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Abstract
Recent works have successfully extended large-scale text-to-
image models to the video domain, producing promising re-
sults but at a high computational cost and requiring a large
amount of video data. In this work, we introduce Condition-
Video, a training-free approach to text-to-video generation
based on the provided condition, video, and input text, by
leveraging the power of off-the-shelf text-to-image genera-
tion methods (e.g., Stable Diffusion). ConditionVideo gen-
erates realistic dynamic videos from random noise or given
scene videos. Our method explicitly disentangles the mo-
tion representation into condition-guided and scenery mo-
tion components. To this end, the ConditionVideo model is
designed with a UNet branch and a control branch. To im-
prove temporal coherence, we introduce sparse bi-directional
spatial-temporal attention (sBiST-Attn). The 3D control net-
work extends the conventional 2D controlnet model, aiming
to strengthen conditional generation accuracy by addition-
ally leveraging the bi-directional frames in the temporal do-
main. Our method exhibits superior performance in terms of
frame consistency, clip score, and conditional accuracy, out-
performing compared methods. For the project website, see
https://pengbo807.github.io/conditionvideo-website/

1 Introduction
Diffusion-based models (Song, Meng, and Ermon 2021;
Song et al. 2021; Ho, Jain, and Abbeel 2020; Sohl-Dickstein
et al. 2015) demonstrates impressive results in large-scale
text-to-image (T2I) generation (Ramesh et al. 2022; Saharia
et al. 2022; Gafni et al. 2022; Rombach et al. 2022). Much
of the existing research proposes to utilize image generation
models for video generation. Recent works (Singer et al.
2023; Blattmann et al. 2023; Hong et al. 2023) attempt to
inflate the success of the image generation model to video
generation by introducing temporal modules. While these
methods reuse image generation models, they still require
a massive amount of video data and training with signifi-
cant amounts of computing power. Tune-A-Video (Wu et al.
2022b) extends Stable Diffusion (Rombach et al. 2022) with
additional attention and a temporal module for video edit-
ing by tuning one given video. It significantly decreases the
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training workload, although an optimization process is still
necessary. Text2Video (Khachatryan et al. 2023) proposes
training-free generation, however, the generated video fails
to simulate natural background dynamics. Consequently, the
question arises: How can we effectively utilize image gener-
ation models without any optimization process and embed
controlling information as well as modeling dynamic back-
grounds for video synthesis?

We propose ConditionVideo, a training-free conditional-
guided video generation method that utilizes off-the-shelf
text-to-image generation models to generate realistic videos
without any fine-tuning. Specifically, aiming at generat-
ing dynamic videos, our model disentangles the represen-
tation of motion in videos into two distinct components:
conditional-guided motion and scenery motion, enabling the
generation of realistic and temporally consistent frames.
By leveraging this disentanglement, we propose a pipeline
that consists of a UNet branch and a control branch, with
two separate noise vectors utilized in the sampling process.
Each noise vector represents conditional-guided motion and
scenery motion, respectively. To further enforce tempo-
ral consistency, we introduce sparse bi-directional spatial-
temporal attention (sBiST-Attn) and a 3D control branch that
leverages bi-directional adjacent frames in the temporal di-
mension to enhance conditional accuracy. Our Condition-
Video method outperforms the baseline methods in terms of
frame consistency, conditional accuracy, and clip score.

Our key contributions are as follows. (1) We propose Con-
ditionVideo, a training-free video generation method that
leverages off-the-shelf text-to-image generation models to
generate conditional-guided videos with realistic dynamic
backgrounds. (2) Our method disentangles motion repre-
sentation into conditional-guided and scenery motion com-
ponents via a pipeline that includes a U-Net branch and
a conditional-control branch. (3) We introduce sparse bi-
directional spatial-temporal attention (sBiST-Attn) and a 3D
conditional-control branch to improve conditional accuracy
and temporal consistency.

2 Related Work
2.1 Diffusion Models
Image diffusion models have achieved significant success in
the field of generation (Ho, Jain, and Abbeel 2020; Song,
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Figure 1: Our training-free method generates videos conditioned on different inputs. In (a), the illustration showcases the
process of generation using provided scene videos and pose information, with the background wave exhibiting a convincingly
lifelike motion. (b), (c), and (d) are generated based on condition only, which are pose, depth, and segmentation, respectively.

Meng, and Ermon 2021; Song et al. 2021), surpassing nu-
merous generative models that were once considered state-
of-the-art (Dhariwal and Nichol 2021; Kingma et al. 2021).
With the assistance of large language models (Radford et al.
2021; Raffel et al. 2020), current research can generate
videos from text, contributing to the prosperous of image
generation (Ramesh et al. 2022; Rombach et al. 2022).

Recent works in video generation (Esser et al. 2023; Ho
et al. 2022b; Wu et al. 2022b, 2021, 2022a; Hong et al.
2023; Wang et al. 2023b,c) aim to emulate the success of
image diffusion models. Video Diffusion Models (Ho et al.
2022b) extends the UNet (Ronneberger, Fischer, and Brox
2015) to 3D and incorporates factorized spacetime attention
(Bertasius, Wang, and Torresani 2021). Imagen Video (Sa-
haria et al. 2022) scales this process up and achieves superior
resolution. However, both approaches involve training from
scratch, which is both costly and time-consuming. Alter-
native methods explore leveraging pre-trained text-to-image
models. Make-A-Video (Singer et al. 2023) facilitates text-
to-video generation through an expanded unCLIP frame-
work. Tune-A-Video (Wu et al. 2022b) employs a one-shot
tuning pipeline to generate edited videos from input guided

by text. However, these techniques still necessitate an opti-
mization process. Compared to these video generation meth-
ods, our training-free method can yield high-quality results
more efficiently and effectively.

2.2 Conditioning Generation
Recently, diffusion-based conditional video generation re-
search has begun to emerge, gradually surpassing GAN-
based methods (Mirza and Osindero 2014; Wang et al. 2018;
Chan et al. 2019; Wang et al. 2019; Liu et al. 2019; Siaro-
hin et al. 2019; Zhou et al. 2022; WANG et al. 2020;
Wang et al. 2020, 2022). For the diffusion model-based im-
age generation methods, a lot of works (Mou et al. 2023;
Zhang and Agrawala 2023) aim to enhance controllability
through the integration of additional annotations. Control-
Net (Zhang and Agrawala 2023) duplicates and fixes the
original weight of the large pre-trained T2I model. Utilizing
the cloned weight, ControlNet trains a conditional branch
for task-specific image control.

Recent developments in the field of diffusion-based con-
ditional video generation have been remarkable, branching
into two main streams: text-driven video editing, as demon-
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strated by (Molad et al. 2023; Esser et al. 2023; Ceylan,
Huang, and Mitra 2023; Liu et al. 2023; Wang et al. 2023a;
Qi et al. 2023; Hu and Xu 2023), and innovative video cre-
ation, featured in works like (Ma et al. 2023; Khachatryan
et al. 2023; Hu and Xu 2023; Chen et al. 2023; Zhang et al.
2023). Our work is part of this exciting second stream.

In the realm of video generation, while systems like
Follow-Your-Pose (Ma et al. 2023) and Control-A-Video
(Chen et al. 2023) are built upon an extensive training pro-
cess, methods such as Text2Video-Zero (Khachatryan et al.
2023) and ControlVideo (Zhang et al. 2023) align more
closely with our approach. A common challenge among
these methods, however, is their limited capability in gen-
erating dynamic and vibrant backgrounds, a hurdle our
methodology overcomes with our unique application of dy-
namic scene referencing.

3 Preliminaries

Stable Diffusion. Stable Diffusion employs an autoen-
coder (Van Den Oord, Vinyals et al. 2017) to preprocess im-
ages. An image x in RGB space is encoded into a latent form
by encoder E and then decoded back to RGB space by de-
coder D. The diffusion process operates with the encoded
latent z = E(x).

For the diffusion forward process, Gaussian noise is iter-
atively added to latent z0 over T iterations (Ho, Jain, and
Abbeel 2020):

q (zt | zt−1) = N
(
zt;

√
1− βtzt−1, βtI

)
,

t = 1, 2, . . . , T,
(1)

where q (zt | zt−1) denotes the conditional density function
and β is given.

The backward process is accomplished by a well-trained
Stable Diffusion model that incrementally denoises the la-
tent variable ẑ0 from the noise zT . Typically, the T2I dif-
fusion model leverages a UNet architecture, with text con-
ditions being integrated as supplementary information. The
trained diffusion model can also conduct a deterministic
forward process, which can be restored back to the origi-
nal z0. This deterministic forward process is referred to as
DDIM inversion (Song, Meng, and Ermon 2021; Dhariwal
and Nichol 2021). We will refer to zT as the noisy latent
code and z0 as the original latent in the subsequent section.
Unless otherwise specified, the frames and videos discussed
henceforth refer to those in latent space.

ControlNet. ControlNet (Zhang and Agrawala 2023) en-
hances pre-trained large-scale diffusion models by introduc-
ing extra input conditions. These inputs are processed by a
specially designed conditioning control branch, which orig-
inates from a clone of the encoding and middle blocks of
the T2I diffusion model and is subsequently trained on task-
specific datasets. The output from this control branch is
added to the skip connections and the middle block of the
T2I model’s UNet architecture.

4 Methods
ConditionVideo leverages guided annotation, denoted as
Condtion, and optional reference scenery, denoted as
V ideo, to generate realistic videos. We start by introducing
our training-free pipeline in Sec. 4, followed by our method
for modeling motion in Sec. 4.2. In Sec. 4.3, we present our
sparse bi-directional spatial-temporal attention (sBiST-Attn)
mechanism. Finally, a detailed explanation of our proposed
3D control branch is provided in Sec. 4.4.

4.1 Training-Free Sampling Pipeline
Fig. 2 depicts our proposed training-free sampling pipeline.
Inheriting the autoencoder D(E(·)) from the pre-trained im-
age diffusion model (Sec. 3), we conduct video transforma-
tion between RGB space and latent space frame by frame.
Our ConditionVideo model contains two branches: a UNet
branch and a 3D control branch. A text description is fed
into both branches. Depending on the user’s preference for
customized or random background, the UNet branch accepts
either the inverted code zINV

T of the reference background
video or the random noise ϵb. The condition is fed into the
3D control branch after being added with random noise ϵc.
We will further describe this disentanglement input mecha-
nism and random noise ϵb, ϵc in Sec. 4.2.

Our branch uses the original weight of ControlNet (Zhang
and Agrawala 2023). As illustrated on the right side of Fig.
2, we modify the basic spatial-temporal blocks of these two
branches from the conditional T2I model by transforming
2D convolution into 3D with 1×3×3 kernel and replac-
ing the self-attention module with our proposed sBiST-Attn
module (Sec. 4.3). We keep other input-output mechanisms
the same as before.

4.2 Strategy for Motion Representation
Disentanglement for Latent Motion Representation In
conventional diffusion models for generation (e.g., Control-
Net), the noise vector ϵ is sampled from an i.i.d. Gaussian
distribution ϵ ∼ N (0, I) and then shared by both the control
branch and UNet branch. However, if we follow the origi-
nal mechanism and let the inverse background video’s latent
code to shared by two branches, we observe that the back-
ground generation results will be blurred (Experiments are
shown in Appx. B.). This is because using the same latent to
generate both the foreground and the background presumes
that the foreground character has a strong relationship with
the background. Motivated by this observation, we explic-
itly disentangle the video motion presentation into two com-
ponents: the motion of the background and the motion of
the foreground. The background motion is generated by the
UNet branch whose latent code is presented as background
noise ϵb ∼ N (0, I). The foreground motion is represented
by the given conditional annotations while the appearance
representation of the foreground is generated from the noise
ϵc ∼ N (0, I).

Strategy for Temporal Consistency Motion Representa-
tion To attain temporal consistency across consecutively
generated frames, We investigated selected noise patterns
that facilitate the creation of cohesive videos. Consistency
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Figure 2: Illustration of our proposed training-free pipeline. (Left) Our framework consists of a UNet branch and a 3D control
branch. The UNet branch receives either the inverted reference video zINV

T or image-level noise ϵb for background generation.
The 3D control branch receives an encoded condition for foreground generation. Text description is fed into both branches.
(Right) Illustration of our basic spatial-temporal block. We employ our proposed sBiST-Attn module into the basic block
between the 3D convolution block and the cross-attention block. The detail of sBiST-Attn module is shown in Fig. 3

in foreground generation can be established by ensuring that
the control branch produces accurate conditional controls.
Consequently, we propose utilizing our control branch in-
put for this purpose: Ccond = ϵc + Ec(Condition), ϵci ∈
ϵc, ϵci ∼ N (0, I) ⊆ RH×W×C , ∀i, j = 1, ..., F, ϵci =
ϵcj , where H , W , and C denote the height, width, and chan-
nel of the latent zt, F represents the total frame number,
Ccond denotes the encoded conditional vector which will
be fed into the control branch and Ec denotes the condi-
tional encoder. Additionally, it’s important to observe that
ϵci corresponds to a single frame of noise derived from the
video-level noise denoted as ϵc. The same relationship ap-
plies to ϵbi and ϵb as well. When generating backgrounds,
there are two approaches we could take. The first is to create
the background using background noise ϵb: ϵbi ∈ ϵb, ϵbi ∼
N (0, I) ⊆ RH×W×C

ϵbi = ϵbj , ∀i, j = 1, ..., F. The second approach is to gen-
erate the background from an inverted latent code, zINV

T , of
the reference scenery video. Notably, we observed that the
dynamic motion correlation present in original video is re-
tained when it undergoes DDIM inversion. So we utilize this
latent motion correlation to generate background videos.

During the sampling process, in the first forward step
t = T , we feed the background latent code zINV

T or ϵb
into the UNet branch and the condition Ccond into our 3D
control branch. Then, during the subsequent reverse steps
t = T − 1, .., 0, we feed the denoised latent zt into the UNet
branch while still using Ccond for 3D control branch input.
The details of the sampling algorithm are shown in Alg. 1

4.3 Sparse Bi-directional Spatial-Temporal
Attention (sBiST-Attn)

Taking into account both temporal coherence and computa-
tional complexity, we propose a sparse bi-directional spatial-

Algorithm 1: Sampling Algorithm
Input: Condition, Text, V ideo(Optional)
Parameter: T
Output: X̂0:generated video

1: if V ideo is not None then
2: zV ideo

0 ← E(V ideo) //encode video
3: zINV

T ← DDIM Inversion(zV ideo
0 , T,UNetBranch)

4: zT ← zINV
T //customize background

5: else
6: zT ← ϵb, //random background
7: end if
8: Ccond ← ϵc + Ec(Condition) //encode condition
9: Ctext ← Et(Text) //encode input prompt

10: for t = T...1 do
11: ct ← ConrtolBranch(Ccond, t, Ctext)
12: ẑt−1 ← DDIM Backward(zt, t, Ctext, ct,

UNetBranch)
13: end for
14: X̂0 ← D(ẑ0)
15: return X̂0

temporal attention (sBiST-Attn) mechanism, as depicted in
Fig. 3. For video latent zit, i = 1, ..., F , the attention ma-
trix is computed between frame zit and its bi-directional
frames, sampled with a gap of 3. This interval was chosen
after weighing frame consistency and computational cost
(see Appx. C.1). For each zit in zt, we derive the query fea-
ture from its frame zit . The key and value features are de-
rived from the bi-directional frames z3j+1

t , j = 0, ..., ⌊(F −
1)/3⌋. Mathematically, our sBiST-Attn can be expressed as:
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Figure 3: Illustration of ConditionVideo’s sBiST-Attn. The
purple blocks signify the frame we’ve selected for concate-
nation, which can be computed for key and value. The pink
block represents the current block from which we’ll cal-
culate the query. The blue blocks correspond to the other
frames within the video sequence. Latent features of frame
zit , bi-directional frames z3j+1

t , j = 0, ..., ⌊(F − 1)/3⌋
are projected to query Q, key K and value V . Then the
attention-weighted sum is computed based on key, query,
and value. The parameters are the same as the ones in the
self-attention module of the pre-trained image model.


Attention(Q,K, V ) = Softmax

(
QKT

√
d

)
· V

Q = WQzit,K = WKz
[3j+1]
t , V = WV z

[3j+1]
t ,

j = 0, 1, . . . , ⌊(F − 1)/3⌋

(2)

where [·] denotes the concatenation operation, and
WQ,WK ,WV are the weighted matrices that are identical
to those used in the self-attention layers of the image gener-
ation model.

4.4 3D Control Branch
Frame-wise conditional guidance is generally effective, but
there may be instances when the network doesn’t cor-
rectly interpret the guide, resulting in an inconsistent con-
ditional output. Given the continuous nature of condition
movements, ConditionVideo propose enhancing conditional
alignment by referencing neighboring frames. If a frame
isn’t properly aligned due to weak control, other correctly
aligned frames can provide more substantial conditional
alignment information. In light of this, we design our con-
trol branch to operate temporally, where we choose to re-
place the self-attention module with the sBiST-Attn module
and inflate 2D convolution to 3D. The replacing attention
module can consider both previous and subsequent frames,
thereby bolstering our control effectiveness.

5 Experiments
5.1 Implementation Details
We implement our model based on the pre-trained weights
of ControlNet (Zhang and Agrawala 2023) and Stable Diffu-
sion (Rombach et al. 2022) 1.5. We generate 24 frames with
a resolution of 512 × 512 pixels for each video. During in-
ference, we use the same sampling setting as Tune-A-Video
(Wu et al. 2022b). More details can be found in Appx. D at
https://arxiv.org/abs/2310.07697.

5.2 Main results
In Fig. 1, we display the success of our training-free video
generation technique. The generated results from Condition-
Video, depicted in Fig. 1 (a), imitate moving scenery videos
and show realistic waves as well as generate the correct char-
acter movement based on posture. Notably, the style of the
backgrounds is distinct from the original guiding videos,
while the motion of the backgrounds is the same. Further-
more, our model can generate consistent backgrounds when
sampling ϵb from Gaussian noise based on conditional infor-
mation, as shown in Fig.1 (b),(c),(d). These videos showcase
high temporal consistency and rich graphical content.

5.3 Comparison
Compared Methods We compare our method with Tune-
A-Video (Wu et al. 2022b), ControlNet (Zhang and
Agrawala 2023), and Text2Video-Zero (Khachatryan et al.
2023). For Tune-A-Video, we first fine-tune the model on
the video from which the condition was extracted, and then
sample from the corresponding noise latent code of the con-
dition video.

Figure 4: Qualitative comparison condition on the pose.
“The Cowboy, on a rugged mountain range, Western paint-
ing style”. Our result outperforms in both temporal con-
sistency and pose accuracy, while others have difficulty in
maintaining either one or both of the qualities.

Qualitative Comparison Our visual comparison condi-
tioning on pose, canny, and depth information is presented
in Fig. 4, 5, and 6. Tune-A-Video struggles to align well
with our given condition and text description. ControlNet
demonstrates improvement in condition-alignment accuracy
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but suffers from a lack of temporal consistency. Despite the
capability of Text2Video to produce videos of exceptional
quality, there are still some minor imperfections that we
have identified and indicated using a red circle in the fig-
ure. Our model surpasses all others, showcasing outstanding
condition-alignment quality and frame consistency.

Figure 5: Qualitative comparison condition on canny. “A
man is runnin”. Tune-A-Video experiences difficulties with
canny-alignment, while ControlNet struggles to maintain
temporal consistency. Though Text2Video surpasses these
first two approaches, it inaccurately produces parts of the
legs that don’t align with the actual human body structure,
and the colors of the shoes it generates are inconsistent.

Method FC(%) CS PA (%)

Tune-A-Video 95.84 30.74 26.13
ControlNet 94.22 32.97 79.51
Text2Video-Zero 98.82 32.84 78.50
Ours 99.02 33.03 83.12

Table 1: Quantitative comparisons condition on pose. FC,
CS, PA represent frame consistency, clip score and pose-
accuracy, respectively

Quantitative Comparison We evaluate all the methods
using three metrics: frame consistency (Esser et al. 2023;
Wang et al. 2023a; Radford et al. 2021), clip score (Ho et al.
2022a; Hessel et al. 2021; Park et al. 2021), and pose accu-
racy (Ma et al. 2023). As other conditions are hard to evalu-
ate, we use pose accuracy for conditional consistency only.
The results on different conditions are shown in Tab. 1 and

Figure 6: Qualitative comparison condition on depth. “ice
coffee”. All three methods used for comparison have the
problem of changing the appearance of the object when the
viewpoint is switched, and only our method ensures the con-
sistency of the appearance before and after.

2. We achieve the highest frame consistency, and clip score
in all conditions, indicating that our method exhibits the best
time consistency and text alignment. We also have the best
pose-video alignment among the other three techniques. The
conditions are randomly generated from a group of 120 dif-
ferent videos. For more information please see Appx. D.2.

5.4 Ablation Study
We conduct an ablation study on the pose condition, tem-
poral module, and 3D control branch. The qualitative result
is visualized in Fig. 7. In our research, we modify each ele-
ment individually for comparative analysis, ensuring that all
other settings remain constant.

Ablation on Pose Condition We evaluate performance
with and without using pose, as shown in Fig. 7. Without
pose conditioning, the video is fixed as an image, while the
use of pose control allows for the generation of videos with
certain temporal semantic information.

Ablation on Temporal Module Training-free video gen-
eration heavily relies on effective spatial-temporal model-
ing. To evaluate the efficacy of our temporal attention mod-
ule, We remove our sBiST-attention mechanism and replace
it with a non-temporal self-attention mechanism, a Sparse-
Causal attention mechanism (Wu et al. 2022b) and a dense
attention mechanism (Wang et al. 2023a) which attends to
all frames for key and value.
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Method Condition FC(%) CS

Tune-A-Video - 95.84 30.74

ControlNet Canny 90.53 29.65
Text2Video-Zero Canny 97.44 28.76
Ours Canny 97.64 29.76
ControlNet Depth 90.63 30.16
Text2Video-Zero Depth 97.46 29.38
Ours Depth 97.65 30.54
ControlNet Segment 91.87 31.85
Ours Segment 98.13 32.09

Table 2: Quantitative comparisons condition on canny, depth
and segment.

Figure 7: Ablations of each component, generated from
image-level noise. “The astronaut, in a spacewalk, sci-fi dig-
ital art style”. 1st row displays the generation result with-
out pose conditioning. 2nd and 3rd rows show the results
after replacing our sBiST-Attn with self-Attn and SC-Attn
(Wu et al. 2022b). 4th row presents the result with the 2D
condition-control branch.

The results are presented in Tab. 3. A comparison of tem-
poral and non-temporal attention underlines the importance
of temporal modeling for generating time-consistent videos.
By comparing our method with Sparse Causal attention, we
demonstrate the effectiveness of ConditionVideo’s sBiST at-

Method FC(%) Time

w/o Temp-Attn 94.22 31s
S-C Attn 98.77 43s
sBiST-Attn 99.02 1m30s
Full-Attn 99.03 3m37s

Table 3: Ablations on temporal module. Time represents the
duration required to generate a 24-frame video with a size of
512x512.

Method FC(%) CS (%) PA (%)

2D control 99.03 33.11 81.26
3D control 99.02 33.03 83.12

Table 4: Ablation on 3D control branch. FC, CS, PA rep-
resent frame consistency, clip score, and pose-accuracy, re-
spectively.

tention module, proving that incorporating information from
bi-directional frames improves performance compared to us-
ing only previous frames. Furthermore, we observe almost
no difference in frame consistency between our method and
dense attention, despite the latter requiring more than double
our generation duration.

Ablations on 3D Control Branch We compare our 3D
control branch with a 2D version that processes conditions
frame-by-frame. For the 2D branch, we utilize the original
ControlNet conditional branch. Both control branches are
evaluated in terms of frame consistency, clip score, and pose
accuracy. Results in Tab. 4 show that our 3D control branch
outperforms the 2D control branch in pose accuracy while
maintaining similar frame consistency and clip scores. This
proves that additional consideration of bi-directional frames
enhances pose control.

6 Discussion and Conclusion
In this paper, we propose ConditionVideo, a training-free
method for generating videos with vivid motion. This tech-
nique leverages a unique motion representation, informed
by background video and conditional data, and utilizes our
sBiST-Attn mechanism and 3D control branch to enhance
frame consistency and condition alignment. Our experi-
ments show that ConditionVideo can produce high-quality
videos, marking a significant step forward in video genera-
tion and AI-driven content creation.

During our experiments, we find that our method is ca-
pable of generating long videos. Moreover, this approach is
compatible with the hierarchical sampler from ControlVideo
(Zhang et al. 2023), which is used for generating long
videos. Despite the effectiveness of condition-based and
temporal attention in maintaining video coherence, chal-
lenges such as flickering in videos with sparse conditions
like pose data were noted. To address this issue, a potential
solution would involve incorporating more densely sampled
control inputs and additional temporal-related structures.
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