the best and
second-best performances are respectively highlighted in bold and underscored with an underline.

Method Setting PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

DietNeRF (ICCV 2021) Trained on LLFF
and

Optimized per Scene

14.94 21.75 24.28 0.370 0.717 0.801 0.496 0.248 0.183 0.240 0.105 0.073
RegNeRF (CVPR 2022) 19.08 23.10 24.86 0.587 0.760 0.820 0.336 0.206 0.161 0.149 0.086 0.067
FreeNeRF (CVPR 2023) 19.63 23.73 25.13 0.612 0.779 0.827 0.308 0.195 0.160 0.134 0.075 0.064

SRF ft (CVPR 2021) Trained on DTU
and

Not Optimized per Scene

17.07 16.75 17.39 0.436 0.438 0.465 0.529 0.521 0.503 0.203 0.207 0.193
MVSNeRF ft (ICCV 2021) 17.88 19.99 20.47 0.584 0.660 0.695 0.327 0.264 0.244 0.157 0.122 0.111
PixelNeRF ft (CVPR 2021) 16.17 17.03 18.92 0.438 0.473 0.535 0.512 0.477 0.430 0.217 0.196 0.163
ColNeRF ft (Ours) 20.97 23.32 23.52 0.587 0.747 0.762 0.447 0.295 0.280 0.132 0.088 0.084

Table 2: Quantitative comparison on LLFF. We generalize the pre-trained model to LLFF dataset and conduct 15K, 10K, and 5K
fine-tuning iterations for each scene with 3, 6, and 9 views (all fewer than Pixel-NeRF’s default 20K fine-tune steps). Although
methods like FreeNeRF may produce better results, they train separate models on each scene for 250K iterations. In contrast,
our method trains a single model for all scenes and achieves comparable results with much less fine-tuning cost.

of scenes, we adopt a strategy that randomly selects scene
and emits rays into it with a scattered pattern. Subsequently,
we sample Np points on each target ray. For these sampled
points, their camera parameters enable us to project them
onto each source image. We then extract their correspond-
ing pixel features fp from the affined feature volume Ff of
each view using bilinear interpolation, the local feature of
3D point x in the i-th source view is obtained as follows:

fip = Interpolate(Fi
f (Π(x)) ∈ Rd. (3)

The local pixel features fp are then input into the Neural
Radiance Field Fθ along with the coordinates x and view
direction d to yield the color c and density σ:

F(γ(x), γ(d), ρ({fip}Ni=1)) = (c, σ), (4)
where ρ denotes the averaging operation, and N denotes the
number of source views.

Finally, as illustrated in Eqn. (1), we employ principles
from classical volume rendering to aggregate the final RGB
values C(r). The training loss function of our model includes
three parts. One is the reconstruction loss, which is identical
to that in Eqn. (2). The remaining two components originate
from the ray regularization module:

Ltotal = Lrec + λ1Lgeo + λ2Lapp. (5)
The loss weights λ1 and λ2 are set to 1e-4 and 2e-4 respec-
tively throughout our experiments.

Collaborative Cross-View Volume Integration
Before being fed into the MLP, we enrich sparse information
by fusing multi-view source images, which helps identify
corresponding regions cross different views. These correla-
tions are used to correct potential biases in source images.

This process enables us to generate N affined feature
volumes that capture information from other source views.
Each of these volumes can be denoted as Fi

f ∈ RHv× Wv×d:

Fi
f = CCVI(Fi

anc,F
i
aux), (6)

Fi
anc represents current anchor feature volume, each source

view takes turns as the anchor: Fi
anc = Fi

v , while Fi
aux rep-

resents the summation of other auxiliary feature volumes:

Fi
aux =

i−1∑
j=1

Fj
v +

N∑
j=i+1

Fj
v. (7)

The transformer block in CCVI is computed as:

F̂i
anc = AVGI(Fi

anc, F̂
i
aux) + Fi

anc,

Fi
f = FFN(F̂i

anc) + F̂i
anc,

F̂i
aux = Conv([Fi

anc,F
i
aux]),

(8)

AVGI(·) denotes Auxiliary Volume Guided Integration,
FFN(·) denotes a Feed-Forward Network, Conv(·) denotes
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PixelNeRF Ours Ground Truth PixelNeRF Ours Ground Truth

(a) 3 Input View

(b) 6 Input View

Figure 3: Qualitative comparison on DTU between PixelNeRF and ColNeRF, we present results under 3 and 6 input views
setting. PixelNeRF’s direct use of the average pixel feature from each source view often results in blurriness or shape distortion.

a convolutional layer for dimension reduction. F̂i
aux are used

as auxiliary volume for current anchor feature volume Fi
anc:

AVGI(Fanc, F̂aux) = Softmax

(
QKT

√
dk

)
V, (9)

where
Q = WQ(F̂aux),

K = WK(F̂aux),

V = WV (Fanc),

WQ,WK and WV are learnable transformations, dk is the
feature channel dimension of Q and K. Each view is pro-
cessed individually to obtain fused feature volumes{Fi

f}Ni=1.
We believe this process also implicitly ensures geomet-

ric consistency across multiple views. We chose attention
mechanism as the method to integrate features, unlike pre-
vious approaches that focus on pixel-level features from dif-
ferent perspectives (T et al. 2023), our strategy integrates at
the patch level.

Ray Regularization
Geometry Regularization. Our goal is to constrain the
prediction of each points’ density and improve the model’s
resilience to variations in view direction. Unlike InfoNeRF
and RegNeRF, we opted for a more versatile ray regulariza-
tion approach that better suits cross-scene training strategies.
We employ a collaborative mutual-supervision for neighbor-
ing rays, pairing Npairs of the closest rays together and min-
imize the L1 Loss of the predicted depth for each pairs:

Lgeo =

Npairs∑
i=1

M(ri)⊙ (D(ri)−D(r̂i)),

D(ri) =

∫ tf

tn

T (t)σ(ri(t))tdt,

M(ri) =

{
0 if Q(ri) < τ or Q(r̂i) < τ
1 otherwise

,

(10)

ri and r̂i refer to the two neighboring target rays that are
paired together. D(·) denotes the predicted depth of sam-
pled rays. We employ a mask to exclude certain adjacent

ray pairs that not need to be regularized. For instance, a
pair that one ray hits the edge of an object while its cor-
responding ray does not hit anything. Applying geomet-
ric constraints to such pairs may introduce foggy artifacts.
Q(·) =

∑N
i=1 1− exp(−σiδi), represents the cumulative

ray density, here i refers to the i-th sampled point on a ray.
We set τ = 0.1 in our experiments.

Appearance Regularization. Epipolar plane is a plane
determined in space by a spatial point and the optical cen-
ters of two distinct cameras, while the epipolar line arises
from the intersection of the epipolar plane and the imaging
plane. The RGB labels for each target ray are obtained from
the color information along its corresponding epipolar lines
on source views. Similar to the extraction of local features,
epipolar lines are grabbed using projection and interpola-
tion, their RGB are set as color label for target rays. How-
ever, due to occlusion, directly using L1 loss for constraints
can be overly restrictive. To address this, we minimize the
KL-divergence between the color distributions Pc of target
rays and their corresponding color labels:

Lapp =

Nr∑
i=1

DKL (Pc(ri)||Pc(r̂i))

=

Nr∑
i=1

Np∑
j=1

pc(M
′(c(ri,j)))log

pc(M
′(c(ri,j)))

pc(M′(c(r̂i,j)))
.

(11)

Here, r̂i represents the target ray emitted during training,
while ri signifies the ”pseudo-label” ray derived from aver-
aging the color of target ray’s corresponding epipolar lines
across multiple source views. pc(r̂i,j) denotes the probabil-
ity of j-th point on i-th target ray. A mask is employed to
exclude inaccurately projected points from the computation:

M′(·) =
{

false if ε(ri,j) > εmax

true otherwise
, (12)

ε(ri,j) represents the pixel coordinate in the source image
obtained by homography transformation from the point ri,j
on the target ray. The term εmax refers to the maximum pixel
coordinate in the source image.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4329



RegNeRF FreeNeRF PixelNeRF ft Ours Ground Truth

Figure 4: Qualitative results on LLFF under 3 input views setting. FreeNeRF is among the best-performing methods for per-
scene optimization, but it exhibits noticeable noise issues due to the inaccurate encoding of high-frequency information. Pixel-
NeRF’s results suffer from apparent blurriness when compared to our method.

NeRF DS-NeRF Ours

Figure 5: Qualitative results on fern under 5 input views
between NeRF, DS-NeRF and ColNeRF (ours). Rendered
depth maps reveal that our model achieves more accurate
shapes than DS-NeRF, which relies on explicit depth labels.

Experiments
Experimental Setups
Datasets. We evaluate our method on two datasets:
DTU (Jensen et al. 2014) and LLFF (Mildenhall et al. 2019).
We train on DTU and test the generalization capabilities of
the pre-trained model on LLFF. For DTU, we follow the
evaluation protocol established by PixelNeRF. For LLFF, we
follow the evaluation standards set by NeRF and use it as
an out-of-distribution test for conditional models. To evalu-
ate our method’s performance with sparse input, we conduct
experiments with 3-view, 6-view, and 9-view configurations.

Metrics. We report the mean of PSNR, SSIM (Wang et al.
2004), and the LPIPS perceptual metric (Zhang et al. 2018).
To ease comparison, we also report the geometric mean of
MSE = 10−PSNR/10,

√
1− SSIM, and LPIPS.

Training Details. In line with PixelNeRF, we sample 128
training rays per iteration. To boost controllability, we ran-
domly emit 112 rays and designate the final 16 of them
as reference rays. The remaining 16 rays of all 128 rays

are sampled from regions adjacent to reference rays. These
freshly sampled rays share the same camera parameters and
origin with the reference rays, but exhibit an offset of up to
7 pixels on the pixel plane. These last 32 rays are used as
paired adjacent rays for geometry ray regularization. For the
training of 3-view and 6-view, we set the batch size (BS) to
3, and for the 9-view training, BS is set to 2. We maintain a
fixed learning rate of 1e-4 throughout our training process.

Comparing Baselines. To facilitate comparison, we select
several state-of-the-art (SOTA) methods that effectively ad-
dress the challenge of limited input. These include Pixel-
NeRF, SRF, MVSNeRF, DietNeRF, DS-NeRF, InfoNeRF,
RegNeRF, and FreeNeRF. The first three, akin to our ap-
proach, are pre-trained across various scenes, while the re-
maining five are optimized for specific scenarios. Given the
similarities in the compared methods, datasets, and experi-
ment settings, we directly use the reported results in FreeN-
eRF and RegNeRF as the basis for our comparison with
other methods. The results of DS-NeRF and InfoNeRF were
taken from their published papers.

Quantitative Comparisons with SOTA Methods
Comparisons on DTU. Tab. 1 presents the quantitative re-
sults on the DTU dataset. Our model outperforms in most
experimental settings, with the exception of the 9-view con-
figuration, where it slightly lags behind FreeNeRF.

Comparisons on LLFF. To validate the model’s gener-
alization performance, we test our pre-trained model on
the LLFF dataset. Following RegNeRF’s comparison setup,
we conduct extra fine-tuning iterations per scene for each
method. The quantitative results of our experiments are pre-
sented in Tab. 2. While methods like FreeNeRF, which
train separate models for each scene, may yield superior re-
sults, it’s important to consider the overall performance. The
LLFF dataset consists of 8 scenes, and FreeNeRF requires
retraining for each scene over 250K iterations. In contrast,
our model achieves comparable results with a total of no
more than 15K fine-tuning iterations. This underscores our
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Ours-3V                PixelNeRF-4V               NeRF-7V

51%

35%

Figure 6: Data Efficiency. In sparse settings, our method re-
quires an average of 51% fewer images than NeRF and an
average of 35% fewer images than PixelNeRF to achieve a
similar test set performance on DTU.

model’s ability to produce realistic results across different
scenes with significantly less computational effort.

Qualitative Comparisons with SOTA Methods
Comparisons on DTU. Fig. 3 provides a qualitative com-
parison between our direct baseline PixelNeRF and our Col-
NeRF. PixelNeRF exhibits blurriness and shape distortion
as it directly feeds the mean of pixel features from all source
views into the network, which can introduce negative biases,
especially when the projection point falls into occluded re-
gions. In contrast, our model rectifies these errors and im-
plicitly reconstructs the object’s geometric shape, leading to
improved performance.

Comparisons on LLFF. Fig. 4 presents a comparison of
LLFF of our model with FreeNeRF, RegNeRF, and our base-
line PixelNeRF. The results from the FreeNeRF and Reg-
NeRF methods are noticeably marred by significant noise,
while the PixelNeRF method exhibits a substantial blur-
ring issue. In contrast, our method guarantees accurate and
smooth geometric depiction while delivering high-quality
rendered images. Further strengthening our claims, Fig. 5
illustrates our model’s precise geometric control in compar-
ison to DS-NeRF, another method that incorporates explicit
depth supervision. DS-NeRF employs depth labels gener-
ated with COLMAP1 as constraints for rendering. It can be
seen that the inaccuracy of these labels distorts DS-NeRF’s
geometry understanding. Conversely, our model achieves
superior geometric reconstruction and multi-view consis-
tency without additional supervision.

Data Efficiency
Our model is designed for novel view synthesis under sparse
input setting, to assess the data efficiency of our method, we
perform a comparative analysis with NeRF and PixelNeRF

1A universal motion structure (SfM) and multi-view stereo
(MVS) pipeline, offering convenient tools for 3D reconstruction.

VI Lgeo Lapp Info Reg PSNR↑ SSIM ↑ LPIPS ↓

0 18.74 0.618 0.401
1 ✓ 19.21 0.698 0.384
2 ✓ ✓ 19.39 0.714 0.375
3 ✓ ✓ 19.48 0.710 0.373

4 ✓ ✓ 19.32 0.707 0.380
5 ✓ ✓ 18.11 0.634 0.475

Full ✓ ✓ ✓ 19.55 0.716 0.362

Table 3: Ablative results of our model designs on 3-view
input DTU. VI denotes the cross-view volume integration
module. Info and Reg respectively denote the Ray Regular-
ization employed in InfoNeRF and RegNeRF.

using different numbers of input views, depicted in Fig. 6.
For sparse inputs, our method necessitates up to 51% fewer
input views to attain an equivalent mean PSNR on the test set
as that of NeRF, with the disparity being more noticeable for
fewer input views. Furthermore, our method delivers perfor-
mance on par with PixelNeRF, averaging a 35% reduction in
the required input views to yield comparable results.

Ablation Study

We evaluate the impact of our design choices on the 3-view
input DTU dataset in Tab. 3. Adding our collaborative cross-
view volume integration (CCVI) results in drastically bet-
ter performance on all metrics. The Ray Regularization was
designed to remove potential artifacts in the rendered re-
sults. We observe a slight improvement in the results after
adding regularization. ”To further demonstrate the effective-
ness, we also compared the impact of different ray regular-
ization methods from InfoNeRF, RegNeRF and ColNeRF
on the same backbone (ColNeRF w/o RayReg). It can be
observed that ColNeRF still outperforms the others.

Limitations and Conclusion

ColNeRF is designed to have a lightweight network struc-
ture. Based on this consideration, ColNeRF shoots fewer
sampling points per ray and adopts a small dimension of
the feature volume as well as average pooling. These factors
also lead to some downsides, i.e. degrading the reconstruc-
tion accuracy with locally smooth renderings. To mitigate
these issues, future work can pay attention to various strate-
gies, such as incorporating multi-scale feature volume rep-
resentations, increasing the utilization of sampling points,
or applying frequency regularization constraints. To con-
clude, we have introduced ColNeRF, a method capable of
achieving photorealistic renderings without using any exter-
nal data. We have effectively integrated collaborative com-
pensation and constraint into NeRF which leads to accurate
3D modeling with color and geometric consistency. This
new route provides strong supervision for model training
even in the absence of ground truth. Future research may
explore faster and more detailed NeRF models.
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