
Wavelet-Driven Spatiotemporal Predictive Learning:
Bridging Frequency and Time Variations

Xuesong Nie1, Yunfeng Yan1*, Siyuan Li1,2, Cheng Tan1,2, Xi Chen3, Haoyuan Jin1,
Zhihang Zhu1, Stan Z. Li2, Donglian Qi1

1Zhejiang University, Zhejiang, China
2School of Engineering, Westlake University, Zhejiang, China

3Department of Computer Science, The University of Hong Kong, Hong Kong, China
xuesongnie@zju.edu.cn

Abstract

Spatiotemporal predictive learning is a paradigm that em-
powers models to learn spatial and temporal patterns by pre-
dicting future frames from past frames in an unsupervised
manner. This method typically uses recurrent units to capture
long-term dependencies, but these units often come with high
computational costs and limited performance in real-world
scenes. This paper presents an innovative Wavelet-based Spa-
tioTemporal (WaST) framework, which extracts and adap-
tively controls both low and high-frequency components at
image and feature levels via 3D discrete wavelet transform
for faster processing while maintaining high-quality pre-
dictions. We propose a Time-Frequency Aware Translator
uniquely crafted to efficiently learn short- and long-range
spatiotemporal information by individually modeling spa-
tial frequency and temporal variations. Meanwhile, we de-
sign a wavelet-domain High-Frequency Focal Loss that ef-
fectively supervises high-frequency variations. Extensive ex-
periments across various real-world scenarios, such as driv-
ing scene prediction, traffic flow prediction, human motion
capture, and weather forecasting, demonstrate that our pro-
posed WaST achieves state-of-the-art performance over vari-
ous spatiotemporal prediction methods. Our code is available
at https://github.com/xuesongnie/WaST.

Introduction
Spatiotemporal predictive learning has recently seen signifi-
cant progress. Central to data-driven spatiotemporal predic-
tive learning is the generation of future frames based on
historical frames, with applications including traffic flow
prediction (Fang et al. 2019), weather forecasting (Reich-
stein et al. 2019), physical scene comprehension (Xu et al.
2019), early activity recognition (Wang et al. 2018b), and
vision-based predictive control (Gupta et al. 2022). Lever-
aging these massive unlabeled data, these models can self-
supervised uncover complex spatial and temporal depen-
dencies, forecasting future events from past data. With the
abundance of spatiotemporal data, unsupervised pretraining
strategies using these techniques show promise for enhanc-
ing universal representation learning across various visual
tasks (Tan et al. 2023b; Li et al. 2023).
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Spatiotemporal predictive learning is commonly mod-
eled with two methods: recurrent-based and recurrent-free
frameworks shown in Figure 1. Many mainstream recurrent-
based methods (Chang et al. 2021; Wang et al. 2022) sug-
gested leveraging models with stacked recurrent units to
capture the temporal dependencies. Inspired by the success
of long short-term memory (LSTM) networks (Hochreiter
et al. 1997) in sequence modeling, ConvLSTM (Shi et al.
2015), PredRNN (Wang et al. 2017), PredRNN++ (Wang
et al. 2018a), and MIM (Wang et al. 2019) propose vari-
ous variants to improve the performance of vanilla LSTM,
called MetaLSTM, such as ConvLSTM, ST-LSTM, Causal-
LSTM, and MIM-LSTM. Thus we abstract the general
framework of recurrent-based models shown in Figure 1,
which consists of two main parts: (i) various LSTM vari-
ants called MetaLSTM. (ii) the information flow modes be-
tween different recurrent units. Despite the advantages of
the recurrent-based framework in long-term prediction, the
heavy computational effort limits its further application. Re-
cently, recurrent-free methods (Tan et al. 2022, 2023a) with
the advantage of parallelization has been proposed for spa-
tiotemporal learning. As shown in Figure 1(a), we demon-
strated the recurrent-free framework representing various
variants of SimVP (Gao et al. 2022), which also consists of
two main parts: (i) spatial 2D Encoder-Decoder. (ii) latent
feature Spatio-Temporal Translator. Despite greater com-
putational efficiency, the above methods have performance
gaps in real-world scenarios due to single-scale architecture,
2D operations, and irrobust spatiotemporal translators.

In this work, we present a novel Wavelet-based Spa-
tioTemporal (WaST) prediction scheme to tackle exist-
ing performance gaps. Our solution relies on multi-level
3D Discrete Wavelet Transform (3D-DWT), which decom-
poses data into low- and high-frequency wavelet subbands.
We introduce 3D-Wavelet Embedding and Reconstruction
modules to embed the wavelet prior and perform detail-
oriented reconstruction respectively. To learn intricate fre-
quency features and temporal dynamics, we propose a Time-
Frequency Aware Translator (TF-Aware Translator) real-
ized via frequency-mixer and temporal-mixer to extract and
adaptively control both low- and high-frequency compo-
nents in multi-level wavelet space. We argue that tradi-
tional mean square error loss makes it hard to focus on de-
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Figure 1: Two typical spatiotemporal predictive learning frameworks. The recurrent-based methods extract spatiotemporal
dependencies through recurrent units, notably MetaLSTM, and the information flows between these units. The recurrent-free
such as (a) SimVP variants extract spatiotemporal features through elaborate Spatio-Temporal Translators in latent space. In
contrast, (b) our proposed WaST extracts and adaptively controls both low and high-frequency components via time-frequency
aware translators in multi-level wavelet space.

tailed features, hence we introduce a wavelet-domain High-
Frequency Focal Loss (HFFL) that also captures rapid alter-
ations between consecutive and static frames in the wavelet
domain. The above innovations have enabled our proposed
method to achieve state-of-the-art performance in diverse
real-world dynamic scenarios. We outline our key contribu-
tions as follows:
• A pioneering Wavelet-based SpatioTemporal (WaST)

predictive framework is proposed that enhances com-
putational efficiency while ensuring high-quality predic-
tions through high-frequency components.

• A Time-Frequency Aware Translator (TF-Aware Transla-
tor) is designed to efficiently learn real-world spatiotem-
poral dependencies by separately modeling spatial fre-
quency and temporal variations.

• We propose a wavelet-domain High-Frequency Focal
Loss (HFFL) to supervise high-frequency variations.
Moreover, WaST provides state-of-the-art performance
on various scenario datasets while being an order of mag-
nitude faster than recurrent-based methods.

Related Work
Spatiotemporal Predictive Learning
The advances in recurrent-based models have significantly
deepened our insight into spatiotemporal predictive learn-
ing. The pioneering work ConvLSTM (Shi et al. 2015) inte-
grates convolutional networks with LSTM. PredRNN (Wang

et al. 2017) and PredRNN++ (Wang et al. 2018a) utilized
spatiotemporal LSTM (ST-LSTM) and gradient highway
units to capture temporal dependencies while mitigating the
gradient vanishing. MIM (Wang et al. 2019) using differ-
ential information between hidden states for better non-
stationarity handling. E3D-LSTM (Wang et al. 2018b) in-
corporating 3D convolutions into LSTM. PhyDNet (Guen
et al. 2020) disentangled PDE dynamics from unknown
complementary information with a recurrent physical unit.
MAU (Chang et al. 2021) designs a motion-aware unit to
capture motion information. PredRNNv2 (Wang et al. 2022)
employed a curriculum learning strategy and memory de-
coupling loss for enhanced performance.

In the recent past, recurrent-free models such as TAT (Nie
et al. 2023), SimVP (Gao et al. 2022), TAU (Tan et al.
2023a), and DMVFN (Hu et al. 2023) have made advance-
ments with triplet attention, inception module, temporal at-
tention, and dynamic multi-scale voxel flow. Although these
recurrent-free models have been developed, most works fail
to consider the time-frequency dependence in real-world dy-
namic scenarios, leading to the missing of prediction details.
We address these issues with the 3D wavelet framework and
time-frequency aware translator.

Wavelet Transform in Computer Vision
Wavelet transform, essential for time-frequency analysis,
bolsters performance in CNN-based visual tasks. (Oyallon
et al. 2017) incorporates wavelet scattering networks into
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ResNet (He et al. 2016). (Bae, et al. 2017) propose a wavelet
transform to simplify topological structures of input or label
manifolds for image restoration. DWSR (Guo et al. 2017)
utilized low-resolution wavelet subbands for image super-
resolution. WaveCNets (Li et al. 2020) and MWCNN (Liu
et al. 2018) replaced traditional convolution operations with
2D wavelet transforms. Wave-ViT (Yao et al. 2022) incorpo-
rated 2D wavelet transform for better self-attention learning.
Despite these advancements, the potential of wavelet trans-
forms in spatiotemporal prediction remains under-explored.
Therefore, we present a novel 3D wavelet-based scheme for
better spatiotemporal learning.

Preliminaries
Problem Definition
The spatiotemporal predictive learning aims to model given
past frames Xin to predict future frames X̂out. We repre-
sent the spatiotemporal sequences as a four-dimensional
tensor, i.e., Xt:T

in ∈ RC×T×H×W and XT+1:T+T ′

out ∈
RC×T ′×H×W , where C, T , H and W denote channel,
temporal or frames, height and width, respectively. The
model with learnable parameters θ learns a mapping Fθ :

Xt:T
in 7→ XT+1:T+T ′

out by exploring spatiotemporal depen-
dencies. Concretely, we use the stochastic gradient descent
algorithm to learn the mapping Fθ and find a set of parame-
ters θ⋆, which minimize the difference between the predicted
future frames and the ground-truth frames, the optimal pa-
rameters θ⋆ are:

θ⋆ = argmin
θ

L
(
Fθ

(
Xt:T

in

)
, XT+1:T+T ′

out

)
, (1)

where L denotes loss function. In this paper, we take video
prediction as a typical experimental domain, where the ob-
served data are RGB images with three channels. In other
domains, the observed data are multi-channel tensors.

Wavelet Transform
Wavelet Transform is a traditional technique that can sep-
arate low-frequency approximation and high-frequency de-
tails from the original data. In general, the wavelet trans-
form process input signal involves two types of operations:
Discrete Wavelet Transform (DWT) and Inverse Discrete
Wavelet Transform (IDWT).

Opting for the Haar wavelet due to its simplicity, we uti-
lize FL = 1√

2
[ 1 1 1 ] and FH = 1√

2
[ −1 1 1 ] as

3D-DWT low-pass and high-pass filters, respectively. Em-
ploying FL and FH to construct eight kernels with stride
2, FLLL, FLLH , FLHL, FLHH , FHLL, FHLH , FHHL and
FHHH . This framework enables the decomposition of input
spatiotemporal sequences into eight downsampled subbands
XLLL, XLLH , XLHL, XLHH , XHLL, XHLH , XHHL and
XHHH . Multi-level 3D-DWT further refines these subband
components in a recurrent manner. To introduce wavelet
technology into spatiotemporal predictive learning, we pro-
pose a 3D wavelet framework in Sec. and wavelet-domain
High-Frequency Focal Loss (HFFL) in Sec. . Both ap-
proaches have been proven to enhance the predictive per-
formance of the model.

Proposed Method
Overview
Take 1-level wavelet transform as an example, we present
the overview architecture in Figure 2. The Time-Frequency
Aware Translator (TF-Aware Translator) is implemented to
learn spatial frequency and temporal variations in multi-
level wavelet space. The 3D-Wavelet Embedding and Re-
construction modules leverage wavelet’s inherent multiscale
architecture to embed and reconstruct intricate spatiotempo-
ral features. The Wavelet Bottleneck block focuses on inter-
mediate low-frequency representations while preserving the
high-frequency details.

Input

TF-Aware Translator

3D-Wavelet Embed

Wavelet Bottleneck 

3D-Wavelet Recon

TF-Aware Translator

Output

Detail coefficients

Skip connection

Figure 2: The overview architecture of our proposed WaST
using the 1-level discrete wavelet transform.

Time-Frequency Aware Translator
The Time-Frequency Aware Translator (TF-Aware Trans-
lator) separates the modeling of intra-frame frequency and
inter-frame temporal dynamic through Frequency-Mixer
(FM) and Temporal-Mixer (TM), as shown in Figure 3. It
reshapes input sequences X ∈ RB×C×T×H×W to combine
channel and temporal dimensions as B×(C×T )×H×W .
With the two components mentioned above, the translator
block can be formulated as follows:

X ′
l = Xl + diag (λl,1, . . . , λl,d)× FM(η (Xl)) , (2)

Xl+1 = X ′
l + diag

(
λ′
l,1, . . . , λ

′
l,d

)
× TM(η (X ′

l)) , (3)

where λl,i and λ′
l,i are learnable parameters, and η is pre-

normalization.

Frequency-Mixer. As illustrated at the top of Figure 3,
the frequency-mixer is an ensemble of two key elements:
the frequency feature extractor and frequency attention. In-
spired by the recent metaformer modules (Ding et al. 2022;
Liu et al. 2023; Li et al. 2022), we use parallel asymmetric
convolution to fit oversize convolution kernels (e.g., 51×51)
to model low-frequency features and parallel small convolu-
tion kernels (e.g., 5 × 5) to model high-frequency features.
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Figure 3: Illustration of Time-Frequency Aware Translator,
which models intra-frame frequency and inter-frame tempo-
ral dynamic through Frequency-Mixer and Temporal-Mixer.

To enhance the representation of horizontal and vertical de-
tails in wavelets, we have proposed a frequency attention
mechanism. To adaptively enhance wavelet features at dif-
ferent frequencies (e.g., horizontal and vertical detail co-
efficients), the frequency attention is partitioned into hori-
zontal and vertical components, refined by the squeeze-and-
excitation paradigm (Hu et al. 2018), and interaction is pro-
moted via weight-sharing 1 × 1 convolution, which can be
formally expressed as:

AH = W1×1 ∗ (W ⋆
1×1 ∗HAP(X)), (4)

AV = W1×1 ∗ (W ⋆
1×1 ∗VAP(X)), (5)

X ′ = AH ⊗AV ⊙X, (6)
where ∗ is the convolution operation. HAP and VAP rep-
resent horizontal and vertical Average Pooling (AP). AH ∈
RB×(C×T )×H×1 and AV ∈ RB×(C×T )×1×W denote the
horizontal and vertical attention. W1×1 and W ⋆

1×1 both sig-
nify 1 × 1 convolutions, where W ⋆

1×1 is weight-sharing for
horizontal and vertical attention interaction. The Kronecker
and Hadamard products are represented by ⊗ and ⊙.

Temporal-Mixer. As illustrated at the bottom of Figure 3,
the temporal-mixer models long-term dependency by incor-
porating a feed-forward network (FFN) and temporal atten-
tion. The FFN contains two 1× 1 convolutions and a depth-
wise convolution (DWConv). The temporal attention models
both channels and temporal dimensions for inter-frame dy-
namics in a squeeze-and-excitation (Hu et al. 2018) manner,
it can be defined as:

AT = W1×1 ∗GAP(X), (7)

X ′ = AT ⊗X, (8)

where AT ∈ RB×(C×T )×1×1 indicate the temporal atten-
tion, and GAP denotes global average pooling.

3D-Wavelet Embedding and Reconstruction
The 3D-Wavelet Embedding module integrates wavelet pri-
ors into the feature maps, while the Reconstruction mod-
ule restores details from high-frequency coefficients. The

C

3D Conv

3D-DWT

3D Conv

D
W

T

C

C
on

v

3D Conv

S

3D-IDWT

3D Conv

3D-Wavelet Embedding Reconstruction

Concatenation Element-wise addC S Split

3D-DWT

TF-Aware
Translator

3D-IDWT

Wavelet Bottleneck

Figure 4: The detailed structure of the 3D-Wavelet Embed-
ding and Reconstruction, and Wavelet Bottleneck modules.

Wavelet Bottleneck block emphasizes low-frequency repre-
sentations while retaining the high-frequency details, as il-
lustrated in Figure 4.

3D-Wavelet Embedding. We employ wavelet transform
inherent properties and learnable 3D convolutions for bet-
ter downsampling. Specifically, we designed two parallel
branches, where one branch embeds image features Xemb
into output features Xout via 3D-DWT and 3D Conv, while
the other branch accomplishes spatial downsampling of the
input feature maps Xin. During downsampling, we concate-
nate XLLL and XLLH , feeding remaining coefficients Cdetail
(e.g., XLHL, XLHH , XHLL, XHLH , XHHL, and XHHH )
into the Reconstruction module for detail reconstruction.

3D-Wavelet Reconstruction. During upsampling, we use
both spatial low-frequency features XLLL and XLLH , and
detail coefficients Cdetail from the Embedding module, re-
constructing details via 3D-IDWT and learnable 3D Conv.

Wavelet Bottleneck. This module is located in the middle
stage achieving via translators and wavelet transform. Each
wavelet bottleneck block first decomposes feature maps Xin
into approximation Ca and detail Cd coefficients. Ca is then
passed as input to translators for deeper processing. The
processed Ca and the original detail subbands Cd are trans-
formed back to the original space via 3D-IDWT, which al-
lows low-frequency features to be focused while retaining
high-frequency details.

Wavelet-Domain High-Frequency Focal Loss

The traditional mean squared error (MSE) loss treats
each pixel equally, which makes it more emphasizes low-
frequency supervision. To compensate for the inadequa-
cies of high-frequency supervision in MSE, we propose the
wavelet-domain High-Frequency Focal Loss (HFFL) to su-
pervise high-frequency variations.

Focal Frequency Loss (FFL) (Jiang et al. 2021) aimed to
decrease the frequency distance between real and generated
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images. It can be defined as:

LFFL =
1

HW

H−1∑
u=0

W−1∑
v=0

w(u, v) |Fr(u, v)− Ff (u, v)|2 ,

where w(u, v) = |Fr(u, v)− Ff (u, v)|α , (9)

The weight matrix w(u, v) is guided by a frequency-
specific training loss. However, this approach inadequately
reflects high-frequency discrepancies due to the large dy-
namic frequency range. Thus we refine the weight matrix
of FFL by incorporating the absolute value of the loga-
rithm | log(w(u, v))| for the high-frequency band while low-
frequency weights are set to zero via a predefined threshold
τ . We further refine the frequency-domain loss in a multi-
scale manner, we adopt the wavelet transform to decompose
the signal into multi-level subbands, the wavelet-domain
high-frequency focal loss can be defined as:

LHFFL =
1

HkWk

Hk−1∑
u=0

Wk−1∑
v=0

w(u, v) |Fr(u, v)− Ff (u, v)|2 ,

w(u, v) = |log (|Fr(u, v)− Ff (u, v)|)|α , (10)

where k denotes the k-level wavelet decomposition. Our
model is trained end-to-end with the objective function com-
bining spatial- and wavelet-domain losses for each frame:

L = LMSE + λLHFFL. (11)

where MSE loss is the spatial domain loss, and λ is a weight
parameter to balance the two losses.

Experiments
In this section, we present detailed experimental results. We
evaluate our proposed method against strong recent base-
lines, including competitive recurrent-based architectures:
ConvLSTM (Shi et al. 2015), PredRNN (Wang et al. 2017),
PredNet (Lotter et al. 2016), PredRNN++ (Wang et al.
2018a), MIM (Wang et al. 2019), E3D-LSTM (Wang et al.
2018b), PhyDNet (Guen et al. 2020), MAU (Chang et al.
2021), and PredRNNv2 (Wang et al. 2022). We also com-
pare recent recurrent-free architectures: SimVP (Gao et al.
2022) and TAU (Tan et al. 2023a).

Experiment Setting
Multi-Scenario. Our model is quantitatively evaluated
across varied real-world scenarios, including driving scenes,
human motion capture, traffic flow prediction, and weather
forecasting, encompassing micro to macro scales. Dataset
statistics are summarized in Table 1.

Dataset Train Test C H W T T ′

Kitti&Caltech 3,160 3,095 3 128 160 10 1
Human3.6M 73,404 8,582 3 256 256 4 4

TaxiBJ 20,461 500 2 32 32 4 4
WeatherBench 2,167 706 1 32 64 12 12

Table 1: The detailed summary of the dataset statistic. The
number of samples, input frames T , and predicted frames T ′

are shown for the training and testing sets.

Evaluation Metrics. The model performance in various
scenarios is evaluated through multiple metrics. Error met-
rics, including mean squared error (MSE), mean absolute er-
ror (MAE), and root mean squared error (RMSE), measure
pixel-wise error. Similarity metrics include the structural
similarity index measure (SSIM) and peak signal-to-noise
ratio (PSNR). Computational metrics such as the number of
parameters and floating-point operations (FLOPs) also eval-
uate the models.

Implementation Details. Our proposed method is im-
plemented in Pytorch and conducts experiments on a sin-
gle NVIDIA-V100 GPU. The model trained with a mini-
batch of 16 video sequences, employs the AdamW op-
timizer, OneCycle learning rate scheduler, and weight
decay of 5e−2. Optimal learning rate is chosen from{
1e−2, 5e−3, 1e−3

}
for stable training. We utilize stochas-

tic depth for regularization to avoid overfitting.

Driving Scenes Prediction
Kitti&Caltech Generalization capability is crucial in arti-
ficial intelligence, often challenged in traditional supervised
learning across diverse domains. Self-supervised learning
strives to construct robust representation from unlabeled
data, with the generalization ability evaluated based on the
learned model through downstream tasks. We evaluate this
capability across different datasets, training the model on
KITTI (Geiger et al. 2013) and testing on Caltech Pedes-
trian (Dollár et al. 2009).

Quantitative results Table 2 demonstrate our model
achieves state-of-the-art performance under all metrics. No-
tably, our approach surpasses the prior state-of-the-art MIM
method (Wang et al. 2019), attaining a 63-fold computa-
tional reduction (1858.0G → 29.4G) and a 5.7-fold param-
eter reduction (49.2M → 8.6M). Qualitative visualizations
Figure 5(a) present that our method learns spatiotemporal
dependencies from past frames and predicts high-quality fu-
ture frames. From the final rows in Figure 5(a), it becomes
evident that the recurrent-based MIM (Wang et al. 2019)
struggles to pinpoint distant, small entities. The robustness
of our approach in variations of illumination and lane lines
indicates the potential value for autonomous vehicles.

Kitti&Caltech (10 → 1 frames)
Method Date FLOPs MSE MAE SSIM PSNR

(G) ↓ ↓ ↑ ↑
ConvLSTM NIPS’2015 595.0 139.6 1583.3 0.9345 27.46
PredRNN NIPS’2017 1216.0 130.4 1525.5 0.9374 27.81

PredRNN++ ICML’2018 1803.0 125.5 1453.2 0.9433 28.02
MIM CVPR’2019 1858.0 125.1 1464.0 0.9409 28.10

E3D-LSTM ICLR’2019 1004.0 200.6 1946.2 0.9047 25.45
PhyDNet CVPR’2020 40.4 312.2 2754.8 0.8615 23.26

MAU NIPS’2021 172.0 177.8 1800.4 0.9176 26.14
SimVP CVPR’2022 60.6 160.2 1690.8 0.9338 26.81

PredRNNv2 PAMI’2022 1223.0 147.8 1610.5 0.9330 27.12
TAU CVPR’2023 92.5 131.1 1507.8 0.9456 27.83
Ours - 29.4 123.5 1384.2 0.9468 28.49

Table 2: Quantitative results in Kitti&Caltech dataset.
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Figure 5: Qualitative visualizations across varied real-world datasets, including (a) Kitti&Caltech, (b) Human3.6M, and (c)
TaxiBJ datasets, where prediction error = |target - prediction|.

Human Motion Capture
Human3.6M Human motion prediction brings inherent
challenges due to the high resolution and complex dynamics
associated with unpredictable human behavior. Traditional
recurrent-based methods struggle to predict detailed features
of moving human bodies, particularly the face and hands,
due to their limited pixel representation.

Our proposed model, despite dealing with higher reso-
lution, exhibits state-of-the-art performance across all met-
rics, as outlined in Table 3. Remarkably, our approach
outperforms the prior state-of-the-art PredRNN++ (Wang
et al. 2018a), securing a 21-fold computational reduction
(1033.0G → 49.3G) and a 3.7-fold parameter reduction
(39.3M → 10.6M). The adaptability of our method is supe-
rior to the recurrent unit in capturing dynamic scenes due
to the unique design of the frequency and time attention
mechanisms. The visualization is presented in Figure 5(b),
the prediction details demonstrate that our method dynamic
changes over time without losing human detail information,
implying potential applicability in complex dynamic scenes.

Human3.6M (4 → 4 frames)
Method Date FLOPs MSE MAE SSIM PSNR

(G) ↓ ↓ ↑ ↑
ConvLSTM NIPS’2015 347.0 125.5 1566.7 0.9813 33.40

PredNet ICLR’2017 13.7 261.9 1625.3 0.9786 31.76
PredRNN NIPS’2017 704.0 113.2 1458.3 0.9831 33.94

PredRNN++ ICML’2018 1033.0 110.0 1452.2 0.9832 34.02
MIM CVPR’2019 1051.0 112.1 1467.1 0.9829 33.97

E3D-LSTM ICLR’2019 542.0 143.3 1442.5 0.9803 32.52
MAU NIPS’2021 105.0 127.3 1577.0 0.9812 33.33

SimVP CVPR’2022 197.0 115.8 1511.5 0.9822 33.73
PredRNNv2 PAMI’2022 708.0 114.9 1484.7 0.9827 33.84

TAU CVPR’2023 182.0 113.3 1390.7 0.9837 34.03
Ours - 49.3 109.8 1384.7 0.9839 34.19

Table 3: Quantitative results in Human3.6M dataset.

Traffic Flow Prediction
TaxiBJ Spatiotemporal traffic flow prediction is challeng-
ing due to complexities stemming from human behaviors.
Evaluating our model on the real-world traffic dataset Tax-
iBJ (Zhang et al. 2017). Traditional forecasting methods
struggle with intricate road network interdependencies and
non-linear temporal dynamics.

The quantitative results are reported in Table 4 and qual-
itative visualizations in Figure 5(c). Our model consistently
generates precise predictions, despite subtle frame differ-
ences. This stems from an oversized convolutional kernel
(51× 51), larger than the image resolution (32× 32), adept
at low-frequency feature capture, resulting in near-perfect
prediction errors (Figure 5(c), last two rows). Our model
notably surpasses previous methodologies across all met-
rics (Table 4), maintaining modest computational complex-
ity (1.0G), and indicating practical applicability.

TaxiBJ (4 → 4 frames)
Method Date FLOPs MSE MAE SSIM PSNR

(G) × 100↓ ↓ ↑ ↑
ConvLSTM NIPS’2015 20.7 48.5 17.7 0.978 37.38
PredRNN NIPS’2017 42.4 46.4 17.1 0.971 38.52

PredRNN++ ICML’2018 63.0 44.8 16.9 0.977 38.71
MIM CVPR’2019 64.1 42.9 16.6 0.971 38.71

E3D-LSTM ICLR’2019 98.2 43.2 16.9 0.979 38.75
SimVP CVPR’2022 3.6 41.4 16.2 0.982 39.17

PredRNNv2 PAMI’2022 42.6 38.3 15.6 0.983 39.38
TAU CVPR’2023 2.5 34.4 15.6 0.983 39.50
Ours - 1.0 30.8 14.9 0.984 39.73

Table 4: Quantitative results in the TaxiBJ dataset.

Weather Forecasting
WeatherBench Climate prediction, a crucial task in spa-
tiotemporal predictive learning, emphasizes the need for ro-
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Figure 6: Qualitative visualizations on global temperature forecasting in WeatherBench. The differences between the ground
truth and the predicted frames are visualized in the last three rows.

bust data-driven models over purely physical methods, due
to high computational demands. In this context, we com-
pare MSE, MAE, and RMSE metrics for temperature pre-
diction at 5.625◦ resolution (32 × 64 grid points) as re-
ported in Table 5. Our time-frequency aware design suc-
cessfully captures low and high frequencies in climatic fac-
tors, providing qualitative global temperature visualization
Figure 6. It surpasses existing climate prediction models,
notably enhancing the state-of-the-art recurrent-based Pre-
dRNN (Wang et al. 2017) performance in MSE (1.331 →
1.098), and reducing computational costs and parameters by
185-fold (278.0G → 1.5G) and 6-fold (23.6M → 3.9M).
This demonstrates the effectiveness of our method for global
climate forecasting.

WeatherBench (12 → 12 frames)
Method Date FLOPs MSE MAE RMSE

(G) ↓ ↓ ↓
ConvLSTM NIPS’2015 136.0 1.521 0.7949 1.233
PredRNN NIPS’2017 278.0 1.331 0.7246 1.154

PredRNN++ ICML’2018 413.0 1.634 0.7883 1.278
MIM CVPR’2019 109.0 1.784 0.8716 1.336

E3D-LSTM ICLR’2019 169.0 1.592 0.8059 1.233
MAU NIPS’2021 39.6 1.349 0.7391 1.162

SimVP CVPR’2022 8.0 1.238 0.7037 1.113
PredRNNv2 PAMI’2022 279.0 1.545 0.7986 1.243

TAU CVPR’2023 6.7 1.224 0.6810 1.106
Ours - 1.5 1.098 0.6338 1.044

Table 5: Quantitative results on the temperature forecasting
in WeatherBench dataset.

Ablation Study
In this section, we ablate essential design choices in WaST
on WeatherBench humidity and cloud cover prediction. We
compare the recurrent-based counterpart with our proposed
wavelet-based recurrent-free architecture. We also compare
the proposed Time-Frequency Aware Translator and ad-
vanced MetaFormer (Yu et al. 2022) modules. The baseline
is obtained by copying the input as the prediction.

In Table 6 details, two key observations emerge: (i)
Recurrent-free architectures surpass recurrent-based ones,

attributed to the enhanced spatiotemporal learning capacities
of translators. (ii) Compared with various MetaFormer mod-
ules, our proposed TF-Aware Translator stands out in per-
formance. Additionally, models trained without HFFL (w/o
HFFL) exhibit diminished prediction accuracy, underscoring
the importance of high-frequency information supervision.

Humidity Cloud Cover
Method MAE↓ RMSE↓ MAE↓ RMSE↓

Baseline Copying 9.046 13.346 0.2156 0.3361

MIM 5.504 7.817 0.1718 0.2449
PhyDNet 8.975 15.460 0.2261 0.3149

Recurrent E3DLSTM 4.100 6.044 0.1529 0.2394
based PredRNN 4.096 6.133 0.1588 0.2346

PredRNN++ 4.731 6.782 0.1544 0.2341

ViT 3.911 5.742 0.1503 0.2186
Uniformer 3.914 5.734 0.1485 0.2170

MLP-Mixer 3.950 5.871 0.1526 0.2219
Recurrent ConvMixer 3.909 5.730 0.1487 0.2172

free ConvNeXt 3.928 5.760 0.1487 0.2178
HorNet 3.906 5.721 0.1481 0.2174

Ours w/o HFFL 3.721 5.600 0.1469 0.2167
Ours 3.694 5.569 0.1452 0.2150

Table 6: Ablation study on WeatherBench dataset.

Conclusion
This paper presents an innovative wavelet-based spatiotem-
poral prediction framework WaST, leveraging the wavelet
transform across image and feature levels. Our Time-
Frequency Aware Translator adaptively modulates both
low and high-frequency components in multi-level wavelet
space. The wavelet-domain High-Frequency Focal Loss is
introduced to compensate for the inadequacies of tradi-
tional mean squared error in high-frequency supervision.
Overall, our approach emphasizes the significance of both
intra-frame frequency and inter-frame temporal variations,
enabling the model to capture short- and long-term infor-
mation. Demonstrably, our method provides state-of-the-art
performance on various datasets with real-world scenarios.
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