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Abstract

One crucial aspect of 3D head avatar reconstruction lies in
the details of facial expressions. Although recent NeRF-based
photo-realistic 3D head avatar methods achieve high-quality
avatar rendering, they still encounter challenges retaining in-
tricate facial expression details because they overlook the po-
tential of specific expression variations at different spatial po-
sitions when conditioning the radiance field. Motivated by
this observation, we introduce a novel Spatially-Varying Ex-
pression (SVE) conditioning. The SVE can be obtained by
a simple MLP-based generation network, encompassing both
spatial positional features and global expression information.
Benefiting from rich and diverse information of the SVE
at different positions, the proposed SVE-conditioned NeRF
can deal with intricate facial expressions and achieve realis-
tic rendering and geometry details of high-fidelity 3D head
avatars. Additionally, to further elevate the geometric and
rendering quality, we introduce a new coarse-to-fine train-
ing strategy, including a geometry initialization strategy at
the coarse stage and an adaptive importance sampling strat-
egy at the fine stage. Extensive experiments indicate that
our method outperforms other state-of-the-art (SOTA) meth-
ods in rendering and geometry quality on mobile phone-
collected and public datasets. Code and data can be found
at https://github.com/minghanqin/AvatarSVE.

Introduction
Reconstructing controllable and realistic 3D head avatars is
beneficial in many applications, such as VR/AR, games, and
teleconferencing. The facial expression details are crucial
for realistic 3D head avatars. Current 3D head avatar re-
construction methods can generate controllable head avatars
from monocular videos. However, achieving an accurate ge-
ometry of facial expressions and nuanced and individualized
details remains a substantial challenge.

To reconstruct expressive 3D head avatars, some meth-
ods (Gafni et al. 2021; Gao et al. 2022; Athar et al. 2022;
Zheng et al. 2022; Zielonka, Bolkart, and Thies 2023; Xu
et al. 2023) based on neural radiance fields (NeRF) (Milden-
hall et al. 2020) achieves the photo-realistic rendering. How-
ever, these implicit neural radiance field-based approaches
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exhibit the insufficient ability to render detailed complex
expressions and the corresponding geometry. As shown
in Fig. 1, these methods typically employ an optional de-
formation network D to represent face expression motions
and a NeRF F to model head geometry and appearance.
Both D and F are conditioned on the global expression
from 3D Morphable Models (3DMMs). Although recent
methods (Athar et al. 2022; Zielonka, Bolkart, and Thies
2023) focus on better exploiting the global expression in an
elaborately-designed deformation D, they still directly uti-
lize the global expression as the conditioning for NeRF F .
This direct global expression conditioning struggles to pro-
vide fine-grained control over the geometry and rendering
at different positions within the 3D space. As a result, these
methods struggle to obtain detailed rendering and accurate
geometry when dealing with complex expressions.

To solve the above limitation, we propose Spatially-
Varying Expression (SVE) as the conditioning. As indi-
cated in Fig. 1(a), the global expression ε from 3DMM stays
constant across 3D space. The global expression ε solely en-
compasses 3DMM template expressions, limiting D and F
in capturing nuances and spatial intricacies, e.g., eyes, teeth,
wrinkles (as shown in Fig. 3). In contrast, SVE ε′ in Fig. 1(b)
varies across 3D space, encompassing both spatial positional
information and expression information. Therefore, SVE
helps NeRF capture the intricate movement of wrinkles,
eyes, mouth, eyebrows, etc. Specifically, to generate SVE,
we design a simple generation network G to integrate ε with
the spatial positional features. To reduce errors in geome-
try reconstruction from inadequate constraints and enhance
overall quality, we also introduce a coarse-to-fine training
strategy to enhance the geometry at the coarse stage via the
geometry initialization and improve the rendering quality at
the fine stage by an adaptive importance sampling strategy.
Extensive experiments show that our method achieves sig-
nificantly superior results by employing the SVE as condi-
tioning in terms of accurate geometry and detailed render-
ing, especially when dealing with intricate expressions. We
present the contributions of our method as follows:

• We propose a 3D head avatar method based on the
Spatially-Varying Expression conditioned neural radi-
ance field. The proposed Spatially-Varying Expression
(SVE) enables the radiance field to capture intricate ex-
pressions and detailed geometry faithfully.
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Figure 1: Previous 3D head avatar methods based on (a)
3DMM global expression ε conditioned NeRF vs (b)(c)
Ours based on Spatially-Varying Expression ε′ conditioned
NeRF. We visualize ε and ε′ via volume rendering by re-
placing the RGB with ε and ε′. The template expressions ε
used in (a) limit the F to capture expression and geometry
details. While ε′ in (b) incorporates expression and spatial
positional features, guiding the F for enhanced expression
rendering and geometry. We present high-quality geometric
results of our method in (c).

• We design a simple generation network to generate the
Spatially-Varying Expression by integrating the spatial
positional features into the global expression.

• We introduce a novel coarse-to-fine training strategy in-
volving geometry initialization for credible reconstruc-
tion and adaptive importance sampling for enhanced ren-
dering and geometry, thus refining avatar expression de-
tails.

Related Work
3D Head Avatar Reconstruction. Reconstructing 3D face
models and head avatars has gained extensive research in re-
cent years (Ichim, Bouaziz, and Pauly 2015; Cao et al. 2015,
2016; Hu et al. 2017; Nagano et al. 2018; Athar, Shu, and
Samaras 2023; Zheng et al. 2022; Athar et al. 2022; Grassal
et al. 2022; Chan et al. 2022; Zielonka, Bolkart, and Thies
2023; Zheng et al. 2023; Kirschstein et al. 2023; Sun et al.
2023). Traditional 3DMM (Blanz and Vetter 1999; Gerig
et al. 2018) models appearance and geometry on linear space
by PCA analysis. FLAME (Li et al. 2017) and other exten-
sion methods (Feng et al. 2021; Zielonka, Bolkart, and Thies
2022; Danecek, Black, and Bolkart 2022) additionally incor-
porate the eye and neck modeling, achieving the reconstruc-

tion of the whole head with vivid expressions and optimized
texture.

As NeRF (Mildenhall et al. 2020) shows great potential in
photo-realistic rendering, some methods (Gafni et al. 2021;
Xu et al. 2023; Gao et al. 2022) explore NeRF to reconstruct
controllable 3D head avatars by conditioning the NeRF with
the global 3DMM tracked expression parameters. (Gafni
et al. 2021) directly using the conditional neural radiance
field without using any deformation networks. (Gao et al.
2022) utilize multiple multi-level hash tables to represent a
specific expression. (Xu et al. 2023) leverages a lightweight
deformation network with voxel features generated by the
global expression.

Some methods (Athar et al. 2022; Zheng et al. 2022;
Zielonka, Bolkart, and Thies 2023) have also explored the
combination of traditional 3DMM and neural rendering by
leveraging the 3DMM face template as a prior for deforma-
tion. (Athar et al. 2022) and (Zielonka, Bolkart, and Thies
2023) leverage the tracked face mesh templates to guide
the deformation network. (Zheng et al. 2022) proposes im-
plicit mophorable models to incorporate 3DMM into vol-
ume rendering framework. These methods directly exploit
the head geometry estimated by 3DMM, thus avoiding in-
correct head geometry, such as facial concavities. However,
since these methods rely on the 3DMM geometry prior, in-
correct and excessively smooth surface estimation prevents
the model from learning detailed, intricate expressions, hair,
accessories, and clothing, leading to coarse geometry and
rendering without rich details.

Overall, the methods discussed above neglect leveraging
the expression variations at different spatial positions for
modeling detailed geometry and appearances. In contrast,
our methods explore the potential of the Spatially-Varying
Expression conditioning, leading to detailed geometry and
rendering results even with intricate expressions.

Recently researchers also have explored training a gen-
eral generative human head model from large-scale datasets
(Chan et al. 2022; Sun et al. 2023, 2022; Wang et al. 2022;
Zhuang et al. 2022; Hong et al. 2022), audio-driven talk-
ing head avatars (Guo et al. 2021; Liu et al. 2022), avatars
from dense multi-view data (Ma et al. 2021; Lombardi et al.
2018, 2019; Chu et al. 2020; Lombardi et al. 2021; Cao et al.
2022), and one-shot head avatars (Drobyshev et al. 2022),
which is beyond the research topic of this work.

Dynamic Neural Radiance Field. We aim to reconstruct
controllable 3D head avatars from monocular RGB videos.
To model monocular RGB videos, we employ NeRF-
based dynamic scene modeling methods (Cao and Johnson
2023; Sara Fridovich-Keil and Giacomo Meanti et al. 2023;
Pumarola et al. 2021; Park et al. 2021a,b; Fang et al. 2022)
extend static NeRF (Mildenhall et al. 2020) to model dy-
namic scenes by adding additional temporal information and
deform fields. D-NeRF (Pumarola et al. 2021) leverages the
scene encoder to estimate the scene offsets between pre-
defined canonical space and the current observation space
from temporal embedding. Deformable NeRF (Park et al.
2021a) explores a dense SE(3) deform field conditioned on
frame-wise learnable latent codes. HyperNeRF (Park et al.
2021b) extends Deformable NeRF in terms of topological
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changes problem since the continuity of dense deform field
can not model discontinuous topological changes.

Recent methods (Cao and Johnson 2023; Sara Fridovich-
Keil and Giacomo Meanti et al. 2023) extend efficient tri-
plane representation (Chan et al. 2022) to dynamic scenes
and model dynamic scenes without explicit deform fields
for accelerating. Unlike existing dynamic NeRFs, we de-
sign the deformation as a tiny network, directly utilizing the
Spatially-Varying Expression to predict 6D motions. Ben-
efiting from the rich information of Spatially-Varying Ex-
pression, our method achieves competitive results compared
to methods with well-signed deform networks. In addition
to the former dynamic scene modeling methods, our method
can control various expressions for self and cross-identity
reenactment.

Preliminary
Our method is based on the neural radiance field (NeRF),
combining the conditional NeRF and the deformable NeRF
for better avatar motion control.

NeRF (Mildenhall et al. 2020) is an implicit function-
based volumetric rendering technique which enables photo-
realistic novel view synthesis. The radiance field F maps 3D
spatial query points p = (x, y, z) and the corresponding 2D
view direction d to density σ and color c.

σ, c = FθF (p, d) (1)

where θF is learnable parameters of the radiance field F . By
computing the density σ and color c of each query point p
along a ray from the camera origin o through a pixel p2d =
(u, v), the RGB value of the pixel p can be obtained through
integration of volume rendering.

Conditional NeRF (Gafni et al. 2021) with additional pa-
rameters ε enables NeRF’s adaptability to varying condition
information. In 3D head avatar reconstruction, most meth-
ods utilize pre-tracked global 3DMM expression parameters
ε as the conditioning. The condition process is usually im-
plemented by direct concatenation or addition of encoded p
and ε.

σ, c = FθF (p, d, ε) (2)
Deformable NeRF (Park et al. 2021a) disentangles the

shape and motion for dynamic scenes. Deformable NeRF in-
troduces a dense deformation field D to deform query points
po = (x, y, z) from the observation space of the current
frame to a canonical space pc = (x′, y′, z′), then estimate
the radiance field F in the canonical space.

pc = DθD (po, t)

σ, c = FθF (pc, d)
(3)

where θD denotes learnable parameters of the dense defor-
mation field D. t represents a certain frame of the dynamic
scene.

Method
Formulation
Previous methods have exploited the power of NeRF for
photo-realistic 3D head avatar reconstruction. A typical

NeRF-based head avatar model can be formulated as an
expression-conditioned deformable NeRF as Eq. 4.

pc = DθD (po|ε)
σ, c = FθF (pc, d|ε)

(4)

where ε denotes the global expression parameters obtained
by tracking the input video using 3DMM face templates.
Previous methods condition the radiance field F directly on
the global expression parameters ε, neglecting the expres-
sion conditioning for specific spatial positions. Therefore,
this per-frame global expression conditioning is insufficient
to obtain detailed expression rendering and geometry.

Motivated by this observation, we present a novel ap-
proach utilizing the Spatially-Varying Expression (SVE)
conditioned NeRF. Our method can be formulated as Eq. 5.

ε′ = GθG(ε|po)
pc = DθD (po|ε′)

SDF, c = FθF (pc, d|ε′)
(5)

where po = (x, y, z) is the query points in the observa-
tion space. pc = (x′, y′, z′) is the query points deformed by
network D in the canonical space. We select NeuS (Wang
et al. 2021) as F , which incorporates the Signed Distance
Function (SDF) as the implicit representation. And c is the
predicted color of each query point. C = f(A|B) means
the function f maps A to C conditioned on B. In contrast
to global expression parameters ε, ε′ denotes the generated
compressed Spatially-Varying Expression parameters via a
simple generation network G. Through the network G, we
effectively integrate a certain frame’s global expression with
the spatial positional information, acquiring the Spatially-
Varying Expression.

Spatially-Varying Expression Conditioned NeRF
Overview. As depicted in Fig. 2, given a certain training
frame, we first extract the per-frame global expression pa-
rameters ε by 3DMM pre-processing. During the training,
We first obtain rays according to camera poses and head
poses. Then, after sampling a set of points po in the current
frame observation space, we utilize the proposed genera-
tion network G to generate the Spatially-Varying Expression
(SVE) parameters ε′ with po as the additional condition to
provide spatial positional features. Subsequently, we lever-
age a tiny deformation network D to specify the 6D motion
R,T of each query point po according to the generated SVE
parameters ε′, and deform po to the query points in canon-
ical space pc. The deformation module D is designed as a
remarkably simple structure without leading to performance
degradation due to benefiting from the spatial information
contained in ε′. Subsequently, the neural radiance field F
based on NeuS takes the deformed query points pc as inputs
and the SVE parameters ε′ as the conditioning, yielding the
SDF and color values c. Finally, by employing the volumet-
ric rendering technique, we integrate the color values c of
each ray to obtain the rendered RGB of each pixel. In the
meanwhile, we also integrate the gradient of each point’s
SDF value to get the rendered normal map.
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Figure 2: Method Overview. Given a portrait video, We first track the global expression parameters ε using 3DMM (Gerig
et al. 2018). After the pre-processing, given the sampled 3D points po in observation space, we apply the generation network
G to extend the global expression parameters ε with the spatial positional features of each position po in 3D space. Then,
through a deformation network D, we transform po from the observation space to the pc in the canonical space conditioned on
ε′. Subsequently, we use ε′ conditioned NeuS (Wang et al. 2021) to predict the SDF values and color c corresponding to pc.
Finally, we obtain the rendered RGB image and normal using volumetric rendering.

Spatially-Varying Expression generation. The pro-
posed term Spatially-Varying refers to changing across dif-
ferent spatial positions. Previous methods (Athar et al. 2022;
Zielonka, Bolkart, and Thies 2023) directly utilize the global
expression parameters from 3DMM when modeling avatars’
geometry and appearance. These methods focus on enhanc-
ing the utilization of the global expression parameters during
the deformation D, neglecting the potential to fully leverage
the information contained in expressions for modeling both
geometry and appearance. However, various facial expres-
sions influence the intricacies of facial geometry and texture.
For instance, a laughing expression does not only involve
the mouth being open. The muscles’ motion throughout the
face, the raised angle of eyebrows and skin-creasing should
exhibit varying levels of geometric and textural changes.
Even with well-designed deformation networks, previous
methods are challenging to capture such nuanced expres-
sion changes. Consequently, these prior methods based on
the global expression inhibit the capacity of the neural radi-
ance field to learn each 3D position’s distinct features of the
expression.

In contrast, our proposed expression parameters explore
the potential of the radiance field to learn distinct features
for different positions across the 3D space. To elaborate, the
deformations (R and T ) and characteristics (SDF and c) as-
sociated with each point p = (x, y, z) in 3D space should
rely not only on its spatial position (x, y, z) but also on the

global expression parameters ε. Considering that this vari-
able changes in conjunction with alterations in 3D positions,
it is referred to as Spatially-Varying Expression.

Specifically, as shown in Fig. 2, the generation module G
comprises two networks. The spatial feature integrating net-
work amalgamates the spatial positional information con-
tained in query points po with the expression parameters.
This network learns the influence of the global expression
parameters on these specific positions po = (x, y, z). Simul-
taneously, the shortcut connection compresses the global ex-
pression parameters ε for residual addition. While the inte-
grating network is parameterized as a Multilayer Perceptron
(MLP) consisting of 8 fully-connected layers, the shortcut
connection only consists of 2 fully-connected layers, serv-
ing as dimensional mapping for residual addition. Through
the generation module G, we obtain the Spatially-Varying
Expression parameters, which encapsulate both the global
expression information and the spatial positional features.

Note that in both the integrating network and the shortcut
connection, we reduce the dimension of the outputs from K
to K ′ as shown in Fig. 2 to avoid over-fitting. Intuitively,
one high-dimensional global expression parameter can suf-
ficiently capture the coarse changes of facial expressions
validated by previous methods discussed above. However,
when employing Spatially-Varying Expression as condition-
ing for D and F , it degrades performance when generaliz-
ing to new expressions due to the excessive information for
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each query point po. Therefore, by reducing the dimension
of the Spatially-Varying Expression codes, we effectively
avoid over-fitting without performance degradation.

Expression conditioned deformation. As we discussed
above, the 6D motion deformation R,T of each point po =
(x, y, z) in the 3D observation space should rely on the gen-
erated Spatially-Varying Expression ε′. Therefore, we de-
sign the deformation as a lightweight tiny MLP consisting of
two fully-connected layers. Compared to the well-designed
deformation modules proposed by prior methods, our defor-
mation network D benefits from the rich position-dependent
expression information from the Spatially-Varying Expres-
sion parameters, thus effectively predicting accurate 6D mo-
tions with only a lightweight network.

Coarse-to-Fine Training Strategy
Geometry initialization of coarse stage. In monocular 3D
head avatar reconstruction, the geometry often encounters
geometric collapse: the facial structure deviations from the
intended geometry, leading to varying degrees of concav-
ity. Previous methods (Zheng et al. 2022, 2023) try to ad-
dress this issue by incorporating 3DMM templates as a prior
into the deformation network D to constrain the geometry.
Nonetheless, the inherent smoothness and limitation of the
3DMM itself lead to lacking intricate geometry details of
facial features, hair, clothing, etc.

To tackle this issue, we present an innovative geometry
initialization strategy at the coarse training stage to achieve
a harmonious equilibrium between intricacies and smooth-
ness geometries. We harness the pseudo-depth of the tracked
3DMM model to safeguard the geometry against geomet-
ric collapse. Instead of using strong 3DMM constraints
throughout the training, the initialization strategy avoids ex-
cessively smooth geometry.

Specifically, in the geometry initialization, we employ the
rendered pseudo-depth D of the tracked 3DMM template,
as shown in the supplementary appendix. We map the sam-
pled pixels of rendered pseudo-depth into the 3D observa-
tion space points pdo. Then, we predict the SDF values SDFd

corresponding to pdo according to Eq. 5. Because pdo lie on
the approximate surface of the face, their associated SDF
values SDFd should naturally tend towards zero. To enforce
this, we employ a geometry loss to constrain the predicted
SDFd. Furthermore, by utilizing an L1 loss, we also guide
the alignment of the rendered depth D̂ with its correspond-
ing pseudo-depth D.

Adaptive importance sampling strategy of the fine
stage. The adaptive importance sampling strategy is pro-
posed to achieve a sensitive perception of infrequent areas
and small areas, e.g., teeth and rim glasses. In contrast to
commonly used random pixel sampling (Mildenhall et al.
2020), importance sampling with fixed-weight (Gafni et al.
2021) or with the pre-computed weight (Li et al. 2022), our
strategy automatically adapts to different training data, and
dynamically adjust the weight during the training.

Specifically, for each training frame, we first segment the
frames into N = 19 semantic regions, encompassing vari-
ous components such as eyes, face, hair, lips, etc. Specific

classification criteria are detailed in the supplementary ma-
terials. We assign weights ws

i , i = 1, 2, . . . , N to each re-
gion at the s-th training step. During the s-th training step,
we calculate the guidance loss Ls

i for sampled points within
each region based on Eq. 6 and the area of each region As

i
of the current frame.

Ls
i = λ1L

s
i,render

+ λ2L
s
i,depth

Ls
i,render

= Mi∥Ĉi − Ci∥1 +BCE(M̂i,Mi)

Ls
i,depth

= Mi∥D̂i −Di∥1

(6)

where Mi, Ci, and Di stand for the ground-truth mask,
color, and pseudo-depth of the region i. M̂ , Ĉ, and D̂ rep-
resent the corresponding predictions. The values λ1 and λ2

help decide whether Ls
i should concentrate more on parts

with unsatisfactory rendering or areas with subpar geome-
try.

Next, we utilize the loss Ls
i for guidance to update ws

i
using exponential moving average (EMA) according to Eq.
7. The EMA updating stabilizes the updating and also ad-
dresses the issue of not being able to resample region i in a
training step when its area As

i becomes 0. Because when As
i

is 0, the updated weight ws+1
i also becomes 0 without EMA.

Consequently, in subsequent training steps, both Ls+m
i and

ws+m
i with m ≥ 1 remain 0. In such cases, the importance

sampling will not sample points within region i.

ws+1
i =

(
Ls
i

ws
iA

s
i

∑
i L

s
i

)
· α+ ws

i · (1− α) (7)

where α is the updating ratio. This loss-guided sampling
strategy adaptively encourages the model to prioritize pre-
viously inadequately learned regions, leading to improved
expression realism and rendering quality.

Experiments
Datasets and Preprocessing
Datasets. We collect seven monocular RGB sequences of
different subjects. All videos are collected using an iPhone
12 front camera with a fixed camera pose and a length of
2000-4000 frames. The image resolution of each video is
480×480. The content of each collected video includes fa-
cial expression changes, head pose changes, and talking. Ad-
ditionally, to evaluate the effectiveness of our method on
public datasets, we also conduct experiments on two open-
source datasets from IMAvatar (Zheng et al. 2022) and NeR-
Face (Gafni et al. 2021).

Pre-processing. During the pre-processing, we exploit
PP-Matting (Chen et al. 2022) to generate foreground masks
and the face parsing method (zllrunning 2019) to obtain
coarse semantic segmentation maps for subsequent adaptive
importance sampling. The BFM Model (Gerig et al. 2018)
is used to track the collected video’s head poses and expres-
sion parameters. We render the predicted pseudo-depth from
BFM-tracked face meshes.

Comparison on Avatar Reconstruction Quality
We conducted qualitative and quantitative comparisons with
three SOTA NeRF-based 3D head avatar reconstruction
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Figure 3: Qualitative comparisons on self reenactment task. From left to right: NeRFace (Gafni et al. 2021), IMAvatar (Zheng
et al. 2022), PointAvatar (Zheng et al. 2023), and Ours. Our method reconstructs high-quality rendering and geometric details
of wrinkles, teeth, hairs, and accessories. We recommend zooming in to see more details.

Figure 4: Qualitative ablation results of Spatially-Varying
Expression (SVE).

methods: NeRFace (Gafni et al. 2021), IMAvatar (Zheng
et al. 2022), and PointAvatar (Zheng et al. 2023). NeRFace
directly uses global expression conditioned NeRF without
explicit deformation. IMAvatar employs implicit morph-
ing based on the FLAME head templates (Athar, Shu, and
Samaras 2023) in the deformation network to utilize the ex-
pression parameters. PointAvatar extends IMAvatar by uti-
lizing a point-based neural representation approach for ef-
ficient training. We recommend reading the supplementary
appendix and video for more experimental results, including

Figure 5: Qualitative ablation results of the geometry ini-
tialization (Geo. Init.) strategy and the adaptive importance
sampling (AIS). In the case w/o DS, the concavity and con-
vexity of the face are incorrect.

novel view synthesis, cross-identity reenactment, and addi-
tional comparison results.

The qualitative results of the self-reenactment task are
shown in Fig. 3. The results suggest that IMAvatar and
PointAvatar reconstruct coarse head geometry. Constrained
by the smooth 3DMM template, these two approaches strug-
gle to capture intricate expression details, especially on our
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L1↓ PSNR↑ SSIM↑ LPIPS↓
NeRFace 0.0195 24.976 0.933 0.122
IMavatar 0.0187 25.360 0.927 0.145

PointAvatar 0.0207 24.799 0.918 0.130
Ours 0.0148 27.748 0.944 0.0925

Table 1: Quantitative evaluations on self-reenactment task.
We show the Average performance on all nine subjects. Our
method notably outperforms all SOTA approaches. For sep-
arate results of individual subjects, please refer to the sup-
plementary appendix.

datasets with complex expression variations. NeRFace re-
lies on global expression parameters, limiting its incorpo-
ration of distinct expression information across spatial po-
sitions. Consequently, it struggles to render accurate, fine-
grained expression details. Moreover, without reliance on
prior 3DMM template knowledge and geometric optimiza-
tion, NeRFace fails to accurately reconstruct facial geome-
try. In contrast, our method leverages the Spatially-Varying
Expression as the conditioning of the radiance field, effec-
tively harnessing the information embedded within 3DMM
expression parameters and spatial positional features. As a
result, our method markedly outperforms the previous SOTA
methods in terms of expression detail refinement and geo-
metric reconstruction quality.

As for quantitative comparisons, We evaluate the render-
ing quality and expression similarity of all the methods dis-
cussed above. Tab. 1 reports several commonly used metrics
for rendering quality evaluation, including Mean Absolute
Error (MAE), Peak Signal-to-Noise Ratio (PSNR), Struc-
ture Similarity Index (SSIM), and Learned Perceptual Image
Patch Similarity (LPIPS) (Zhang et al. 2018). We computed
the average performance across nine subjects. Our method
notably outperforms all SOTA approaches. Furthermore, in
the supplementary appendix, we provide individual quanti-
tative comparison results for all subjects to offer more com-
pelling evidence for the comparisons.

Ablation Study
Effectiveness of the Spatially-Varying Expression (SVE).
To validate the effectiveness of SVE, we design these two
baselines: (1) w/o SVE. We use the tracked 64-dimensional
3DMM expression parameters as the NeRF’s condition.
(2) SVE w/o compression. We replace the shortcut com-
pression in the generation network G to an identity map-
ping and modify the integrating network of G to retain 64-
dimensional features. Then we consider the addition of the
output of the two branches as the condition. Please refer
to the supplementary appendix for detailed illustrations of
these two baselines. Fig. 4(a) demonstrates that employing
SVE without compression can exploit spatial positional in-
formation, resulting in clearer reconstructed expression de-
tails than using global expression only. As depicted in Fig.
4(b), compression of SVE mitigates the risk of over-fitting
and improves expression detail reconstruction quality.

Effectiveness of the coarse-to-fine training strategy. To
validate the effectiveness of the geometry initialization (GI)

Exp SVE SVE-C DS GI AIS L1↓ PSNR↑ SSIM↑ LPIPS↓
(1) ✓ ✓ ✓ 0.0198 24.098 0.922 0.0963
(2) ✓ ✓ ✓ ✓ 0.0188 24.090 0.925 0.0923
(3) ✓ ✓ ✓ 0.0199 23.707 0.920 0.0933
(4) ✓ ✓ ✓ ✓ 0.0190 24.069 0.924 0.0925
(5) ✓ ✓ ✓ ✓ 0.0191 24.011 0.921 0.0931

Ours ✓ ✓ ✓ ✓ ✓ 0.0187 24.335 0.927 0.0911

Table 2: Quantitive results of ablation studies. SVE-C de-
notes SVE with compression. DS denotes depth supervision.
GI denotes geometry initialization. AIS denotes the adaptive
importance sampling strategy.

and the adaptive importance sampling (AIS) in coarse-to-
fine training strategy, we design these three baselines: (3)
w/o Depth Supervision (w/o DS). We refrain from employ-
ing the predicted depth as supervision. (4) Depth Super-
vision during full training stage (DS-full). We incorpo-
rate the predicted depth as supervision throughout the train-
ing process. (5) w/o AIS. We employ a random sampling
approach to sample pixels in training. As depicted in Fig.
5(a), the approach employing geometry initialization ac-
complishes refined geometric reconstruction. Also, Fig. 5(b)
shows that the adaptive importance sampling directs the net-
work’s focus towards overlooked intricate regions.

Conclusions
In this paper, we have proposed a 3D head avatar reconstruc-
tion method through Spatially-Varying Expression (SVE)
conditioned NeRF. The SVE integrates global expression
with localized spatial positional features, enabling the ra-
diance field to capture intricate expressions and geometric
details accurately. We employ a concise yet effective MLP-
based generation network to produce the compressed SVE
by integrating spatial positional features with the global ex-
pression from 3DMM. Furthermore, we introduce an inno-
vative coarse-to-fine training strategy, including a geome-
try initialization technique and adaptive importance sam-
pling strategy, thus further refining the expression details of
avatars. Prior to this work, there has been a lack of focus on
efficiently leveraging the global expression to achieve im-
proved conditioned NeRF for reconstruction quality. We as-
pire for this study to garner attention from researchers and
instigate ongoing explorations in this direction.

Discussion
Limitation. Despite achieving high-quality reconstruction
of 3D head avatars, the generalization capacity of our
method remains constrained by the distribution of data.
Our method encounters challenges in generating distinct
teeth when the dataset predominantly comprises instances
of mouth closing. The failure cases are shown in the supple-
mentary appendix.

Future Work. To address the above shortcomings, we
will try to train a 3D head avatar reconstruction model with
enhanced expression generalization capabilities using large-
scale facial video datasets.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4575



Acknowledgements
This research was funded through National Key R&D
Program of China (Project No.2022YFB36066 and
2021ZD0113502), in part by the Shenzhen Science and
Technology Project under Grant (JCYJ20220818101001004
and JSGG20210802153150005).

References
Athar, S.; Shu, Z.; and Samaras, D. 2023. Flame-in-nerf:
Neural control of radiance fields for free view face anima-
tion. In IEEE 17th International Conference on Automatic
Face and Gesture Recognition (FG), 1–8.
Athar, S.; Xu, Z.; Sunkavalli, K.; Shechtman, E.; and Shu, Z.
2022. Rignerf: Fully controllable neural 3d portraits. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 20364–20373.
Blanz, V.; and Vetter, T. 1999. A morphable model for
the synthesis of 3D faces. In Proceedings of the 26th an-
nual conference on Computer graphics and interactive tech-
niques, 187–194.
Cao, A.; and Johnson, J. 2023. HexPlane: A Fast Represen-
tation for Dynamic Scenes. CVPR.
Cao, C.; Bradley, D.; Zhou, K.; and Beeler, T. 2015. Real-
Time High-Fidelity Facial Performance Capture. ACM
Trans. Graph., 34(4).
Cao, C.; Simon, T.; Kim, J. K.; Schwartz, G.; Zollhoefer,
M.; Saito, S.-S.; Lombardi, S.; Wei, S.-E.; Belko, D.; Yu, S.-
I.; Sheikh, Y.; and Saragih, J. 2022. Authentic Volumetric
Avatars from a Phone Scan. ACM Trans. Graph., 41(4).
Cao, C.; Wu, H.; Weng, Y.; Shao, T.; and Zhou, K. 2016.
Real-Time Facial Animation with Image-Based Dynamic
Avatars. ACM Trans. Graph., 35(4).
Chan, E. R.; Lin, C. Z.; Chan, M. A.; Nagano, K.; Pan, B.;
Mello, S. D.; Gallo, O.; Guibas, L.; Tremblay, J.; Khamis,
S.; Karras, T.; and Wetzstein, G. 2022. Efficient Geometry-
aware 3D Generative Adversarial Networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 16102–16112.
Chen, G.; Liu, Y.; Wang, J.; Peng, J.; Hao, Y.; Chu, L.;
Tang, S.; Wu, Z.; Chen, Z.; Yu, Z.; et al. 2022. PP-Matting:
High-Accuracy Natural Image Matting. arXiv preprint
arXiv:2204.09433.
Chu, H.; Ma, S.; Torre, F.; Fidler, S.; and Sheikh, Y. 2020.
Expressive Telepresence via Modular Codec Avatars. In
Proceedings of the Proceedings of the European Conference
on Computer Vision (ECCV), 330–345.
Danecek, R.; Black, M. J.; and Bolkart, T. 2022. EMOCA:
Emotion Driven Monocular Face Capture and Animation.
In Conference on Computer Vision and Pattern Recognition
(CVPR), 20311–20322.
Drobyshev, N.; Chelishev, J.; Khakhulin, T.; Ivakhnenko, A.;
Lempitsky, V.; and Zakharov, E. 2022. MegaPortraits: One-
shot Megapixel Neural Head Avatars.
Fang, J.; Yi, T.; Wang, X.; Xie, L.; Zhang, X.; Liu, W.;
Nießner, M.; and Tian, Q. 2022. Fast Dynamic Radiance

Fields with Time-Aware Neural Voxels. In SIGGRAPH Asia
2022 Conference Papers.
Feng, Y.; Feng, H.; Black, M. J.; and Bolkart, T. 2021.
Learning an Animatable Detailed 3D Face Model from In-
the-Wild Images. ACM Transactions on Graphics (ToG),
Proc. SIGGRAPH, 40(4): 88:1–88:13.
Gafni, G.; Thies, J.; Zollhofer, M.; and Nießner, M. 2021.
Dynamic neural radiance fields for monocular 4d facial
avatar reconstruction. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 8649–
8658.
Gao, X.; Zhong, C.; Xiang, J.; Hong, Y.; Guo, Y.; and Zhang,
J. 2022. Reconstructing Personalized Semantic Facial NeRF
Models From Monocular Video. ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia), 41(6).
Gerig, T.; Morel-Forster, A.; Blumer, C.; Egger, B.; Luthi,
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