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Abstract

Referring 3D instance segmentation is a challenging task
aimed at accurately segmenting a target instance within a 3D
scene based on a given referring expression. However, previ-
ous methods have overlooked the distinct roles played by dif-
ferent words in referring expressions. Additionally, they have
failed to incorporate the positional relationship within refer-
ring expressions with the spatial correlations in 3D scenes.
To alleviate these issues, we present a novel model called X-
RefSeg3D, which constructs a cross-modal graph for the in-
put 3D scene and unites textual and spatial relationships for
reasoning via graph neural networks. Our approach begins by
capturing object-specific text features, which are then fused
with the instance features to construct a comprehensive cross-
modal scene graph. Subsequently, we integrate the obtained
cross-modal features into graph neural networks, leveraging
the K-nearest algorithm to derive explicit instructions from
expressions and factual relationships in scenes. This enables
the effective capture of higher-order relationships among in-
stances, thereby enhancing feature fusion and facilitating rea-
soning. Finally, the refined feature undergoes a matching
module to compute the ultimate matching score. Experimen-
tal results on ScanRefer demonstrate the effectiveness of our
method, surpassing previous approaches by a substantial mar-
gin of +3.67% in terms of mIOU. The code and models are
available at https://github.com/qzp2018/X-RefSeg3D.

Introduction
Understanding natural language and its relationship with vi-
sual information forms the fundamental basis for establish-
ing a connection between humans and machines in the realm
of artificial intelligence. Given that real-life scenarios inher-
ently exist in three-dimensional (3D) space, the integration
of language and spatial information within 3D environments
holds immense value across diverse domains, encompass-
ing VR/AR applications, navigation(Wu et al. 2022a), scene
understanding (Peng et al. 2022), and intelligent perception
(Zheng et al. 2022; Deng et al. 2022). Several tasks are pro-
posed to promote the research in this area, including Multi-
modal learning (Ma et al. 2022, 2023; Ji et al. 2022b, 2020,
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Figure 1: (a) The previous TGNN (Huang et al. 2022) fuses
instance features and textual features and then calculates
the matching score of each instance feature to find the tar-
get instance. (b) Our proposed X-RefSeg3D first integrates
entity-related linguistic information into visual features to
construct a cross-modal scene graph and then carries out
textual relation interaction and spatial relation interaction.
After jointly exploiting beneficial vision-language cues, an
accurate target instance matching can thus be obtained.

2022a; Yang et al. 2023; Wu et al. 2023), 3D Representa-
tion Learning (Wang et al. 2023; Zhao et al. 2023; Huang
et al. 2023) and so on. One such task, known as referring 3D
instance segmentation, involves the identification and seg-
mentation of specific 3D objects described through natural
language. This task is both novel and highly challenging due
to the unordered and sparse nature of 3D point clouds, cou-
pled with complex spatial and semantic relationships exist-
ing in the scene and expression, making the learning process
significantly more demanding.

The TGNN model (Huang et al. 2022) made an initial en-
deavour to tackle the challenging task of referring 3D in-
stance segmentation. Specifically, as shown in Figure 1(a),
TGNN incorporates instance features with textual features
and calculates the matching score of each instance feature
to identify the target instance referred to in the expression.
Despite demonstrating superior performance and employing
a straightforward pipeline, TGNN does have certain limita-
tions that hinder its effectiveness. One notable drawback lies
in its inability to explicitly prioritize the entity description
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words in the expression, which ultimately undermines its re-
sults. Additionally, TGNN overlooks the vital spatial rela-
tionships hinted at in expressions and their alignment with
spatial relationships in 3D scenes. As a result, it falls short
of accurately capturing the complex relationships within the
3D scene, leading to suboptimal segmentation outcomes.

By observing how humans identify objects in real-world
situations using referring expressions, we gain valuable in-
sights to address these challenges. Humans first decode the
main objects in scenes based on these descriptions and then
understand the relationships the descriptions convey. This
comprehension, when combined with the scene’s spatial re-
lationships, helps determine the object’s identity. For exam-
ple, when identifying the target instance in Figure 1, peo-
ple first focus on terms like “red ottoman” and “couch”.
Next, they merge the scene’s spatial indicators with descrip-
tors like “at the right” from the expression. This combina-
tion of textual and spatial information enables humans to
accurately identify the mentioned instance. Inspired by hu-
man cognitive reasoning, we introduce X-RefSeg3D, show-
cased in Figure 1(b). This model is specifically designed
for high-level comprehension and fine-grained feature fu-
sion. X-RefSeg3D consists of two key modules: the Entity-
Aware Fusion (EAF) and the Relation-Driven Interaction
(RDI) modules. The EAF module selectively extracts tex-
tual features that describe entities, subsequently integrat-
ing them into the instance feature to craft a cross-modal
scene graph. Through this strategy, every graph node em-
bodies both visual and textual descriptors, enhancing clarity
and distinctiveness. The RDI module focuses on high-order
semantic comprehension. It comprises both textual relation
interaction and spatial relation interaction modules. By ex-
amining relationships within expressions and 3D scenes, it
forms both the textual relation graph and the spatial rela-
tion graph, respectively. Merging these graphs enables us to
combine explicit instructions from expressions with factual
relationships in scenes, yielding a comprehensive represen-
tation enriched with both relation and attribute. Ultimately,
X-RefSeg3D identifies the target instance by comparing the
comprehensive representation of each instance with the ex-
pression, ensuring accurate matching. Our main contribu-
tions are summarized as follows:

• We propose the Entity-Aware Fusion (EAF) module,
which facilitates the modelling of relationships between
expressions and objects, enabling the accurate construc-
tion of the object-specific cross-modal scene graph, each
node of which embodies both visual and textual descrip-
tors, enhancing clarity and distinctiveness.

• We introduce the Relation-Driven Interaction (RDI)
module to achieve a high-order semantic comprehension.
By examining relationships within expressions and 3D
scenes, the model combines explicit instructions from ex-
pressions with factual relationships in scenes, yielding
a comprehensive representation enriched with both rela-
tion and attribute.

• The incorporation of EAF and RDI into the X-RefSeg3D
model yields a significant enhancement. In comparison to
the previous state-of-the-art (SOTA) method utilizing the

same backbone, our approach demonstrates a remarkable
improvement of +3.67% mIOU.

Related Work
3D Instance Segmentation
3D Instance Segmentation has gained increasing attention
in the field of 3D vision, and a variety of methods have been
proposed. Most methods can be divided into two-stage or
single-stage. Two-stage methods (Lee et al. 2018; Hou, Dai,
and NieBner 2019; Yang et al. 2019) involve separate ob-
ject detection and instance segmentation steps, offering ad-
vantages such as higher segmentation accuracy and better
precision for complex scenes. On the other hand, one-stage
methods (Elich et al. 2019; Jean et al. 2019; Schult et al.
2022) directly perform object detection and instance seg-
mentation simultaneously in a single step, which offers ad-
vantages such as simplicity, efficiency, real-time processing,
and end-to-end learning. Following TGNN, our model also
adopts the pre-trained SCN model (Retinskiy 2019) as our
visual feature extractor.

3D Visual Grounding
The 3D Visual Grounding task (Wu et al. 2022b; Yuan et al.
2021; Feng et al. 2021; Cai et al. 2022) is instrumental in
enabling computers to comprehend natural language instruc-
tions. This field has witnessed significant advancements due
to the availability of various 3D Visual Grounding datasets,
including ScanNetv2 (Dai et al. 2017), ScanRefer (Chen,
Chang, and Nießner 2020), Sr3D and Nr3D (Achlioptas
et al. 2020). Most existing approaches in this area adopt
two-stage methods (Feng et al. 2021; Zhao et al. 2021; Yuan
et al. 2021), treating vision grounding as a detection-then-
matching task. Besides, TGNN introduces a related task
called Referring 3D Instance Segmentation, which aims to
segment the target instance in 3D scenes based on a query
expression. Referring 3D Instance Segmentation offers sev-
eral advantages over the 3D Visual Grounding task. For ex-
ample, it exhibits finer target localization capabilities, pro-
vides more precise identification of target instances, and al-
leviates ambiguity problems. These advantages highlight the
great significance and application value of Referring 3D In-
stance Segmentation task. In this paper, we will continue to
explore this task and further exploit its potential.

Graph-Based Reasoning
Graph neural networks (GNNs) play a vital role in content
construction by leveraging the graph structure to incorpo-
rate contextual information, improving content comprehen-
sion. GNNs are widely applied in REC (Yang, Li, and Yu
2019, 2020), RES (Huang et al. 2020), 3D Visual Ground-
ing (Feng et al. 2021), and other tasks. In the task of Re-
ferring 3D Instance Segmentation, TGNN utilizes GNN lay-
ers to compute an attention map for guiding the aggrega-
tion of multimodal node information. However, the usage
of GNNs in TGNN is rudimentary, leading to limited per-
formance. In this paper, we propose a more carefully de-
signed GNN, which has more precise context modelling,
better cross-modal feature fusion, and interpretability.
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Figure 2: An overview of our proposed network. Different colored circles in the picture represent different objects, i.e. “red”
means ottoman, and “blue” means “couch”. Our method consists of the Entity-Aware Fusion (EAF) module and the Relation-
Driven Interaction (RDI) module.

Method
Referring 3D instance segmentation is the task that aims to
segment the target instance out of the 3D scene according
to the expression. Following TGNN (Huang et al. 2022), we
transform the task into a matching problem. First, we use a
pre-trained 3D instance segmentation model to extract point
features and predict instance masks and corresponding cen-
tre coordinates. Second, We introduce a novel Entity-Aware
Fusion (EAF) module that generates a directed cross-modal
scene graph Ĝ by fusing entity description language features
with corresponding instance features and utilizing relative
spatial relations. Third, a Relation-Driven Interaction (RDI)
module is proposed, it enhances the cross-modal features
by integrating the surrounding instances’ features, helping
the model better understand the relative position relationship
contained within space and expression. Lastly, the model is
trained on two complementary loss functions and generates
the final prediction score based on refined features.

Visual and Linguistic Feature Extraction
Our model adopts the 3D instance segmentation model and
mask prediction algorithm consistent with TGNN to ex-
tract instance masks, I = {I1, I2, ..., IC}, and the corre-
sponding visual features, F = {f1, f2, ..., fC}, where C
is the number of instances segmented within the scene and
fi ∈ RCf (i ∈ {1, 2, ..., C}). For linguistic feature repre-
sentation, a pre-trained GloVE model (Pennington, Socher,
and Manning 2014) is used to embed each word into a 300-

d vector and then encoded by a language encoder, such as
GRU (Cho et al. 2014) and BERT (Devlin et al. 2019), into
linguistic features L = {l1, l2, ..., lT }, where T is the length
of expression and lt ∈ RCl×1(t ∈ {1, 2, ..., T}) denotes
feature of the t-th word.

Entity-Aware Fusion
In this section, we introduce the Entity-Aware Fusion Mod-
ule, which effectively integrates entity information from the
expression with corresponding objects. Additionally, this
module utilizes the fused cross-modal features and spatial
positions of instance to construct a comprehensive cross-
modal scene graph (Fei et al. 2023), which is used for further
inference.

Cross-Modal Entity Perception and Fusion. Words of
different parts of speech play various roles in the expression,
and entity-related words are the key to identifying the target
instance. Following (Yu et al. 2018; Yang, Li, and Yu 2019;
Huang et al. 2020), we divide the words into four different
types: entity, attribute, relation, and unnecessary part words,
and predict the weight of each type for each word as follows:

wt = softmax(W2σ(W1lt + b1) + b2), (1)

where W1 ∈ RCw×Cl , W2 ∈ R4×Cw , b1 ∈ RCw×1 and
b2 ∈ R4×1 are learnable parameters, σ(·) is sigmoid func-
tion, wt = [went

t , wattr
t , wrel

t , wun
t ], denotes the weight of

entity, attribute, relation and unnecessary part for t-th word.
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Next, an attention map is calculated between textual
features L = {l1, l2, ..., lT } and instance features F =
{f1, f2, ..., fC} as follows:

f j
i = MLPj

1(fi), (2)

mj
t,i =

exp((W3lt + b3)
T (W4f

j
i + b4))∑C

n=1 exp((W3lt + b3)T (W4f
j
n + b4))

, (3)

where MLPj
1(·) are multilayer perceptrons consisting of sev-

eral linear and a LeakyReLU layer (Maas et al. 2013), f j
i ∈

RCf×1, W3 and W4 ∈ RCm×Cf , b3 and b4 ∈ RCm×1 are
learnable parameters, j ∈ {1, 2, · · · , r}, r is a hyperparam-
eter which sets 3. Each attention weight mj

t,i represents the
relevance score between t-th word and i-th instance in the
scene. We then use the attention map combined with words’
entity weights {went

t }Tt=1 and attribute weights {wattr
t }Tt=1

to compute the probability αj
t,i, indicating the word lt is the

entity-related word refers to the instance Ii:

αj
t,i = (went

t + wattr
t )

exp(mj
t,i)∑C

n=1 exp(m
j
t,n)

. (4)

After obtaining the entity-related matching degree between
words and instance features, the entity description informa-
tion of the entire sentence for each instance βi can be ag-
gregated. Specifically, we adopt a simplified bilinear fusion
strategy (Ben-younes et al. 2017), combining semantic in-
formation with the corresponding instance feature fi to ob-
tain the cross-modal features µi:

βj
i =

T∑
t=1

αj
t,ilt, (5)

µi =
r∑

j=1

(f j
i ⊙ βj

i ), (6)

where ⊙ denotes element-wise product and µi ∈ RCl×1.

Directed Scene Graph Relationship Construction. Ex-
ploring relative spatial relations among instances within the
scene is necessary for referring segmentation. Not only be-
cause spatial information commonly appears in referring
expressions, but also because spatial relationships consti-
tute a crucial aspect of visual relationships within scenes
(Feng et al. 2021). To fully explore the spatial relationship
of the instances in the scene, we firstly construct the cross-
modal graph G = (V,E, U), where V = {vi}Ci=1 is the
set of vertices corresponding to the central coordinates of
instance masks, I = {I1, I2, · · · , IC}; E = {eij}Ci,j=1 is
the set of edges, which represent the type of spatial rela-
tionship between different instances; U = {ui}Ci=1 rep-
resents the fused cross-modal features. Specifically, to get
the type of edge, we divide the three-dimensional space
into 8 quadrants ranging from I to VIII, and the type of
edge is determined by computing the relative position vector
(xi−xj , yi−yj , zi−zj) based on the instance masks’ central
coordinates, where oi = (xi, yi, zi) and oj = (xj , yj , zj)
denote the i-th and j-th instance mask’s central coordinate.

Then the edge type can correspond to spatial relations like
“left”, “right”, “in front of” and “behind” according to dif-
ferent directions. Considering the relative distance also mat-
ters in spatial relationships, we first compute the longest dis-
tance between instance centers in the scene, and then use it
to normalize the distance between all instances. If the nor-
malized distance ratio is larger than 0.25, we take the edge
type as “No Relation”, which is the ninth spatial relation.

While the model has identified the type of each edge, it is
important to note that spatial relations can vary across dif-
ferent referring expressions. Therefore, it is logical to de-
vise specific gates for different types of edges, enabling the
capture of spatial relationships in referring expressions. The
possibility for each word’s edge type is computed as follows:

qt = wrel(W7σ(W6lt + b6) + b7), (7)

where W6 ∈ RCm×Cl , b6 ∈ RCm×1,W7 ∈ RN×Cm and
b7 ∈ RN×1 are learnable parameters, σ(·) is LeakyReLU
function, and N is the number of edge types (i.e., 9), which
represents the number of edge types. qt,s is the s-th element
of qt, which represents the probability of the word lt relates
to the edge type s. To determine the likelihood that the ex-
pression corresponds to a specific type of edge, our model
sums up the probability of words associated with each edge,
which is formulated as follows:

ps =

T∑
t=1

qt,s. (8)

So the cross-modal scene graph is expanded as Ĝ =
(V,E, U, P ), where P = {ps}Ns=1 is the weighted edge gate.

Relation-Driven Interaction
Combining expressions related to relative position with fac-
tual relationships in scenes is pivotal for identifying the tar-
get instance. For example, in the case of referring “it is
a red ottoman. the ottoman is at the right corner edge of
the couch”, there are several ottomans in the scene. By ex-
tracting the relative position relationship (“at the right”)
with other objects (“couch”) from the referring expression
and corresponding it to the position in the 3D scene, the
target ottoman can stand out from other candidates. It is
understandable that the objects utilized as auxiliary refer-
ences are neighbors of the referred instance. Distant objects,
on the other hand, offer little assistance in positioning and
may even cause interference. So we further introduce the
Relation-Driven Interaction (RDI) module, which employs
a K-nearest algorithm to carry out local perception. This
module facilitates the aggregation of positional information
within expressions and scenes, contributing to better seman-
tic modeling and finer cross-modal fusion.

Textual Relation Interaction. To fully leverage
positional-related information in the referring expres-
sion, we fuse the positional text features with previously
obtained instances’ features, similar to the entity description
feature fusion:

me
t,i =

exp((W3lt + b3)
T (W4µi + b4))∑C

n=1 exp((W3lt + b3)T (W4µn + b4))
, (9)
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γt,i = wrel
t

exp(me
t,i)∑C

n=1 exp(m
e
t,n)

, (10)

βe
i =

T∑
t=1

γt,ilt, (11)

νi = MLP2(f
e
i ⊙ βe

i ), (12)
where me

t,i represents the relevance score between t-th word
and i-th instance in the scene, γt,i is the probability that
the word lt is positional related to the instance Ii. βe

i rep-
resents the sentence’s positional information for instance Ii,
and νi ∈ RCn×1 is the location-dependent cross-modal fea-
ture for instance Ii. Then weighted edge gate p is applied to
help aggregate the nearby positional features, enabling the
model to exploit the expression’s positional relationships in
different directions:

ν̂i =
K∑

k=1

pki ν
k
i , (13)

where ν̂i ∈ RCn×1 represents i-th instance’s refined po-
sitional feature, pki represents the weighted edge gate be-
tween i-th instance and its k-th neighbour, νki represents its
k-th neighbour’s positional related feature. A textual rela-
tion graph Gt is then obtained through the above operations,
whose vertices contain rich location information extracted
from the expression.

Spatial Relation Interaction. The relative position of ob-
jects in the scene plays a crucial role in accurately identi-
fying the target instance. So it is not just the referred in-
stance itself that matters, auxiliary references provided by
other instances within its nearby space also hold significant
importance. Consequently, the key to achieving precise lo-
calization lies in effectively extracting each instance’s spa-
tial relations. Inspired by TGNN (Huang et al. 2022), we
find relative position vectors are rich in positional informa-
tion, which can help instances perceive their relative posi-
tional relations in the scene. So we encode the relative po-
sition vector between i-th instance and its k-th neighbor as
follows:

rki = MLP3

(
[oi; o

k
i ; (oi − oki ); ∥oi − oki ∥]

)
, (14)

where rki ∈ RCn×1, oki represents the k-th neighbor’s center
coordinate of the i-th instance, the notation [; ] denotes the
concatenation operation, and ∥ · ∥ is the Euclidean distance.
Subsequently, the spatial position information of entities is
fused through aggregation with K neighbours. The process
is accomplished by element-wise products with their corre-
sponding relative position vectors as follows:

µ̃i = MLP4(µi), (15)

µ̂i =
K∑

k=1

(rki ⊙ µ̃k
i ), (16)

where µ̂i represents the refined i-th instance’s cross-modal
feature, µ̃k

i ∈ RCn×1 represents the k-th neighbour’s feature
of the i-th instance, and rki represents the corresponding rel-
ative position vector. And then the spatial relation graph Gs

is obtained.

Finally, we get the refined cross-modal feature xi by com-
bining the features of two relation graphs’ corresponding
vertices, which is rich in context information with high-level
semantics:

xi = LayerNorm(ν̂i + µ̂i + νi + µ̃i). (17)

Matching Module
Given the refined cross-modal features, our model takes two
complementary objectives to predict the matching score be-
tween instances and corresponding expressions, and the fi-
nal score is obtained by combining the two predicted scores.
Specifically, although the model obtains fine-grained cross-
modal features in earlier stages, it overlooks the significance
of global textual features. These global textual features con-
tain rich contextual information and are vital for correct
matching. Therefore we obtain the first matching score by
calculating the cosine similarity between the instances’ re-
fined features and the global context feature. We use max-
pooling strategy to get the global textual feature g ∈ RCl×1:

g = MaxPool(lt), t = {1, 2, · · · , T}. (18)

Then the cosine similarity score is computed as follows:

scosi = L2Norm(W8xi)⊙ L2Norm(W9g), (19)

where W8 ∈ RCl×Cn and W9 ∈ RCl×Cl are transformation
matrices, L2Norm(·) is the L2 normalization. Additionally,
the refined cross-modal feature itself contains rich informa-
tion, which refers to the target instance. So another score is
obtained by directly passing the refined features into a fully-
connected layer:

spdti = W10xi + b10, (20)

where W10 ∈ R1×Cn , b10 ∈ R1×1 are learnable parameters.
The final score Si is obtained by simply adding together

the cosine similarity score and the instance prediction score,
which is then used to predict the target instance:

Si = scosi + spdti . (21)

Loss Function. The training loss is a linear combination
of the cosine loss Lcos and the prediction loss Lpdt:

L = Lcos + Lpdt. (22)

Specifically, the loss functions Lcos and Lpdt are computed
as cross-entropy losses based on the cosine similarity score
and the instance prediction score, respectively.

Experiments
Dataset
Following TGNN, we conduct extensive experiments on the
ScanRefer dataset, which is built on top of the ScanNet
dataset. ScanNet is an RGB-D video dataset containing 2.5
million views in more than 1,500 scans, annotated using 3D
camera poses, surface reconstruction, and instance-level se-
mantic segmentation.
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Method mIOU(%) Acc@0.25 Acc@0.5 Memory Usage(GB)
TGNN(GRU) 26.10 35.00 29.00 22.69
Ours(GRU) 29.77 39.85 33.52 10.43

TGNN(BERT) 27.80 37.50 31.40 37.09
Ours(BERT) 29.94 40.33 33.77 22.29

Table 1: Comparison with state-of-the-art on ScanRefer.

EAF TRI SRI mIOU(%) Acc@0.25 Acc@0.5
(a) 24.66 33.02 27.64
(b) ✓ 26.78 35.84 30.29
(c) ✓ ✓ 28.65 38.28 32.50
(d) ✓ ✓ 29.19 39.25 32.65
(e) ✓ ✓ ✓ 29.77 39.85 33.52

Table 2: The results obtained after ablating different network
modules on the ScanRefer validation set. EAF represents
the Entity-Aware Fusion module, TRI represents the Textual
Relation Interaction module and SRI represents the Spatial
Relation Interaction module.

ScanRefer. ScanRefer comprises 51,583 descriptions of
11,046 3D objects from 800 real-world scenes captured us-
ing the ScanNet dataset. This dataset is groundbreaking as
it is the first large-scale collection to facilitate 3D object
grounding in point clouds through complex and diverse nat-
ural language descriptions. Each scene contains 13.81 ob-
jects and 64.48 descriptions on average, while each object is
associated with 4.67 descriptions, providing rich and varied
data for object-reference association tasks.

Implementation Details
For 3D instance segmentation, we adopt the pre-trained 3D
UNet feature extractor proposed in TGNN, whose parame-
ters are fixed during the training and testing. In our experi-
ments utilizing GRU as the language extractor, we employ
the ADAM optimizer with an initial learning rate of 1e-3
and adopt CosineAnnealingLR as the learning rate decay
strategy. The training process consisted of 48 rounds with
a batch size of 8, the total training time is around 8 hours.
For experiments utilizing BERT as the textual extractor, we
adopt the same optimizer and learning rate decay strategy
with the GRU mode. However, we update the parameters of
the BERT model and our model separately. The initial learn-
ing rate is set to 1e-5 for BERT and 1e-3 for our model. Both
BERT and our proposed model are trained for 64 epochs
with a batch size of 16, the total training and validation time
is around 11 hours. All experiments are implemented on Py-
Torch and a single 24-GB NVIDIA RTX-3090 GPU.

Quantitative Comparisons
To the best of our knowledge, this is the second work ad-
dressing the task of referring 3D instance segmentation.
We conduct a comparison with the first work, TGNN, uti-
lizing the evaluation metrics proposed earlier: mean IOU
and Acc@kIOU. As shown in Table 1, our method exhibits
a significant performance boost, achieving an impressive
increase of 3.67% mIOU with GRU and 2.14% mIOU
with BERT over TGNN. Notably, our approach demon-
strates substantial improvements, with 4.85% improvement

mIOU(%) Acc@0.25 Acc@0.5
w/o edge gate 29.39 39.39 32.97
w edge gate 29.77 39.85 33.52

Table 3: Ablation study on the weighted edge gate.

+Lcos +Lref mIOU(%) Acc@0.25 Acc@0.5
(a) ✓ 28.52 38.24 32.11
(b) ✓ 28.24 38.18 31.64
(c) ✓ ✓ 29.77 39.85 33.52

Table 4: Loss ablation on the ScanRefer dataset.

in Acc@0.25 and 4.52% improvement in Acc@0.5 for
the GRU mode, and 2.83% improvement in Acc@0.25
and 2.37% improvement in Acc@0.5 for the BERT mode.
Moreover, our method not only enhances performance but
also achieves a substantial reduction of over ten gigabytes
in memory usage during the training process, owing to our
more efficient feature fusion method.

Ablation Study
Dense Components Ablation. To investigate the impacts
of various modules, we conducted extensive ablation ex-
periments on the ScanRefer dataset, all experiments were
conducted using GRU as the language encoder, and the re-
sults are displayed in Table 2. The analyses of experiments
are as follows: i) Following TGNN, we established a base-
line model in (a) by simply concatenating the instance fea-
tures with the processed language features, and then di-
rectly using the fusion feature vector to predict the match-
ing score. ii) Dense-aligned sub-methods (b)-(e) outperform
the baseline (a), demonstrating the validity of the three mod-
ules. iii) Specifically, (b) demonstrates the necessity of fus-
ing entity-related textual features with instances’ visual fea-
tures for locating the referred instance. iv) (c)-(d) conduct
the high-order semantic modelling through the interaction
with nearby instances, which effectively integrate the fea-
tures to align with the referring expression. Notably, the bet-
ter performance of (d) relative to (c) suggests that entity de-
scription words within the expression combined with spa-
tial relationship contain more contextual information than
those positional words. v) (e) integrates all components and
achieves the highest performance gains, indicating the effi-
cacy of entity-related feature extraction and the synergy be-
tween textual and spatial positional relationships. The above
experimental results demonstrate the effectiveness of our
method.

We also conducted an ablation experiment on the
weighted edge gate to explore its effectiveness. As depicted
in Table 3, the disappearance of the weighted edge gate leads
to a mIOU reduction of around 0.4%. This illustrates the
weighted edge gate’s contribution in better incorporating de-
tails of relative positional relationships within expressions.

Loss Ablation. We also conduct ablation experiments on
cosine similarity loss and direct referring loss, results are
shown in Table 4. Both separate losses yield comparable
performance, with the cosine loss slightly outperforming the
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(a)

Figure 3: Qualitative results from TGNN and our model.

N mIOU(%) Acc@0.25 Acc@0.5
1 29.77 39.85 33.52
2 28.85 38.65 32.74
3 28.00 37.40 31.73
4 27.43 36.66 30.68

Table 5: Ablation study on the number of inference layers in
the RDI module.

K mIOU(%) Acc@0.25 Acc@0.5
1 28.22 37.67 31.78
5 29.20 39.19 32.94
10 29.77 39.85 33.52
15 29.05 39.08 32.79

Table 6: Ablation study on the number of nearby objects dur-
ing local perception.

other. However, there is still a large gap compared with the
best performance. Upon combining both losses for supervi-
sion, the model demonstrates a significant improvement in
mIOU and accuracy, suggesting the two loss functions are
mutually reinforcing.

Inference Layer Ablation. We also explore the influence
of the number of inference layers used in our X-RefSeg3D
model. As Table 5 shows, the performance decreases grad-
ually with the increase of Relation-Driven Interaction (RDI)
module’s inference layers. One plausible explanation is that
the majority of expressions primarily involve first-order re-
lationships, whereas the occurrence of second-order, third-
order, or more complex associations gradually decreases.

K Neighbours Ablation. The results in Table 6 demon-
strate an initial increase and subsequent decrease in model
performance as K-neighbors increase. This trend indicates
that excessive or inadequate fusion of local features may
hinder model inference. A limited perception range might
cause the model to overlook crucial reference information
from the surroundings. Conversely, an overly broad percep-
tion range could introduce interfering noise and adversely
affect performance. Consequently, we selected K=10 as the
optimal configuration for our model.

GT

Ours

TGNN

Expre
ssion

the chair is at
the right end
of the table.

this is an black
monitor on right
to white monitor.

a white lavatory.
it is attached to
the wall.

(a) (b) (c)

Figure 4: Visualization of affinity maps between instances
and expressions in our model and TGNN.

Visualization. We visualize the referring segment results
and the affinity maps between instances and expressions in
Figure 3 and Figure 4. Figure 3 shows four qualitative refer-
ring segment results produced by the TGNN method and our
method on the ScanRefer dataset. As illustrated in Figure 3
(a-b), compared with TGNN, our method has a superior
perception of the referred entity, thereby reducing the oc-
currence of misidentification among other object categories.
Figure 3 (c-d) indicates that our method can more accurately
extract relative positional relationships within 3D scenes and
expressions, enabling the exact identification of the referred
instance among several candidates of the same class.

In Figure 4 (a-b), compared with TGNN, our method en-
ables a finer attention distribution among instances of the
same type located in different locations. Figure 4 (c) shows
that our method can accurately distinguish instances whose
categories are incorrectly identified by TGNN. These im-
provements are made possible by our method’s accurate
perception of the entity and relative positional relationship
within the scene and expression.

Conclusions
In this paper, we introduce X-RefSeg3D, a novel end-to-end
model for referring 3D instance segmentation. Our method
achieves accurate identification and segmentation via rea-
sonable high-level semantic modelling and fine-grained
cross-modal feature fusion. Specifically, X-RefSeg3D uti-
lizes a scene graph and structured graph neural networks
to facilitate entity-related information extraction and rela-
tive position relationship correspondence. This refinement
notably contributes to a substantial enhancement in segmen-
tation performance for the referred expressions. Extensive
experiments and ablation studies validate the effectiveness
of our approach and demonstrate the superiority of each
module in the X-RefSeg3D model. In the future, we will
continue to explore and improve our method, including in-
vestigating alternative visual feature extraction techniques.
With the rapid development of 3D vision, we believe our ap-
proach will contribute significantly to advancing this field.
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