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Abstract

Regenerating urban layout is an essential process for urban
regeneration. In this paper, we propose a new task called text-
driven urban layout regeneration, which provides an intuitive
input modal - text - for users to specify the regeneration,
instead of designing complex rules. Given the target region
to be regenerated, we propose a one-stage text-driven urban
layout regeneration model, Text2City, to jointly and progres-
sively regenerate the urban layout (i.e., road and building
layouts) based on textual layout descriptions and surrounding
context (i.e., urban layouts and functions of the surrounding
regions). Text2City first extracts road and building attributes
from the textual layout description to guide the regeneration.
It includes a novel one-stage joint regenerator network based
on the conditioned denoising diffusion probabilistic mod-
els (DDPMs) and prior knowledge exchange. To harmonize
the regenerated layouts through joint optimization, we pro-
pose the interactive & enhanced guidance module for self-
enhancement and prior knowledge exchange between road
and building layouts during the regeneration. We also design
a series of constraints from attribute-, geometry- and pixel-
levels to ensure rational urban layout generation. To train our
model, we build a large-scale dataset containing urban lay-
outs and layout descriptions, covering 147K regions. Qual-
itative and quantitative evaluations show that our proposed
method outperforms the baseline methods in regenerating de-
sirable urban layouts that meet the textual descriptions.

Introduction
Urban regeneration is a crucial process to revitalize decay-
ing or underused regions in the city (Amirtahmasebi et al.
2016), the basis of which is urban layout regeneration. In ur-
ban layout regeneration, plans are first constructed as white
papers. Professional designers visualize the urban layout
based on the white papers, and create the urban layout map
by hand or with the aid of computer-assisted tools. Previ-
ous computer-assisted city modeling methods (Parish and
Müller 2001; Chen et al. 2008; Groenewegen et al. 2009;
Niese et al. 2022) generate urban layouts by employing com-
plex hand-crafted rules. Users have to carefully adjust the
control parameters, such as the number of roads, patterns,
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Figure 1: Text-driven Urban Layout Regeneration. Given the
target region (pink region in (a)), Text2City regenerates its
urban layout based on the textual layout description and the
surrounding context. Orange and gray lines represent main
and minor roads. White polygons represent buildings. Purple
lines and blue polygons represent roads and buildings to be
preserved, and are provided by the user as constraints. (b)-
(d) are regenerated layouts of the red box in (a), based on
different input textual layout descriptions.

longest length, to obtain the desirable urban layout. These
methods are time-consuming and not friendly for lay users.
Thus, in this paper, we aim to allow the user to use textual
descriptions to specify the layout requirements. Despite the
great potential, text-driven urban layout regeneration poses
several challenges. First, urban layout regeneration is com-
plicated, involving many factors such as the diversity of
layout characteristics, the richness of types (e.g., function,
road and building types), and the influence of the surround-
ing context. Second, roads and buildings are not indepen-
dent to each other, but interact with each other during layout
regeneration. For example, while roads should bypass his-
toric buildings that need to be preserved, building footprints
should generally align with existing roads. However, exist-
ing city modeling methods take a two-stage approach (Parish
and Müller 2001; Chen et al. 2008; Groenewegen et al. 2009;
Vanegas et al. 2010; Benes et al. 2021; Niese et al. 2022).
They first generate roads and then rough building footprints
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according to the roads. They do not consider the interaction
between road and building. Third, urban layout regenera-
tion with text inputs requires additional annotations. How-
ever, current urban layout datasets lack textual layout de-
scriptions, e.g., function, road type and building type.

To address these challenges, in this paper, we propose
Text2City, a one-stage text-driven urban layout regeneration
method. Given a target region to be regenerated, Text2City
jointly and progressively regenerates road and building lay-
outs of the target region conditioned on the textual layout
descriptions and the surrounding context, as shown in Fig. 1.
A textual layout description may include the target func-
tion, the road type, and the building type. While the target
function specifies the land usage of the target region, the
road and building types further provide fine-grained guid-
ance. Text2City has two components: a Text-to-Attribute
(T2A) network and a novel joint regenerator network. The
T2A network is based on sentence-BERT (Reimers and
Gurevych 2019) and Contrastive Language-Image Pretrain-
ing (CLIP) (Radford et al. 2021) to help decouple a layout
description into road and building layout parts, and then ex-
tract layout attributes from them. The extracted layout at-
tributes are then utilized to guide our joint regenerator to
regenerate the urban layout to match with the input textual
layout description.

Our one-stage joint regenerator network is designed to
regenerate the target urban layout based on conditioned
DDPMs (Ho, Jain, and Abbeel 2020; Nichol and Dhari-
wal 2021; Avrahami, Lischinski, and Fried 2022) and
prior knowledge exchange. The regenerator comprises two
streams, the building-assisted road layout (BaRL) regener-
ation stream and the road-assisted building layout (RaBL)
regeneration stream. Joint optimization is achieved through
our interactive & enhanced guidance (IEG) module. In the
BaRL regeneration stream, the IEG module performs self-
enhancement and employs prior knowledge of building lay-
outs to harmonize the regenerated road layout with the ex-
isting building layout. Similarly, in the RaBL regeneration
stream, the IEG module also performs self-enhancement and
employs prior knowledge of road layouts to assist the build-
ing layout regeneration. Besides, the regeneration of an ur-
ban layout is also affected by its surrounding context, es-
pecially near the boundary. Hence, we progressively sample
and apply the surrounding context to the joint regeneration
process to provide local details. We also design a set of con-
straints to optimize regenerated urban layouts from attribute-
, geometry-, and pixel-levels to obtain rational results.

Finally, we have collected a large-scale urban layout
dataset covering 147K regions with rich textual annotations
including functions, road layouts and building layouts. We
evaluate our proposed method and baselines for text-driven
urban layout regeneration on our dataset, and the results
show that our proposed method outperforms all baselines.

To summarize, our main contributions are:

• We propose Text2City for the new task: text-driven urban
layout regeneration. Our proposed method is able to re-
generate rational urban layouts from textual descriptions
and surrounding contexts.

• We propose a novel one-stage joint regenerator net-
work based on the conditioned DDPMs and prior knowl-
edge exchange, where the IEG module utilizes the
prior knowledge of road and building layouts for self-
enhancement and joint optimization. We also design a set
of constraints at attribute-, geometry- and pixel-levels to
ensure valid urban layout synthesis.

• We have collected a large-scale urban layout dataset cov-
ering 147K regions with rich annotations, including func-
tions, road/building layouts, and text descriptions.

• We demonstrate the effectiveness of our method on text-
driven urban layout regeneration through extensive ex-
periments. We also showcase applications of our method.

Related Work
Urban Layout Design. Previous works mainly consider city
modeling using procedural modeling methods. These meth-
ods (Parish and Müller 2001; Chen et al. 2008; Groenewe-
gen et al. 2009; Weber et al. 2009; Lipp et al. 2011) required
expertise to design the parameters to obtain the desired ur-
ban layout manually. UrbanBrush (Benes et al. 2021) pro-
vided a layout editing tool for users to set the brush pa-
rameters. In recent years, deep learning-based methods are
introduced to urban road layout design. StreetGAN (Hart-
mann et al. 2017) is an example-based road layout gener-
ation method. Chu et al. (Chu et al. 2019) treated a road
layout as a graph. Starting from scratch, they utilized a se-
quential generative model to generate the road network.

However, traditional methods generate urban layouts in a
two-stage manner which do not consider the interaction be-
tween roads and buildings, and always start from scratch ig-
noring the surrounding context. In addition, designing com-
plex rules for such methods requires professional knowl-
edge, making it difficult for novices. Latest deep-learning
based methods focus on generating style-based urban road
layouts, such as London style or New York style. Un-
like previous works, text-driven urban layout regeneration
aims to regenerate the urban layout of a target region sur-
rounded by some existing regions and conditioned on the
target layout description. To address this task, we intro-
duce a one-stage text-driven deep-learning-based generative
method that learns the complex regeneration process from
the layout descriptions and the surrounding context.
Text-driven Methods. Some works (Zhang et al. 2016;
Nichol et al. 2021; Ramesh et al. 2021; Saharia et al. 2022;
Lugmayr et al. 2022) explored text-driven image genera-
tion. They utilized text as conditions to generate target im-
ages. Some other works (Nam, Kim, and Kim 2018; Liu
et al. 2020; Patashnik et al. 2021; Bau et al. 2022; Avra-
hami, Lischinski, and Fried 2022) studied text-driven im-
age manipulation. They modified images globally or lo-
cally conditioned on the text. CLIPdraw (Frans, Soros, and
Witkowski 2021) maximized similarity between given de-
scriptions and generated drawings using the CLIP model.
Jiang et al. (Jiang et al. 2022) devised a method for text-
guided human image generation which translated text into
attributes and generated detailed human images with cloth-
ing shapes and textures based on a given pose. Michel et
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al. (Michel et al. 2022) utilized CLIP and the neural style
filed network to stylize a 3D mesh based on a target text
prompt. Text2LIVE (Bar-Tal et al. 2022) edited object ap-
pearances or added visual effects to images/videos using text
prompts. Jain et al. (Jain et al. 2022) proposed a text-driven
method to synthesize diverse 3D objects. Most of the previ-
ous works utilized CLIP to achieve the text-driven task.

Our work also utilizes the CLIP model to extract layout
attributes from the given textual layout description to guide
our proposed joint regenerator for urban layout regeneration.

Our Dataset
The Need for a Dataset. In our task, we use the CLIP
model to extract layout attributes and guide the urban lay-
out regeneration process. An experiment conducted by us
on ClipCap (Mokady, Hertz, and Bermano 2021) shows that
pre-trained CLIP has poor generalization to urban layouts.
Unfortunately, current publicly available datasets (Amazon
Web Services 2016; Belli and Kipf 2019) do not have de-
tailed urban layout annotations. These inspire us to create
a large-scale urban layout dataset with rich annotations. In
short, our dataset includes: (1) 147K regions covering most
of the Greater London, UK. (2) Annotations for region, road
and building layouts. (3) Textual urban layout descriptions
for each region.
Data Collection. We collect our data from Open Street Map
(OSM) (OpenStreetMap contributors 2017), which contains
diverse urban map data contributed by people worldwide.
The Greater London area is chosen in this work. The raw
data are in geographic format, containing sequences of (lat-
itude, longitude) coordinates and textual annotations.
Data Processing. We first remove noisy data by merging
adjacent regions with the same function (i.e., land use) and
eliminating overlapping roads and buildings. We then render
layout data from geographic format to layered image format,
using the style of urban layout images on the web (Radford
et al. 2021) for inspiration. The region layer is rendered with
region shape and function type. The road layer is rendered
based on the road hierarchy (for Europe et al. 2010), with
different types of road having different widths and colors.
The building layer is rendered from an aerial view based
on the shape. A textual layout description is then created
for each region, combining the function type, road type and
building type that this region occupies. Finally, we obtain
a dataset of (layout map, text) pairs for text-driven urban
layout regeneration. Please see supplementary for details.

Text2City
Our objective is to regenerate urban layouts conditioned on
textual layout descriptions and the surrounding context in
one stage. Given a target region R, the target urban layout
description T and the surrounding context S = (Sr, Sb),
Text2City outputs the regenerated urban layout M , contain-
ing the road Mr and building Mb layout. Note that the output
regenerated urban layout M combines the regenerated urban
layout in the target region and the existing surrounding lay-
out. The whole pipeline of Text2City is illustrated in Fig. 2.

The Text-to-Attribute (T2A) Network. As mentioned
above, the textual layout description consists of the target
function, road type and building type, where the target func-
tion determines the global characteristics of the target lay-
out, and the road and building types provide fine-grained
guidance. For example, “residential region with pedestrian
roads and residential and house buildings”: “residential re-
gion” always has narrow, short roads and crowded buildings.
The “pedestrian roads” indicates the requirement for narrow
roads, while “residential and house buildings” suggests the
need for both crowded ordinary and sparse high-class res-
idences. Note that the target function is mandatory but the
road and building types are optional. Since the road and
building layouts have distinct properties and structures (road
layouts comprise lines with varying widths and colors while
building layouts comprise polygons with diverse shapes), we
first decouple the layout description into road and building
layouts. We use the sentence-BERT (Reimers and Gurevych
2019) to identify keywords related to “region”, “road”, and
“building” to split the description into road layout (Tr) and
building layout (Tb) parts. Tr and Tb both contain the tar-
get function of the region because the target function de-
termines the global characteristics. Subsequently, Tr and Tb

are fed into the text encoder of a fine-tuned CLIP model and
obtain the attributes for road layout (ar) and building layout
(ab) separately. The extracted attributes are used to guide our
one-stage joint regenerator.

The Joint Regenerator Network. We aim to jointly and
progressively regenerate the road layout and building layout
conditioned on the extracted attributes and the surrounding
context. To achieve this, we propose a one-stage joint gen-
erative model based on the conditioned DDPMs and prior
knowledge exchange, as shown in Fig. 2. In the forward
noising process, we introduce Gaussian noise with variance
βt ∈ (0, 1) to the urban layout map M0 = M to obtain a
series of noisy urban layout map M t with t steps as follows,

q
(
M1, . . . ,MK | M0

)
=

K∏
t=1

q
(
M t | M t−1) ,

q
(
M t | M t−1) = N

(
M t;

√
1− βtM t−1, βtI

)
.

(1)
If K is a large number, MK is a nearly standard Gaussian
noise N (0, I). Further, we can also directly sample M t from
M0 without the intermediate steps,

q(M t | M0) = N (M t;
√
ᾱtM0, (1− ᾱt)I)),

M t =
√
ᾱtM0 +

√
(1− ᾱt)ϵ,

(2)

where ᾱt =
∏t

s=0 α
s is the total noise variance, αt = 1−βt

and ϵ ∼ N (0, I). Based on these, the regeneration process
is the reverse of the above. We denoise the noisy version M t

using the learned deep neural network pθ as follows,
pθ(M

t−1 | M t) = N (M t−1;µθ(M
t, t),Σθ(M

t, t)), (3)
where µθ(·) and Σθ(·) are the parameters of the predicted
Gaussian distribution from the pθ. The regenerated urban
layout M̂0 can be obtained from Eq. 2 as follows,

M̂0 =
M t

√
ᾱt

−
√
1− ᾱtϵθ

(
M t, t

)
√
ᾱt

, (4)

where ϵθ(·) is the predicted noise from the network. In BaRL
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Figure 2: Overview of Text2City. Given the target region, target layout description and the surrounding context, Text2City
outputs the regenerated urban layout. First, the text-to-attribute (T2A) network decouples and extracts the layout attributes
to guide the regeneration. Then, our joint regenerator network based on conditioned DDPMs and prior knowledge exchange
jointly and progressively regenerates urban road and building layouts, guided by the attributes and the surrounding context.
The interactive & enhanced guidance (IEG) module facilitates prior knowledge exchange between road and building layouts
for self-enhancement and joint optimization. Constraints are employed to maintain a desirable and rational urban layout.

stream, we first obtain the regenerated road layout M̃ t−1
r

through DDPM conditioned on the target road attributes ar
as follows,
M̃ t−1

r ∼ N (M̃ t−1
r ;µθ(M

t
r , t)+Σθ(M

t
r , t)∇r,Σθ(M

t
r , t)), (5)

where ∇r is the gradient calculated by the target road layout
attributes ar and the regenerated road layout as follows,

∇r =
1

N

N∑
i=1

∇
M̂

0,aug
r

La(M̂
0,aug
r , ar, R), (6)

where La is Eq. 9. M̂0,aug
r are extending augmentation sam-

ples through (Avrahami, Lischinski, and Fried 2022) to miti-
gate the problems that the adversarial noise damages the per-
formance of the CLIP model. The extending augmentation
method extends M̂0

r to N samples through projection trans-
formation. Therefore, the final gradient is obtained from the
average gradients of N samples instead of a single.

To get rational layouts, we propose the IEG module for
self-enhancement and joint optimization between road and
building layouts which bridges two streams. The IEG mod-
ule first obtains candidate heatmaps for roads and buildings
using the road and building detectors based on current regen-
erated urban layouts. The road detector DR based on (Pau-
trat et al. 2021) obtains the road heatmap and the build-
ing detector DB inspired by the model (Yang et al. 2016)
generates the building heatmap, as shown in Fig. 2. In the
BaRL regeneration stream, IEG module leverages the road
heatmap Ht−1

r combined with the sampled road rt−1 for
self-enhancement. The prior knowledge of building layout
dictates that regenerated roads cannot cross buildings but

lead to them. This understanding informs the joint optimiza-
tion process, aligning the regenerated road layout with the
regenerated building layout as follows:

Ḿ t−1
r = M̃ t−1

r + rt−1 ⊙Ht−1
r −Ht−1

b ⊙ rt−1. (7)
Thus, we obtain the optimized road layout Ḿ t−1

r harmo-
nized with the existing building layout. Furthermore, the re-
generated urban layout is also influenced by the surrounding
context. We sample the surrounding context and apply it to
the stream to provide the local details as follows,

M t−1
r = Ḿ t−1

r ⊙R+ St−1
r ⊙ (1−R),

St−1
r ∼ N (St−1

r ;
√
ᾱt−1S0

r , (1− ᾱt−1)I)).
(8)

Note that blending the M̃ t−1
r , rt−1 and St−1

r produces a re-
sult outside the current manifold, which is corrected in the
next diffusion step that projects the result to the t − 2 step
manifold, thereby ensuring coherence. Similarly, in RaBL
regeneration stream, we utilize the prior knowledge of the
regenerated road layout and the surrounding context St−1

b

to optimize the regenerated building layout M t−1
b . The prior

knowledge of road layout is that the regenerated buildings
should be along the roads. By iteratively repeating the above
joint regeneration process, we obtain the regenerated urban
layout M including the regenerated road layout Mr = M0

r
and building layout Mb = M0

b . Additionally, the urban lay-
out could be vectorized like (Chu et al. 2019), extending its
representation beyond the current resolution.

Constraints. To ensure urban layouts with desirable char-
acteristics and rational geometric structures, we design a
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set of constraints on three domains: attribute, geometry and
pixel. Attribute-level: The attribute-level constraint aims to
align the regenerated urban layout in the target region with
the intended layout description. We compute the cosine dis-
tance between the attributes and the regenerated urban lay-
out embedding and get the constraint as follows,

La = 1− aCLIPimg(M ⊙R)

|a||CLIPimg(M ⊙R)|
, (9)

where CLIPimg represents the image encoder of CLIP. M
denotes the road or building layout, a is the road or building
attributes in different streams. Geometry-level: The Isoperi-
metric Quotient (IQ) gauges the compactness of a shape,
where a higher value indicates greater compactness. During
building layout regeneration, we leverage the IQ to enhance
the building shape, formulated as follows,

Lg = −4πA(DB(M
t
b))

P (DB(M t
b))

2 , (10)

where P (·) is the perimeter of the building footprint, and
A(·) is the area covered by the building. DB is our building
detector to get the building footprints at step t. This con-
straint punishes irregular and fragmented building shapes in
the building layout regeneration. Pixel-level: We use the L2

loss as the range loss to control how far out-of-range pixel
values are allowed to be as follows,

Lr = ∥M t − Clamp(M t)∥2, (11)
where Clamp(·) is used to clamp pixel values to [−1, 1].
This constraint encourages the regenerator to predict the
proper pixel values.

Above all, the total loss is set to the weighted sum of
attribute-, geometry- and pixel-level constraints as follows,

Lall = λaLa + λgLg + λrLr, (12)
where λa, λg and λr are the weight coefficients. In our ex-
periment, we set λa = 100, λg = 70 and λr = 5.

Experiment and Evaluation
In this section, we compare our method with state-of-the-art
(SOTA) methods both qualitatively and quantitatively. Be-
sides, a user study is conducted to evaluate the performance
of our method. Furthermore, we demonstrate the effective-
ness of our method through an ablation study.
Implementation Details. Our method is implemented us-
ing Pytorch. We fine-tune the pre-trained CLIP model on
our dataset with a batch size of 64 and an initial learning
rate of 1e− 8. The Adam optimizer is employed with β1 set
to 0.9 and β2 set to 0.98. For our experiments, each urban
layout map covers 1km2 and the central region with a single
function is taken as the target region. On an RTX 2080ti, it
takes about one and a half minutes to complete a text-driven
urban layout regeneration using our method.
Qualitative and Quantitative Comparison. To the best
of our knowledge, our work is the first to handle text-
driven urban layout regeneration. We first compare our
method with SOTA traditional city modeling methods:
CityEngine (Parish and Müller 2001), IPSM (Chen et al.
2008) and UrbanBrush (Benes et al. 2021). All these meth-
ods require manual adjustments with expertise. We first gen-
erate the road network and then the region is divided into
rough building footprints based on the road network. Finally,

we manually merge the generated urban layout with the sur-
rounding real urban layout. As we render the urban layout in
a bird-view image, we also compare our method with SOTA
text-driven image synthesis methods: TDANet (Zhang et al.
2020), BD (Avrahami, Lischinski, and Fried 2022), Style-
CLIP (Patashnik et al. 2021) and SDv2 (Rombach et al.
2022). We modify these methods to suit our task; see sup-
plementary for details.

Qualitative results are shown in Fig. 3. Traditional meth-
ods possess limitations in generating suitable urban layouts
due to intricate hand-drafted parameters. Incoherence man-
ifests at the boundary due to manual merging operations
and the absence of the surrounding context as a condition.
Moreover, these methods can not generate detailed building
shapes. Both TDANet and StyleGAN fail to regenerate the
urban layouts. BD and SDv2 can regenerate urban layouts
but struggle to regenerate rational geometric structures of ur-
ban layouts. Moreover, they face difficulties in regenerating
urban layouts with sparse surrounding contexts, as seen in
the second row of Fig. 3. Among them, our method achieves
the best results, regenerating desired and rational urban lay-
outs. The main reason for the failure of baselines is that they
are designed for natural images, which have rich textual and
structural information. In contrast, urban layouts have little
textural and sparse structural information. Besides, without
decoupling the complex layout description, it is difficult for
these models to control the road and building characteris-
tics well. Our method also regenerates diverse results, shown
in Fig. 5 and supplementary.

We also evaluate the results quantitatively using gener-
ative and urban layout metrics. Generative metrics encom-
pass SSIM (Wang et al. 2004), FID (Heusel et al. 2017) and
Wasserstein Distance (WD) (Arjovsky, Chintala, and Bot-
tou 2017) to measure the quality and diversity. Urban lay-
out metrics measure whether the regenerated urban layouts
match the specified layout description, considering the dis-
tinct characteristics of various road and building types in the
layout description. Road layout similarity (RLS) measures
how well the regenerated road layouts match the character-
istics of the target (AlHalawani et al. 2014). Building lay-
out similarity (BLS) evaluates the morphological and spatial
similarity between regenerated and target buildings (Chen
et al. 2021). See supplementary for details. Note that the re-
generated urban layouts need to be vectorized before com-
puting urban layout metrics. The results, shown in Tab. 1, in-
dicate that our method outperforms all baselines on all met-
rics, particularly in urban layout metrics.
User study. We also conduct a user study to evaluate our
method and baselines (TDANet, BD and SDv2). Since
TDANet and StyleCLIP both fail to regenerate urban lay-
outs, we choose one for the user study. We recruit 20 par-
ticipants and design 15 questions to assess the rationality
of the regenerated urban layout (Rationality), harmony with
the surrounding layout (Harmony) and match with the lay-
out description (Match). Each question contains four exam-
ples generated by baselines and our method, and the partic-
ipants rank examples in descending order. The final score is
the ranking-weighted score, which is calculated by ranking
weight and count. The ranking order determines the rank-
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Figure 3: Qualitative Comparison. Our method achieves better performance than baselines on text-driven urban layout regener-
ation. The pink region is the target region. We highlight the regenerated urban layouts of the red box.

Method SSIM ↑ FID ↓ WD ↓ RLS ↓ BLS ↓
CityEngine 0.51 145.54 0.20 262.80 0.93
IPSM 0.54 137.11 0.18 241.70 0.87
UrbanBrush 0.51 147.73 0.17 317.40 0.92
TDANet 0.40 161.15 0.20 - -
StyleCLIP 0.31 170.71 0.26 - -
BD 0.64 130.54 0.14 110.60 0.98
SDv2 0.72 120.62 0.10 56.19 0.60
Ours 0.89 77.71 0.04 19.37 0.24

Table 1: Quantitative Results. We compute SSIM (higher is
better), FID (lower is better), and WD (lower is better), RLS
(lower is better), BLS (lower is better). Our method outper-
forms all baselines on all metrics. − means it fails to gener-
ate urban layouts.

Method Rationality↑ Harmony ↑ Match ↑
TDANet 1.36 (0.17) 1.65 (0.20) 1.46 (0.14)
BD 2.46 (0.35) 2.21 (0.25) 2.16 (0.28)
SDv2 2.67 (0.17) 2.46 (0.10) 2.77 (0.09)
Ours 3.38 (0.13) 3.08 (0.09) 3.61 (0.05)

Table 2: User Study Results. Our method achieved the high-
est score. The variance of the score is inside the braces.

ing weight. For example, ranking weight 4 is assigned to the
first rank and 2 to the third rank. The count is the number
of times the method occurs at a specific ranking order. The
higher scores indicate better results. As shown in Tab. 2, our
method receives the highest score.
Ablation Study. We first validate the necessity of our
dataset by performing the experiment with the original pre-
trained CLIP, i.e., ours w/o fine-tune. Results in Fig. 4(c)
indicate that the original pre-trained CLIP has poor gener-
alization on the urban layout and layout description. Hence,

Method SSIM ↑ FID ↓ WD ↓ RLS ↓ BLS ↓
Ours w/o fine-tune 0.65 126.72 0.13 130.44 0.98
Ours w/o T2A 0.68 122.42 0.11 152.22 0.89
Ours w/o IEG 0.76 115.11 0.08 58.39 0.44
Ours w/o SR 0.78 112.41 0.08 50.56 0.38
Ours w/o Lg 0.81 106.68 0.07 35.17 0.61
Ours 0.89 77.71 0.04 19.37 0.24

Table 3: Quantitative Results of Ablation Study. The results
show that the proposed components benefit our task.

it is necessary to have a dataset for our task. Next, we eval-
uate the T2A network and regenerate urban layout directly
conditioned on the original layout description, i.e., ours w/o
T2A. As shown in Fig. 4(d), the coupled attributes lead to
inadequate guidance. We then evaluate the IEG module by
removing it, i.e., ours w/o IEG. Thus, we regenerate the
road layout and building layout in two streams without joint
optimization. Results in Fig. 4(e) show that broken roads
and overlapping layouts appear. Besides, buildings appear
incorrect shapes and distributions without prior knowledge
of roads (see red arrows in Fig. 4). We then evaluate our
geometry-level constraint and remove Lg , i.e., ours w/o
Lg . Results in Fig. 4(f) show irregular and broken build-
ing shapes. We also remove the road self-enhancement,
i.e., ours w/o SR. Results in Fig. 4(g) indicate that the road
layout may be broken or missing, especially in the center of
the large target region. Quantitative results in Tab. 3 further
prove the effectiveness of our proposed components.

Applications
This section describes some applications of our method in
urban layout regeneration.
User Constraints. Our method allows users to add addi-
tional constraints. Main Road-Guided Urban Layout Re-
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Figure 4: Ablation Study. We remove the components of our model and regenerate the urban layout again. All of our proposed
components have positive contributions to our method. We highlight the regenerated results of the red box.

Figure 5: Applications. Left: main road-guided urban layout regeneration. Middle: building-preserved urban layout regenera-
tion. Right: Other cities. The pink regions are the target regions, the purple lines are the unchanged main roads and the blue
polygons are the preserved buildings. We highlight the regenerated results of the red box.

generation: Urban planners commonly undertake urban lay-
out regeneration with a foundation in the pre-existing main
roads (Amen and Nia 2020; Zhang, Zhang, and Yin 2021).
Our method allows users to add the pre-existing main roads
as constraints like the surrounding context. Eventually, our
method jointly regenerates the urban layouts that match the
unchanged main roads as shown in Fig. 5 left. Building-
preserved Urban Layout Regeneration: It is also impor-
tant to preserve significant buildings such as historical sites
and public buildings (Parlewar and Fukukawa 2006). Users
can introduce preserved buildings as constraints within our
method. The context of preserved buildings is gradually in-
tegrated into the layout regeneration under prior knowledge
exchange. The results are shown in Fig. 5 middle.
Other Cities. We collect Paris and Shanghai data from OSM
and fine-tune our model on these data. Fig. 5 left indicates
that our method can regenerate urban layouts for other cities
with city style, which shows the generalization of our model.

Limitations and Future Work
One limitation is the long inference time due to denoising
and joint optimization calculation. Thus, research in accel-
erating sampling is needed. If there are uncommon layout
descriptions, CLIP may not guide the joint regenerator effec-
tively, resulting in suboptimal urban layouts. Besides, due
to the dataset sourced from OSM, we cannot specify low-
level controls like road length/style and building number. To
overcome these challenges, expanding the dataset to cover a

wider range of urban layouts and more annotations is essen-
tial.

We intend to extend text-driven urban layout regenera-
tion to 3D urban layouts for further research. Besides, fine-
grained urban layout regeneration, such as the placement of
traffic signs and street lights, is another avenue for research.

Conclusion

In this paper, we focus on a new task, text-driven urban lay-
out regeneration. We propose Text2City to jointly and pro-
gressively regenerate the urban layout conditioned on the
target layout description and surrounding context. We first
extract road and building layout attributes to guide joint
regeneration. We then propose a novel one-stage joint re-
generator based on conditioned DDPMs and prior knowl-
edge exchange, where the IEG module utilizes prior knowl-
edge of road and building layouts for self-enhancement and
joint optimization. We also constrain the regeneration in
attribute-, geometry- and pixel-levels. We have collected a
large-scale dataset that contains 147K regions with rich an-
notations for our task. Experimental results show that our
method outperforms all baselines in text-driven urban lay-
out regeneration. The code and dataset will be available at
https://github.com/LittleQBerry/Text2City.
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