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Abstract

Deep learning models such as CNNs have surpassed human
performance in computer vision tasks such as image classi-
fication. However, despite their sophistication, these models
lack interpretability which can lead to biased outcomes re-
flecting existing prejudices in the data. We aim to make pre-
dictions made by a CNN interpretable. Hence, we present a
novel framework called NeSyFOLD to create a neurosym-
bolic (NeSy) model for image classification tasks. The model
is a CNN with all layers following the last convolutional layer
replaced by a stratified answer set program (ASP) derived
from the last layer kernels. The answer set program can be
viewed as a rule-set, wherein the truth value of each pred-
icate depends on the activation of the corresponding kernel
in the CNN. The rule-set serves as a global explanation for
the model and is interpretable. We also use our NeSyFOLD
framework with a CNN that is trained using a sparse kernel
learning technique called Elite BackProp (EBP). This leads to
a significant reduction in rule-set size without compromising
accuracy or fidelity thus improving scalability of the NeSy
model and interpretability of its rule-set. Evaluation is done
on datasets with varied complexity and sizes. We also pro-
pose a novel algorithm for labeling the predicates in the rule-
set with meaningful semantic concept(s) learnt by the CNN.
We evaluate the performance of our “semantic labeling algo-
rithm” to quantify the efficacy of the semantic labeling for
both the NeSy model and the NeSy-EBP model.

Introduction
Interpretability in AI is an important issue that has resur-
faced in recent years as deep learning models have become
larger and are applied to an increasing number of tasks.
Some applications such as autonomous vehicles (Kanagaraj
et al. 2021), disease diagnosis (Sun, Zheng, and Qian 2016),
and natural disaster prevention (Ko and Kwak 2012) are very
sensitive areas where a wrong prediction could be the differ-
ence between life and death. The above tasks rely heavily
on good image classification models such as Convolutional
Neural Networks (CNNs). A CNN is a deep learning model
used for a wide range of image classification and object de-
tection tasks, first introduced by Y. Lecun et al. (LeCun et al.
1989). Current CNNs are extremely powerful and capable
of outperforming humans in image classification tasks. A
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CNN is inherently a blackbox model though attempts have
been made to make it more interpretable (Zhang et al. 2017,
2018).

While these deep models achieve remarkable accuracy,
their interpretability becomes compromised. It remains un-
clear what the model has truly learnt and whether its pre-
dictions are rooted in human-understandable, semantically
meaningful patterns or mere coincidental correlations within
the dataset. Motivated by the need for interpretability, in this
paper we introduce a framework called NeSyFOLD, which
a) gives a global explanation for the predictions made by
a CNN in the form of an ordered rule-set and b) generates
an interpretable NeSy model that can be used to make pre-
dictions instead of the CNN. This resultant rule-set can be
readily scrutinized by domain experts, enabling the discern-
ment of potential biases towards specific classes or learning
of non-intuitive class representations by the trained model.

The NeSyFOLD framework uses a Rule Based Machine
Learning (RBML) algorithm called FOLD-SE-M (Wang
and Gupta 2024) for generating a rule-set by using binarized
outputs of the last layer kernels of a trained CNN. The rule-
set is a (stratified) answer set program. The most influential
kernels, called significant kernels, appear as predicates in the
rule body. The binarized kernel’s output determines the truth
value of its corresponding predicate in the rule-set. Adition-
ally, Zhou et al. (Zhou et al. 2014) showed that training
a CNN on scene classification datasets results in last-layer
kernels emerging as object detectors. Motivated by their dis-
covery, we developed an algorithm for labeling the corre-
sponding predicates of the significant kernels with the se-
mantic concept(s) that they represent. We call this procedure
the semantic labeling of the kernels. For example, the predi-
cate 52(X) corresponding to kernel 52 will be replaced by
bathtub(X) in the rule-set, if kernel 52 has learnt to look
for “bathtubs” in the image. Fig. 1 shows an outline of our
NeSyFOLD framework. The semantic labeling can be done
manually as demonstrated by Townsend et al. (Townsend,
Kasioumis, and Inakoshi 2021), however, it entails substan-
tial time and labour investments. We automate this process
using our semantic labeling algorithm.

Next, we create a model that uses the generated rule-set
in conjunction with the CNN for inference. We call this the
NeSy model. We use the in-built FOLD-SE-M rule inter-
preter (Wang and Gupta 2024) to execute the rules against
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Figure 1: The NeSyFOLD Framework

the binarized vector of an image instance obtained from the
last convolutional layer kernels of the CNN for predicting its
class. To obtain the justification of a particular prediction we
use the s(CASP) ASP solver (Arias et al. 2018). The justifi-
cation serves as an explanation for the predictions made by
the CNN.

We compare our NeSyFOLD framework with the ERIC
system (Townsend, Kasioumis, and Inakoshi 2021) (SOTA)
which also generates global explanations by extracting a
rule-set in the form of a list of CNFs from the CNN through
the use of a decision-tree like algorithm.

We show through our experiments that our NeSy model
outperforms ERIC’s accuracy and fidelity while generating a
significantly smaller-sized rule-set. The rule-set size can be
further reduced by learning sparse kernels. We employ the
Elite BackProp (EBP) (Kasioumis, Townsend, and Inakoshi
2021) algorithm to train the CNN so as to learn sparse ker-
nels. We then obtain the NeSy-EBP model from this EBP-
trained CNN and evaluate its performance as well. Our novel
contributions are as follows:

1. We show that our method of rule extraction significantly
reduces the size of the rule-set obtained, hence making
the rule-set more intuitive and interpretable.

2. We show that the scalability of our framework can be fur-
ther improved by using sparse kernel learning techniques
such as EBP.

3. We present a novel algorithm for the semantic labeling of
the predicates in the rule-set and do an extensive evalua-
tion to show its effectiveness.

Background

FOLD-SE-M: The FOLD-SE-M algorithm (Wang and
Gupta 2024) that we employ in our framework, learns a

rule-set from data as a default theory. Default logic is a non-
monotonic logic used to formalize commonsense reasoning.
A default D is expressed as:

D =
A : MB

Γ
(1)

Equation 1 states that the conclusion Γ can be inferred if
pre-requisite A holds and B is justified. MB stands for “it is
consistent to believe B”. Normal logic programs can encode
a default theory quite elegantly (Gelfond and Kahl 2014). A
default of the form:

α1 ∧ α2 ∧ · · · ∧ αn : M¬β1,M¬β2 . . .M¬βm

γ

can be formalized as the normal logic programming rule:

γ :- α1, α2, . . . , αn,not β1,not β2, . . . ,not βm.

where α’s and β’s are positive predicates and not represents
negation-as-failure. We call such rules default rules. Thus,
the default

bird(X) : M¬penguin(X)

flies(X)

will be represented as the following default rule in normal
logic programming:
flies(X) :- bird(X), not penguin(X).

We call bird(X), the condition that allows us to jump to
the default conclusion that X flies, the default part of the
rule, and not penguin(X) the exception part of the rule.

FOLD-SE-M (Wang and Gupta 2024) is a Rule Based
Machine Learning (RBML) algorithm. It generates a rule-
set from tabular data, comprising rules in the form described
above. The complete rule-set can be viewed as a stratified
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answer set program. It uses special abx predicates to repre-
sent the exception part of a rule where x is a unique numer-
ical identifier. FOLD-SE-M incrementally generates literals
for default rules that cover positive examples while avoid-
ing covering negative examples. It then swaps the positive
and negative examples and calls itself recursively to learn
exceptions to the default when there are still negative exam-
ples falsely covered.

There are 2 tunable hyperparameters, ratio, and tail. The
ratio controls the upper bound on the number of false pos-
itives to the number of true positives implied by the default
part of a rule. The tail controls the limit of the minimum
number of training examples a rule can cover. FOLD-SE-M
generates a much smaller number of rules than a decision-
tree classifier and gives higher accuracy in general.

Elite BackProp: Elite BackProp (Kasioumis, Townsend,
and Inakoshi 2021) is a training algorithm that associates
each class with very few Elite kernels that activate strongly.
This is achieved by introducing a loss function that penalises
the kernels that have a lower probability of activation for any
class and reinforces the kernels that have a higher probabil-
ity of activation during training. This leads to fewer kernels
learning representations for each class. The same number of
(elite) kernels are reinforced for each class which is decided
by the hyperparameter K. Another hyperparameter λ is used
as the regularization constant.

Methodology
We now proceed to explain the methodology behind the
learning, inference, and semantic labeling pipeline used in
our NeSyFOLD framework.

Learning
We start by training the CNN on the input images for the
given classification dataset. Any optimization technique can
be used for updating the weights. The learning pipeline is
illustrated in Figure 1.

Quantization: Quantization is the process of binarization of
the kernel outputs. Once the CNN has been fully trained to
convergence, we pass the full train set consisting of n images
to the CNN. For every image i in the train set, we obtain a
feature map Ai,k for every kernel k in the last convolutional
layer. The feature map Ai,k is a 2D matrix of dimension
determined by the CNN architecture. For each image i there
are K feature maps generated where K is the total number of
kernels in the last convolutional layer of the CNN. We map
each of these feature maps to a single real value by taking
their norms as demonstrated by eq. (2). Next, to determine
an appropriate threshold θk for each kernel k to binarize its
output, we use a weighted sum of the mean and the standard
deviation of the norms ai,k for all i for a given k using eq.
(3) where α and γ are hyperparameters. Binarizing a kernel
refers to determining whether the kernel is active or inactive
for a specific image. Thus a binarization table B is created.
Each row in the table represents an image and each column
is the binarized kernel feature map value represented by ei-
ther a 0 (inactive) or 1 (active). This is done using eq. (4)

where Q(Ai,k, θk) is the quantization function that outputs
a value of 1 if, for a feature map Ai,k its norm ai,k is greater
than the kernel k′s threshold θk and 0 otherwise.

ai,k =||Ai,k||2 (2)

θk =α · ak + γ

√
1

n

∑
(ai,k − ak)2 (3)

Q(Ai,k, θk) =

{
1, if ai,k > θk
0, otherwise

(4)

Rule-set Generation: The binarization table B is given as
an input to the FOLD-SE-M algorithm to obtain a rule-set in
the form of a stratified answer set program. The raw rule-set
has predicates with names in the form of their corresponding
kernel’s index. An example rule could be:
target(X,‘2’) :- not 3(X), 54(X),

not ab1(X).
This rule can be interpreted as “Image X belongs to class
‘2’ if kernel 3 is not activated and kernel 54 is activated
and the abnormal condition (exception) ab1 does not ap-
ply”. There will be another rule with the head as ab1(X)
in the rule-set. The binarized output of a kernel would deter-
mine the truth value of its predicate in the rule-set.

Semantic labeling: Every kernel in the last layer of the
CNN learns to identify certain concepts. Since we capture
the outputs of the kernels as truth values of predicates in the
rule-set, we can label the predicates as the semantic con-
cept(s) that the corresponding kernel has learnt. Thus, the
same example rule given above may now appear as:
target(X,‘bathroom’) :- not bed(X),

bathtub(X), not ab1(X).
Currently, the process of attributing semantic labels to

predicates involves identifying top-m images with the high-
est feature-map norms generated by the kernel. Next, the as-
signment of semantic labels is executed through manual ob-
servation of the resulting m images by discerning the con-
cepts that emerge most prominently. This methodology is
exemplified in the work of Townsend et al. (Townsend, Ka-
sioumis, and Inakoshi 2021). We introduce a novel semantic
labeling algorithm to automate the semantic labeling of the
predicates. The details of the algorithm are discussed later.

Inference
The inference pipeline of NeSyFOLD is relatively straight-
forward. We feed the test set images to the CNN to obtain
the kernel feature maps for each kernel in the last convolu-
tional layer. Then, using eq. (4), we get the binarizations for
each kernel output and generate the binarization table Btest.
Note here that the threshold θk for each kernel k is the same
that was calculated in the learning process. Next, for each bi-
narized vector b in Btest, we run the FOLD-SE-M toolkit’s
built-in rule interpreter on the labeled/unlabeled rule-set to
make predictions. The truth value of the predicates in the
rule-set is determined by the corresponding binarized kernel
values in b. The binarized kernel values in b can be listed as
facts and the ASP rule-set can be queried with the s(CASP)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4380



interpreter to obtain the justification as well as the target
class. The aforementioned procedure can be conceptualized
as replacing all the layers following the last convolutional
layer with the rule-set and then making the predictions. This
integrated model is referred to as the NeSy model.

Semantic Labeling of Significant Kernels
Recall that a significant kernel is a kernel whose correspond-
ing predicate appears in the rule-set generated by FOLD-SE-
M. The rule-set initially has kernel ids as predicate names.
Also, the FOLD-SE-M algorithm finds only the most in-
fluential kernels and uses them as predicates. We present a
novel algorithm for automatically labeling the correspond-
ing predicates of the significant kernels with the semantic
concept(s) that the kernels represent as shown in Alg. 1.

Xie et al. (Xie et al. 2017) showed that each kernel in the
CNN may learn to represent multiple concepts in the images.
As a result, we assign semantic labels to each predicate, de-
noting the names of the semantic concepts learnt by the cor-
responding kernel. To regulate the extent of approximation,
i.e., to dictate the number of concept names to be included in
the predicate label, we introduce a hyperparameter margin.
This hyperparameter exercises control over the precision of
the approximation achieved. Figure 2 illustrates the seman-
tic labeling of a given predicate. We use the ADE20k dataset
(Zhou et al. 2017b) in our experiments. It provides manually
annotated semantic segmentation masks for a few images of
all the classes of the Places (Zhou et al. 2017a) and SUN
(Xiao et al. 2010) datasets. This essentially means that for
every image i in the dataset I , there is an image iMask where
every pixel is annotated with the label of the object (concept)
that it belongs to (Fig. 2 middle). In Alg. 1 we denote these
by IMask.

The CNN M that is trained on the train set is used to
obtain the norms ai,k of the feature maps Ai,k extracted
from the last convolution layer for each kernel k same as
in the learning process. Now for each kernel k the top-m
images Im, according the norms ai,k are selected. These
images are masked with their resized feature maps Ai,k

to obtain Îm (Fig. 2 top). Next, for each masked image
îm ∈ Îm we calculate the IoUc score (eq. (5)) for each
concept c that appears in its corresponding semantic seg-
mentation mask iMask and sum the scores over all images
Im for each concept c. We then normalize the scores over
all c and sort the concepts in descending order w.r.t. their re-
spective IoUc scores. Finally, the predicate associated with
significant kernel k is labeled as a concatenation of all the
concepts that are in a specific margin from the concept with
the highest IoUc score. This is determined by the margin
hyperparameter. For example, if the concept IoUc scores for
kernel 12 are {cabinets : 0.5, door : 0.4, drawer : 0.1},
then, with a margin of 0.1, the label for the kernel will be
“cabinets1 door1”. Also, if some kernel previously has al-
ready been labeled cabinets1, then the numerical identifier
for the label for kernel 12, will be 2 for cabinets in the label
i.e. “cabinets2 door1”.

IoUc(iMask, î) =
no. of pixels in c ∩ î

no. of pixels in î
(5)

Algorithm 1: Semantic labeling

Require: The trained CNN model M , the images I and
their semantic segmentation masks IMask, unlabeled
rule-set R, hyperparameter margin

1: Obtain feature maps Ai,k, norms ai,k for all significant
kernels k and images i in I using M

2: for Each significant kernel k in R do
3: Im ← top−m images w.r.t. ai,k
4: Îm ←Mask each im in Im with its resized Aim,k

5: for all îm in Îm do
6: IoU îm

c ← IoUc(iMask, îm) for each concept c in
iMask

7: end for

8: IoUc ←
îm∑

IoU îm
c for all c

9: Reverse sort normalized IoU scores over all c
10: Label the kernel k as all concepts c that have IoU

score within a margin from the top concept.
11: end for

Experiments
We conducted experiments to address the following ques-
tions:

Q1: How well does NeSyFOLD scale w.r.t. number of
classes and number of images in the train set?

Q2: What is the effect of using a CNN trained with Elite
BackProp in our NeSyFOLD framework?

Q3: How well do the semantic labels associated with the
predicates adhere to the concepts during inference?

Q4: How many concepts are the predicate labels comprised
of after semantic labeling?

[Q1/Q2] Scalability: We define scalability as a function
of accuracy, fidelity and size of rule-set. As the number of
classes in the dataset increases, the accuracy and fidelity of
the framework should be high w.r.t. the trained CNN and the
rule-set generated should be as small as possible to increase
interpretability (Lage et al. 2019). To determine the scala-
bility of our NeSyFOLD framework we evaluate the fidelity,
accuracy, no. of unique predicates/atoms in the rule-set and
the overall rule-set size over various subsets of the Places
(Zhou et al. 2017a) dataset which has images of various
scenes and the German Traffic Sign Recognition Benchmark
(GTSRB) (Stallkamp et al. 2012) dataset which consists of
images of various traffic signposts. We selected subsets of 2,
3, 5 and 10 classes from the Places dataset. We started with
the bathroom and bedroom classes (P2). Subsequently, we
incorporated the kitchen class (P3.1), followed by the din-
ing room and living room (P5), and finally, home office, of-
fice, waiting room, conference room, and hotel room (P10).
We also selected 2 additional subsets of 3 classes each i.e.
desert road, forest road, street (P3.2) and desert road, drive-
way, highway (P3.3). We show the evaluation results of our

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4381



Figure 2: Semantic labeling of a predicate (margin = 0.2).

semantic labeling algorithm on P3.1, P3.2 and P3.3 later.
Each class has 5k images of which we made a 4k/1k train-
test split for each class and we used the given validation set
as it is. The GTSRB (GT43) dataset has 43 classes of sign-
posts. We used the given test set of 12.6k images as it is and
did an 80 : 20 train-validation split which gave roughly 21k
images for the train set and 5k for the validation set.

We use rule-set size as a metric of interpretability. Lage
et al. (Lage et al. 2019) showed through human evaluations
that as the size of the rule-set increases the difficulty in inter-
preting the rule-set also increases. Size is calculated as the
total number of antecedents for ERIC and the total number
of predicates in the bodies of the rules generated by NeSy-
FOLD.
Setup: We employed a VGG16 CNN pretrained on Ima-
genet (Deng et al. 2009), training over 100 epochs with batch
size 32. The Adam (Kingma and Ba 2014) optimizer was
used, accompanied by class weights to address data imbal-
ance. L2 Regularization of 0.005 spanning all layers, and a
learning rate of 5×10−7 was adopted. A decay factor of 0.5
with a 10-epoch patience was implemented. Images were re-
sized to 224 × 224, and hyperparameters α and γ (eq. (3))
for calculating threshold for binarization of kernels, were set
at 0.6 and 0.7 respectively.

We re-trained each of the trained CNN models again for
each dataset, for 50 epochs using EBP. We used K = 20
for “P10” and “GT43” because of their larger size and
K = 5 for all the other datasets. We used λ = 0.005 for
all datasets. We chose EBP for learning sparse kernels be-
cause Kasioumis et. al (Kasioumis, Townsend, and Inakoshi
2021) show that EBP learns better representations than other
sparse kernel learning techniques. We then used our NeSy-
FOLD framework both with the vanilla-trained CNN and the
EBP-trained CNN to generate the respective NeSy models

(NF and NF-E) as described previously. For P10, per run,
we selected the highest 10% softmax-scored images in each
class. This subset was then used exclusively for rule-set gen-
eration. As is evident from the CNN’s low accuracy on P10,
the kernels learnt poor representations. Hence, we selected
only the above mentioned, relatively high confidence subset
for training. The performance of these NeSy models are re-
ported in Table 1. The results are reported after 5 runs on
each dataset. For comparison, the trained CNN’s accuracy
is {0.97, 0.94, 0.96, 0.89, 0.85, 0.70, 0.98} for the datasets
listed in Table 1 in the same order.

Our experimental setup closely resembled Townsend et
al.’s (Townsend et al. 2022; Townsend, Kasioumis, and In-
akoshi 2021) facilitating a meaningful comparison. The per-
formance metrics of ERIC reported in Table 1 are also taken
from these papers. ERIC’s fidelity for P3.2 and P3.3 remains
unreported in the mentioned papers and thus is left blank in
the table.

Note that comparison is done only for the datasets used
for evaluation of the ERIC system (Townsend, Kasioumis,
and Inakoshi 2021), as the ERIC system code is proprietary.
Result: We observe that as the number of classes increases
there is a drop in the fidelity (Fid.) and accuracy (Acc.)
in general. This is because as more classes are introduced,
more kernels in the CNN have to learn representations for
those classes and hence there is more loss in the binarization
of the kernels to obtain the rule-set. Our NeSy model gener-
ated for both NeSyFOLD (NF) and NeSyFOLD-EBP (NF-
E) outperforms ERIC on all of these datasets w.r.t. accuracy
and fidelity. All models perform poorly on the P10 dataset.
We believe that this is because of the fewer distinct edges
in the images in the P10 dataset which makes it harder for
even the CNN kernels to learn good representations. GT43
has well-defined edges and consequently the accuracy and
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Data Algo Fid. Acc. Pred. Size

P2
ERIC 0.89± 0.01 0.89± 0.01 11± 1 52± 8
NF 0.93 ± 0.01 0.92 ± 0.01 16± 2 28± 5
NF-E 0.93 ± 0.01 0.92 ± 0.01 8 ± 2 12 ± 5

P3.1
ERIC 0.82± 0.01 0.81± 0.01 33± 4 118± 13
NF 0.85± 0.03 0.84± 0.03 28± 6 49± 9
NF-E 0.87 ± 0.02 0.86 ± 0.02 10 ± 3 16 ± 5

P3.2
ERIC - 0.90 33 127
NF 0.94 ± 0.0 0.92 ± 0.0 16± 4 26± 7
NF-E 0.92± 0.01 0.91± 0.01 6 ± 1 7 ± 1

P3.3
ERIC - 0.75 44 176
NF 0.83 ± 0.01 0.79 ± 0.01 32± 5 60± 11
NF-E 0.82± 0.03 0.78± 0.03 9 ± 0 23 ± 4

P5
ERIC 0.65± 0.01 0.63± 0.01 57± 4 171± 10
NF 0.67± 0.03 0.64± 0.03 56± 3 131± 10
NF-E 0.70 ± 0.02 0.67 ± 0.02 12 ± 4 30 ± 8

P10
ERIC 0.39± 0.01 0.36± 0.01 85± 6 208± 16
NF 0.46± 0.02 0.42± 0.02 84± 6 131± 11
NF-E 0.49 ± 0.02 0.44 ± 0.01 36 ± 4 65 ± 9

GT43
ERIC 0.73± 0.01 0.73± 0.01 232± 3 626± 28
NF 0.75± 0.04 0.75± 0.04 206± 28 418± 79
NF-E 0.85 ± 0.13 0.85 ± 0.13 58 ± 14 99 ± 28

MS
ERIC 0.70± 0.01 0.72± 0.01 71± 4 211± 15
NF 0.78± 0.02 0.75± 0.02 63± 8 120± 19
NF-E 0.80 ± 0.03 0.78 ± 0.03 20 ± 4 36 ± 9

Table 1: Comparison of ERIC vs NeSyFOLD (NF) vs
NeSyFOLD-EBP (NF-E). MS shows the average value for
each evaluation metric for each framework.

fidelity of all ERIC, NF and NF-E are high.
The size of the rule-set generated by NF is always smaller

in size than ERIC. Moreover, NF-E generates an even
smaller rule-set without compromising on accuracy or fi-
delity. Recall, the smaller the rule-set size the better the in-
terpretability and lesser the manual semantic labeling effort.
Since the number of Elite kernels is relatively small and de-
fined for EBP, a smaller number of kernels learn tighter rep-
resentations for each class. Consequently, there is less loss of
information in binarization and the FOLD-SE-M algorithm
finds a rule-set with a small number of predicates. Hence, us-
ing sparse kernel learning techniques such as EBP improves
the scalability of NeSyFOLD.

[Q3/Q4] Semantic labeling Efficacy: To study the efficacy
of the semantic labeling of the predicates in the rule-set us-
ing Alg. 1, we selected the P3.1, P3.2 and P3.3 datasets
from the previous experiment. These datasets were chosen
because NF and NF-E show decent accuracy and generate a
comparatively smaller rule-set.
Setup: The ADE20k (Zhou et al. 2017b) dataset has manu-
ally annotated semantic segmentation masks of a few images
of all the classes in P3.1, P3.2 and P3.3. We used these as in-
put to the semantic labeling algorithm (Alg. 1).

It is important that the kernel associated with a predicate

adheres to the semantic label of the predicate. If this is not
the case then the interpretability of the rule-set diminishes
significantly. To quantify adherence of a kernel to the con-
cepts that its corresponding predicate has been labeled with,
we obtained the unlabeled rule-set for 1 run of NeSyFOLD
and NeSyFOLD-EBP on each of the datasets and labeled
the rule-sets with 4 different values {0.05, 0.1, 0.15, 0.2}
of margin hyperparameter. We selected top-10 images ac-
cording to their feature-map norms for each kernel. Subse-
quently, for test set images where the NeSy model predicts
correctly, we identified the activated rule and extracted the
“True” predicates. We then manually scrutinize if any con-
cepts from these predicates’ labels are discernible within the
image masked by the resized feature map originating from
the relevant kernel. If even one concept in the label is ade-
quately visible through the masked image we count that as
positive. We say that the kernel adheres to its given label for
this image. Finally, we calculated the average percentage ad-
herence of the kernels for each dataset, for all the 4 margin
values and summarize the comparison between NeSyFOLD
and NeSyFOLD-EBP in Fig. 3.
Result: Recall that the margin hyperparameter controls the
level of approximation of the semantic labeling. We observe
that as the margin value is increased, the average percent-
age adherence overall, as well as for individual datasets, in-
creases. This is intuitive because as the margin value is in-
creased the number of concepts appearing in the semantic
label of each predicate also increases (Fig. 4). Hence, it is
more likely that a kernel adheres to a given image if its cor-
responding predicate has more concepts in its semantic la-
bel.

Note that the kernels of the CNN trained with EBP
show higher average percentage adherence overall. This is
expected because the kernels learn tighter representations
hence generating smaller receptive fields which focus on
very few and specific concepts.

Figure 4 shows the average number of concepts appearing
in the semantic label of the predicate as the margin hyper-
parameter is varied. As expected, for NeSyFOLD-EBP the
number of concepts is lower for every value of margin. Also,
the variation in the number of concepts is lesser.

Ideally, the number of concepts in the labels of the pred-
icates should be low while the percentage adherence should
be high for having interpretability with high confidence.
NeSyFOLD-EBP shows promising results in this regard.
In Figure 5 on the top we show a rule-set obtained using
NeSyFOLD-EBP on the P3.1 dataset with a margin of 0.05.
To determine the class of a given image “img” we obtain its
binarized vector, list it as facts in s(CASP) and run the query:
?- target(img, X). The s(CASP) interpreter checks
the rules from the top and returns a model that satisfies the
ASP rule-set. On the bottom of Figure 5 we show a justifi-
cation that can be obtained from the s(CASP) interpreter for
the classification if the first rule (red) was the one that fired.

Related Work
There have been efforts since the 1990s to extract knowl-
edge from a neural network. Andrews et al. (Andrews,
Diederich, and Tickle 1995) have classified these efforts into
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Figure 3: Percentage Adherence plots for kernels in NeSyFOLD-EBP (red) and NeSyFOLD (blue)

three kinds: (i) pedagogical methods wherein rules are con-
structed to explain the output in terms of the input, (ii) de-
compositional methods which extract rule sets specific to
different parts of the network, and (iii) eclectic methods that
are a combination of both. Both NeSyFold and ERIC are
decompositional methods.

There is significant past work which focuses on visualiz-
ing the outputs of the layers of the CNN. These methods try
to map the relationship between the input pixels and the out-
put of the neurons. Zeiler et al. (Zeiler and Fergus 2014) and
Zhou et al. (Zhou et al. 2016) use the output activation while
others (Selvaraju et al. 2017; Denil, Demiraj, and de Freitas
2014; Simonyan, Vedaldi, and Zisserman 2013) use gradi-
ents to find the mapping. Unlike NeSyFold, these visual-
ization methods do not generate any rule-set. Zeiler et al.
(Zeiler and Fergus 2014) use similar ideas to analyze what
specific kernels in the CNN are invoked. There are fewer
existing publications on methods for modeling relations be-
tween the various important features and generating expla-
nations from them. Ferreira et al. (Ferreira et al. 2022) use
multiple mapping networks that are trained to map the ac-
tivation values of the main network’s output to the human-
defined concepts represented in an induced logic-based the-
ory. Their method needs multiple neural networks besides
the main network that the user has to provide.

Qi et al. (Qi, Khorram, and Fuxin 2021) propose an Expla-
nation Neural Network (XNN) which learns an embedding
in high-dimension space and maps it to a low-dimension ex-
planation space to explain the predictions of the network. A
sentence-like explanation including the features is then gen-
erated manually. No rules are generated and manual effort is
needed. Chen et al. (Chen et al. 2019) introduce a prototype
layer in the network that learns to classify images in terms of
various parts of the image. They assume that there is a one-
to-one mapping between the concepts and the kernels. We
do not make such an assumption. Zhang et al. (Zhang et al.
2017, 2018) learn disentangled concepts from the CNN and
represent them in a hierarchical graph so that there is no as-
sumption of a one-to-one filter-concept mapping. However,

no logical explanation is generated. Bologna et al. (Bologna
and Fossati 2020) extract propositional rules from CNNs.
Their system operates at the neuron level, while both ERIC
and NeSyFold work with groups of neurons.

Some other works (Sen et al. 2022; Evans and Grefen-
stette 2018; Shindo, Nishino, and Yamamoto 2021) use a
neurosymbolic system to induce logic rules from data. These
systems belong to the Neuro:Symbolic → Neuro category
whereas ours belongs to the Neuro;Symbolic category.

Conclusion and Future Work
In this paper, we have shown that our NeSyFOLD frame-
work brings interpretability to the image classification task
using CNNs. The FOLD-SE-M algorithm cuts-down on the
size of rule-set generated significantly. We further show
that the semantic labeling algorithm we propose which uses
manually annotated semantic segmentation masks of a few
images from the ADE20k dataset, leads to highly inter-
pretable rule-sets. We acknowledge that the semantic seg-
mentation masks of images may not be readily available de-
pending on the domain, but tools such as SegGPT (Wang
et al. 2023) can be used to obtain the segmentation masks.
Else, the semantic labeling of the predicates has to be done
manually. Our NeSyFOLD framework helps in this regard
as well, as it decreases the number of predicates that need to
be labeled. Another option is to find the top-m images from
the train set according to feature-map norms for each ker-
nel and then obtain semantic segmentation masks for only
these images. Notice in our experiment we only used top-10
from the available images. Moreover, we show that using the
sparse kernel learning techniques such as EBP, the rule-set
size and consequently number of predicates to be labeled can
be further reduced. This also increases interpretability and
also saves a lot of manual labeling effort if needed. We plan
to evaluate our framework with more sparse kernel learning
techniques in the future.

As the number of classes increases, the loss in accuracy
also increases due to the binarization of more kernels. Nev-
ertheless, NeSyFOLD outperforms the current SOTA, ERIC
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Figure 4: The average number of concept labels for kernels in NeSyFOLD-EBP (red) and NeSyFOLD (blue).

Figure 5: A rule-set generated by NeSyFOLD-EBP for P3 dataset (top). Justification generated by s(CASP) for an image “img”
for which the first rule was fired (bottom).

in terms of accuracy, fidelity, and rule-set size. We plan to
explore end-to-end training of the CNN with the rules gen-
erated so that this loss in binarization can be reduced during
training itself.

The rules generated by NeSyFOLD are arranged based
on the coverage of training images, forming a decision list.
Consequently, the topmost rules capture crucial class dis-
tinctions. Biases may be apparent in these rules, making
them ideal for bias detection. Since the fidelity of the NeSy
model is high (at least for a small number of classes), ex-
perts can review and suggest data changes for training and it
is highly likely the retrained model will have less bias. It is
noteworthy that interpreting a prediction made by the NeSy
model becomes easier because of the justification that can be
obtained from s(CASP). Hence, having even a large number
of rules is less of a problem for an expert scrutinizing a par-
ticular prediction of the NeSy model.

In future, we plan to use NeSyFOLD for real-world tasks
such as interpretable breast cancer prediction. Another inter-
esting application is to classify images of unseen classes by
constructing rules having predicates from an existing rule-
set. This would alleviate the problem of retraining a CNN
for classes with slight variations from the current learnt fea-
tures, e.g., classifying beach images by simply writing a rule
target(X,‘beach’) :- sand(X), water(X).

where sand and water are pre-learnt predicates.
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