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Abstract

Visible-infrared person re-identification (VI-ReID) aims to
retrieve images of the same persons captured by visible (VIS)
and infrared (IR) cameras. Existing VI-ReID methods ignore
high-order structure information of features while being rel-
atively difficult to learn a reasonable common feature space
due to the large modality discrepancy between VIS and IR
images. To address the above problems, we propose a novel
high-order structure based middle-feature learning network
(HOS-Net) for effective VI-RelD. Specifically, we first lever-
age a short- and long-range feature extraction (SLE) mod-
ule to effectively exploit both short-range and long-range
features. Then, we propose a high-order structure learning
(HSL) module to successfully model the high-order rela-
tionship across different local features of each person im-
age based on a whitened hypergraph network. This greatly
alleviates model collapse and enhances feature representa-
tions. Finally, we develop a common feature space learning
(CFL) module to learn a discriminative and reasonable com-
mon feature space based on middle features generated by
aligning features from different modalities and ranges. In par-
ticular, a modality-range identity-center contrastive (MRIC)
loss is proposed to reduce the distances between the VIS, IR,
and middle features, smoothing the training process. Exten-
sive experiments on the SYSU-MMO1, RegDB, and LLCM
datasets show that our HOS-Net achieves superior state-of-
the-art performance. Our code is available at https://github.
com/Jaulaucoeng/HOS-Net.

Introduction

Over the past few years, person re-identification (RelD) has
attracted increasing attention due to its significant impor-
tance in surveillance and security applications. A large num-
ber of single-modality person ReID methods have been pro-
posed based on visible (VIS) cameras. However, these meth-
ods may fail under low-light conditions. Unlike VIS cam-
eras, infrared (IR) cameras are less affected by illumination
changes. Recently, visible-infrared person re-identification
(VI-ReID), which leverages both VIS and IR cameras, has
been developed to match cross-modality person images, mit-
igating the limitations of single-modality person RelD.
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A major challenge of VI-RelD is the large modality dis-
crepancy between VIS and IR images. To reduce the modal-
ity discrepancy, existing VI-ReID methods can be divided
into image-level and feature-level methods. The image-level
methods (Dai et al. 2018; Wang et al. 2020; Wei et al. 2022),
generate middle-modality or new modality images based on
generative adversarial networks (GAN). However, the GAN-
based methods easily suffer from the problems of color in-
consistency or loss of image details. Hence, the generated
images may not be reliable for subsequent classification.

The feature-level methods (Ye et al. 2021b; Lu, Zou, and
Zhang 2023; Zhang et al. 2022) follow a two-step learning
pipeline (i.e., they first extract features for VIS and IR im-
ages, and then map these features into a common feature
space). Generally, these methods have two issues. On the
one hand, they often ignore high-order structure information
of features (i.e., the different levels of dependence across
local features), which can be important for matching cross-
modality images. On the other hand, they usually directly
minimize the distances between VIS and IR features in the
common feature space. However, such a manner increases
the difficulty of learning a reasonable common feature space
due to the large modality discrepancy.

To address the above issues, in this paper, we propose
a novel high-order structure based middle-feature learning
network (HOS-Net), which consists of a backbone, a short-
and long-range feature extraction (SLE) module, a high-
order structure learning (HSL) module, and a common fea-
ture space learning (CFL) module, for VI-RelD. The key
novelty of our method lies in the novel formulation of ex-
ploiting high-order structure information and middle fea-
tures to learn a discriminative and reasonable common fea-
ture space, greatly alleviating the modality discrepancy.

Specifically, given a VIS-IR image pair, the SLE mod-
ule (consisting of a convolutional branch and a Transformer
branch) extracts short-range and long-range features. Then,
the HSL module models the dependence on short-range and
long-range features based on a whitened hypergraph. Fi-
nally, the CFL module learns a common feature space by
generating and leveraging middle features. In the CFL mod-
ule, instead of directly adding or concatenating features from
different modalities and ranges, we leverage graph attention
to properly align these features, obtaining middle features.
Based on it, a modality-range identity-center contrastive
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(MRIC) loss is developed to reduce the distances between
the VIS, IR, and middle features, smoothing the process of
learning the common feature space.

The contributions of our work are twofold:

* First, we introduce an HSL module to learn high-order
structure information of both short-range and long-range
features. Such an innovative way effectively models
high-order relationship across different local features of
a person image without suffering from model collapse,
greatly enhancing feature representations.

* Second, we design a CFL module to learn a discrimina-
tive and reasonable common feature space by taking ad-
vantage of middle features. In particular, a novel MRIC
loss is developed to minimize the distances between VIS,
IR, and middle features. This is beneficial for the extrac-
tion of discriminative modality-irrelevant ReID features.

Extensive experiments on the SYSU-MMO1, RegDB, and
LLCM datasets demonstrate that our proposed HOS-Net
obtains excellent performance in comparison with several
state-of-the-art VI-ReID methods. The full version of this
paper, including supplement, can be found at https://arxiv.
org/abs/2312.07853.

Related Work

Single-Modality Person Re-Identification (ReID). A vari-
ety of single-modality person ReID methods have been de-
veloped and achieved promising performance in the cases
of occlusion, cloth-changing, and pose changes. Yan et al.
(Yan et al. 2021) propose an occlusion-based data augmenta-
tion strategy and a bounded exponential distance loss for oc-
cluded person RelD. Jin et al. (Jin et al. 2022) introduce an
additional gait recognition task to learn cloth-agnostic fea-
tures. Note that these methods are based on VIS cameras
and thus they perform poorly in low-light conditions.
Visible-Infrared Person Re-Identification (VI-RelD).
The image-level methods (Dai et al. 2018; Wang et al. 2020;
Wei et al. 2022) often reduce the modality discrepancy by
generating middle-modality images or new modality im-
ages. Wei et al. (Wei et al. 2022) propose a bidirectional
image translation subnetwork to generate middle-modality
images from VIS and IR modalities. Li ef al. (Li et al. 2020)
and Zhang et al. (Zhang et al. 2021) introduce light-weight
middle-modality image generators to mitigate the modality
discrepancy. Instead of generating middle-modality images,
we align the features from different modalities and ranges
with graph attention, generating reliable middle features.
Moreover, we design an MRIC loss to optimize the distances
between VIS, IR, and middle features, benefiting the extrac-
tion of discriminative RelD features.

The feature-level methods map the features of different
modalities into a common feature space to reduce the modal-
ity discrepancy. A few methods (Ye et al. 2021b; Yang,
Chen, and Ye 2023; Lu, Zou, and Zhang 2023) leverage
CNN or ViT as the backbone to extract features. Some meth-
ods (Chen et al. 2022a; Wan et al. 2023) adopt off-the-shelf
key point extractors to generate key point labels of per-
son images and learn modality-irrelevant features. But the
key point extractor may introduce noisy labels, deteriorating
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the discriminability of final RelD features. Many VI-RelD
methods (Liu, Tan, and Zhou 2020; Huang et al. 2022, 2023)
employ the contrastive-based loss, which directly minimizes
the distances between VIS and IR features, to obtain a com-
mon feature space. However, it is not a trivial task to learn a
reasonable common feature space due to the large modality
discrepancy between modalities.

Our method belongs to feature-level methods. However,

conventional feature-level methods mainly consider first-
order structure information of features (i.e., the pairwise re-
lation across features). Moreover, they directly reduce the
distances between VIS and IR features. Different from these
methods, our method not only captures high-order structure
information of features but also generates middle features,
greatly facilitating our model to learn an effective common
feature space.
Graph Neural Networks in Person Re-Identification.
Graph neural network (GNN) is a class of neural networks
that is designed to operate on graph-structured data. Li et
al. (Li et al. 2021) propose a pose and similarity based-
GNN to reduce the problem of pose misalignment for single-
modality person RelD. Wan et al. (Wan et al. 2023) develop
a geometry guided dual-alignment strategy to align VIS and
IR features, improving the consistency of multi-modality
node representations. Different from pairwise connections in
the vanilla graph models, Feng ef al. (Feng et al. 2019) pro-
pose a hypergraph neural network (HGNN) to encode high-
order feature correlations in a hypergraph structure. Lu et
al. (Lu et al. 2023) model high-order spatio-temporal corre-
lations based on HGNN (which relies on high-quality skele-
ton labels) for video person RelD.

However, the above HGNN-based methods may easily
suffer from the model collapse problem (i.e., high-order cor-
relations collapse to a single correlation) since a hyperedge
can connect an arbitrary number of nodes. Unlike the above
methods, we leverage the whitening operation, which plays
the role of “scattering” on the nodes of the hypergraph, to
significantly alleviate model collapse.

Proposed Method

Overview

The overview of our proposed HOS-Net is given in Fig-
ure 1. HOS-Net consists of a backbone, an SLE module, an
HSL module, and a CFL module. In this paper, we adopt a
two-stream AGW (Ye et al. 2021b) as the backbone. Given
a VIS-IR image pair with the same identity, we first pass
it through the backbone to obtain paired VIS-IR features.
Then, these features are fed into the SLE module to learn
short-range and long-range features for each modality. Next,
the HSL module exploits high-order structure information
of short-range and long-range features based on a whitened
hypergraph network. Finally, the CFL module learns a dis-
criminative common feature space based on middle features
that are obtained by aligning VIS and IR features through
graph attention. In the CFL module, we develop an MRIC
loss to reduce the distances between the VIS, IR, and mid-
dle features, greatly smoothing the process of learning the
common feature space.
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Figure 1: Overview of the proposed HOS-Net, including a backbone, a short- and long-range feature extraction (SLE) module,
a high-order structure learning (HSL) module, and a common feature space learning (CFL) module. The HOS-Net is jointly

optimized by Lc g, Lrrr, and Lyric.

Short- and Long-Range Feature Extraction (SLE)
Module

Conventional VI-ReID methods (Ye et al. 2021b; Yang,
Chen, and Ye 2023) often leverage CNN or ViT for feature
extraction. CNN excels at capturing short-range features,
while ViT is good at obtaining long-range features (Zhang,
Hu, and Wang 2022; Chen et al. 2022b). In this paper, we
adopt an SLE module to exploit short-range and long-range
features by taking advantage of both CNN and ViT. The SLE
module contains a convolutional branch (CB) and a Trans-
former branch (TB). CB contains 3 convolutional blocks and
TB contains 2 Transformer blocks with 4 heads. Assume that
we have a VIS-IR image pair {IV**, I""} with the same iden-
tity. We denote the VIS and IR features obtained from the
backbone as BV% and B", respectively.

Then, BY** and B*" are fed into the SLE module to obtain
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short-range and long-range features for each modality, i.e.,

ngs _ CB(BMS), ins — TB(BMS),

§ =CB(B"), F7 =TB(B"),

where CB(-) and TB(-) represent the convolutional branch
and the Transformer branch, respectively; F¢'® € RHXWXC
and F7 € RH*WXC denote the short-range features for
the VIS and IR images, respectively; Fyis ¢ RHxWxC
and F? € REXWXC denote the long-range features for the
VIS and IR images, respectively; H, W, and C denote the
height, width, and channel number of the feature, respec-
tively. Thus, for a VIS-IR image pair, we can obtain the fea-
ture set Q@ = {F{*°, F¥* F7 F%}, which is used as the
input of the HSL module.

High-Order Structure Learning (HSL) Module

The features extracted from the SLE module only encode
pixel-wise and region-wise dependencies in the person im-

(D
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ages. However, the high-order structure information, which
indicates different levels of relation in the features (e.g.,
head, torso, upper arm, and lower arm belongs to the up-
per part of the body while head, torso, arm, and leg belong
to the whole body), is not well exploited. Therefore, inspired
by HGNN (Feng et al. 2019), we introduce the HSL. module
to capture high-order correlations across different local fea-
tures, enhancing feature representations. Note that the con-
ventional HGNN tends to suffer from the problem of model
collapse. To alleviate this problem, we take advantage of the
whitening operation and apply it to the hypergraph network,
as shown in Figure 1.

Different from pairwise connections in the vanilla graph
models, a hypergraph can connect an arbitrary number of
nodes to exploit high-order structure information. We con-
struct a whitened hypergraph for each feature in Q. The
hypergraph is defined as G V,E, W), where V =
{v1,- -+ ,on} denotes the node set, € = {e1, -+ ,ep} de-
notes the hyperedge set, and W represents the weight matrix
of the hyperedge set. Here, N = HW and M are the num-
bers of nodes and hyperedges, respectively. In this paper, we
consider each 1 x 1 x C grid of each feature in Q as a node.
We represent the n-th node by f,, € R'*¢ and thus all nodes
are represented by F = [fy;- -+ ;fyy] € RV*C,

The traditional hypergraph network allows for unre-
stricted connections among nodes to capture high-order
structure information. Hence, it easily suffers from model
collapse (i.e., the nodes connected by different hyperedges
are the same) during hypergraph learning. To mitigate this
problem, we introduce a whitening operation to project the
nodes into a spherical distribution. In fact, the whitening op-
eration plays the role of “scattering” on the nodes, thereby
avoiding the collapse of diverse high-order connections to a
single connection. This enables us to explore various high-
order relationships across these features effectively.

The whitened node f/ can be obtained as

£, = (07 (£ — )" + B, )
where 0 € RE*C denotes the lower triangular matrix,
which is obtained by the Cholesky decomposition oo™
5 (F—1pp)"(F — 1ur); pr € RM*C denotes the mean
vector of F; 1 € RN*1 is a column vector of all ones;
Yn € R™! and 3, € R™C are the affine parameters
learned from the network. In this way, all the whitened nodes
can be represented by F/ = [f]; - - - ;f),] € RV*C,
Similar to (Higham and de Kergorlay 2022), we use cross-
correlation to learn the incidence matrix H € RV*M je

H = c(U(F)A(F) ¥ (F)TQ(F)), ©)

where W(-) represents the linear transformation; A(-) and
Q(+) are responsible for learning a distance metric by a diag-
onal operation and determining the contribution of the node
to the corresponding hyperedges through the learnable pa-
rameters, respectively; e(-) is the step function.

Based on the learned H, we adopt a hypergraph convolu-
tional operation to aggregate high-order structure informa-
tion and then enhance feature representations. The relation
enhanced feature R € RV XY can be obtained as

R = (I-DY?2HWB 'H'D Y/2)F'O +F,

“
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where I € RY*¥ s the identity matrix; W € RM*M
denotes the weight matrix; D € RV*Y and B € RM*M
represent the node degree matrix and the hyperedge degree
matrix obtained by the broadcast operation, respectively;
© € R*C denotes the learnable parameters.

Following the above process, we pass features in Q
through the HSL module and obtain a relation-enhanced fea-
ture set R = {RY*, RY*, RY", R}, where each feature in
‘R is obtained by Eq. (4).

Common Feature Space Learning (CFL) Module

Conventional feature-level VI-ReID methods usually learn
a common feature space based on a contrastive-based loss,
which directly minimizes the distances between VIS and IR
features. However, such a manner cannot achieve a reason-
able common feature space because of the large modality
discrepancy. To address the above problem, it is desirable to
learn the middle features from VIS and IR features, enabling
us to obtain a reasonable common feature space.

A straightforward way to obtain a middle feature is to add
or concatenate the VIS or IR features from different ranges.
However, the above way cannot generate reliable middle
features due to feature misalignment and loss of semantic
information. Therefore, we propose a CFL module, which
aligns the features from different modalities and ranges by
graph attention (GAT) (Guo et al. 2021) and generates reli-
able middle features, as shown in Figure 1.

Specifically, we align each feature in R with the other
three features in R and generate a middle feature, which in-
volves the information from different modalities and ranges.
We take the alignment between two features RY** and RY as
an example. First, we establish the similarity between RY*
and RY by using the inner product and the softmax function.
This process can be formulated as

P = Softmax((8,Ry*) (6 RE)T), 5)

where 6, and 0, are linear transformations; P € RV*N
denotes the similarity matrix; and Softmax(-) denotes the
softmax function.

Then, we adopt graph attention to perform alignment be-

tween RY"® and RY according to the similarity matrix.

Therefore, the aggregated node R{"%"€ RN* is
R{%" = GAT(R}™, RY)
= ReLU(P — AMean(P)117)(0,R%),
where GAT(-) denotes the graph attention operation; 6, is
the linear transformation; X is the balancing parameter that
reduces nodes with low similarity; 117 € RY*¥ is a matrix
of all ones; and ReLLU(+) and Mean(-) represent the ReLU
activation function and the mean operation, respectively.
Based on the above, a middle feature M7*® € RNV*C jg
obtained by aligning RY** with R, RY", and RY*, that is,
My = GAT(R}®, R¥) + GAT(R}, RY)+
GAT(R}"”, RY”) + R}"™.
Similar to Eq. (7), we can get the other reliable mid-
dle features. Hence, we obtain the middle feature set R =

(6)

)
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Figure 2: Illustration of the proposed MRIC loss. Different
colors represent different identities.

{MYs, MY, MY, M¥%}. To learn compact feature repre-
sentations, following previous works (Ye et al. 2021b; Liu,
Tan, and Zhou 2020), we apply the holistic and partial gen-
eralized mean pooling to each feature in R and concate-
nate the pooling features to obtain the 1D middle features.
In this way, we can get the 1D middle feature set R’ =
{m¥%*, m%* m?, m¥%}. Analogously, we apply the same
pooling and concatenation operatlons to each feature in R
and obtain 1D feature set R’ = {ry*, r’*, ri" r

To mitigate the intra-class difference and 1nter—class dis-
crepancy, we propose the MRIC loss to improve feature
representations and reduce the distances between the VIS,
IR, and middle features. The MRIC loss consists of three
items: an intra-range loss, a middle feature loss, and an inter-
modality loss based on the identity centers. The illustration
of the MRIC loss is shown in Figure 2.

Technically, we first obtain identity centers, which are ro-
bust to pedestrian appearance changes, by the weighted aver-
age of the features of each person at one modality and a spe-
cific range. For instance, the center of the relation-enhanced
features for the person with the identity ¢ at the VIS modality
and long-range can be obtained as

K

23

j=1

K ; is T
exp(Q_p=1 L, Lk )
ZJ 16XP(Zk 1

where K is the number of VIS features of each person;

r%’j S R'*C" denotes the k-th 1D relation-enhanced long-

range VIS feature defined in R’ with the identity i.
Accordingly, we can obtain the identity center sets

Vs
L,i,j>

vis
L,i

®)

VLS Ulé

T
rLZJ L,k )

Czis ({Cms P 1) Cvzs ({Cvzs f’ 1 Cir ({C%:Z ZP;})
7‘ ({C 1) szs ({Cvzs 1) Cng ({Cvzs 1) Czr
({c }P 1) Cir ({&,}1,), where C and C represent the

center set for the enhanced features and the middle features
at a specific range and modality, respectively; P is the num-
ber of person identities in the training set.

The intra-range loss L5/ is to reduce the distances be-
tween the same-range VIS and IR features from the same
persons while enlarging the distances between the same-
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range VIS and IR features from different persons, that is,

Cvisycir cvis7ci1‘
Lifric = Lyiric + Lafric s ©)
where
A,B eXP(SA"B)
[’JWRIC Zl W
z 1 i
P A,B
exp(S7;°) (10)
- log + Li(a; — b;).
Yty

Here, SA5 ¢ RP*F denotes the cosine similarity matrix
between A and B (SAJB denotes the cosine similarity be-
tween a; (the i-th element of .A) and b (the j-th element of
B)); L1(-) represents the L; norm. By minimizing the first
two terms, the similarities of the same person features are
enhanced while those of the different person features are re-
duced. The last term denotes the L distance between the
same person features.

The middle-feature loss L4412 - is to reduce the distances
between different middle features, that is,

MID . égis7ézis égis}égr‘ égis)ézr
Lyiric =Lyiric +Lairic + Lafric (an
CZL.S C'Lr CLisyéZ’. éé],ézr
Liirid +Loyiric + Lairic-

The inter-modality loss LY/} . is to reduce the intra-

class distances and enlarge the inter-class distances between
VIS, IR, and middle features, which is expressed as

Cmid

VIM cir
L + Lyrkic

cvis i
MRIC — L

CULS CHLLd
vric +L

MRIC 2

where CY*, C", and C™¢ denote the identity center sets
corresponding to VIS, IR, and middle features, respectively;
CV% and C'" are obtained by averaging all the features from
the same modality for each person; C™¢ is obtained by av-
eraging all the middle features for each person.

Therefore, the MRIC loss is

Lyric = Lfric + LiRio + Lifgio-  (13)
Joint Loss
The joint loss is defined as
L=Lce+ Lrrr + Lyric, (14)

where Lo g represents the cross-entropy loss and Lrp; de-
notes the triplet loss (Hermans, Beyer, and Leibe 2017).
The training of HOS-Net is given in Supplement A.

Experiments
Experimental Settings

Datasets. The SYSU-MMO1 dataset (Wu et al. 2020) con-
tains a total of 30,071 VIS images and 15,792 IR images
from 491 different identities. The RegDB dataset (Nguyen
et al. 2017) consists of 412 identities, where each iden-
tity has 10 VIS images and 10 IR images captured by two
overlapping cameras. The LLCM dataset (Zhang and Wang
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SYSU-MMO1 RegDB LLCM

Methods All search | Indoor search | VIS to IR IR to VIS VIS to IR IR to VIS

R-1/mAP R-1/mAP R-1/mAP | R-1/mAP | R-1/mAP | R-1/mAP
D?RL (Wang et al. 2019) 28.9/29.2 -/- 434/44.1 -/- -/- -/-
Hi-CMD (Choi et al. 2020) 349/359 -/- 70.9/66.0 -/- -/- -/-
JSIA-RelD (Wang et al. 2020) 38.1/36.9 43.8/52.9 48.1/48.9 | 48.5/49.3 -/- -/-
X-Modality (Li et al. 2020) 49.9/50.7 -/- 62.2/60.2 -/- -/- -/-
DDAG (Ye et al. 2020) 54.8/53.0 61.0/68.0 69.3/63.5 | 68.1/61.8 | 48.0/52.3 | 40.3/48.4
LbA (Park et al. 2021) 55.4/54.1 58.5/66.3 742/67.6 | 67.5/72.4 | 50.8/55.6 | 43.8/53.1
G2DA (Wan et al. 2023) 63.9/60.7 71.0/76.0 74.0/65.5 | 69.7/62.0 -/- -/-
TSME (Liu et al. 2022b) 64.2/61.2 64.8/71.5 87.4/76.9 | 86.4/75.7 -/- -/-
SPOT (Chen et al. 2022a) 65.3/62.3 69.4/74.6 80.4/72.5 | 79.4/72.3 -/- -/-
PMT (Lu, Zou, and Zhang 2023) | 67.5/65.0 71.7/76.5 84.8/76.6 | 84.2/75.1 -/- -/-
CAJ (Ye et al. 2021a) 69.9/66.9 76.3/80.4 85.0/79.1 | 84.8/77.8 | 56.5/59.8 | 48.8/56.6
MMN (Zhang et al. 2021) 70.6 / 66.9 76.2/79.6 91.6/84.1 | 87.5/80.5 | 59.9/62.7 | 52.5/58.9
MAUM (Liu et al. 2022a) 71.7/68.8 77.0/81.9 87.9/85.1 | 87.0/84.3 -/- -/-
DEEN (Zhang and Wang 2023) 74.7/71.8 80.3/83.3 91.1/85.1 | 89.5/83.4 | 62.5/65.8 | 54.9/62.9
HOS-Net (Ours) 75.6/74.2 84.2/86.7 94.7/90.4 | 93.3/89.2 | 64.9/67.9 | 56.4/63.2

Table 1: Comparisons with state-of-the-art methods on the SYSU-MMO1, RegDB and LLCM datasets. The bold font and the
underline denote the best and second-best performance, respectively.

2023) is captured in low-light environments. The training set
contains 713 identities (with 16,946 VIS images and 13,975
IR images) while the test set contains 351 identities (with
8,680 VIS images and 7,166 IR images).
Implementation Details. All the images are resized to
256 x 128 with horizontal flip, random erasing, and channel
augmentation for data augmentation (Ye et al. 2021a) dur-
ing the training phase. For each mini-batch, we randomly
choose 8 identities, where 4 VIS images and 4 IR images of
each identity are selected. We adopt AGW (Ye et al. 2021b)
as our backbone. We use the warm-up strategy to update the
learning rate from 0.01 to 0.1 at the first 10 epochs. At the 20
and 50 epochs, the learning rates are set to 0.01 and 0.001,
respectively. We use SGD as the optimizer and the momen-
tum parameter is set to 0.9. The total number of training
epochs is set to 120. Our proposed HOS-Net is implemented
with the PyTorch on an NVIDIA RTX3090 GPU. The num-
ber of hyperedges M is set to 256. A in Eq. (6) is set to 1.3.
Cumulative Matching characteristics (CMC) and mean
Average Precision (mAP) are used as our evaluation metrics.
CMC measures the matching probability of the ground-truth
person occurring in the top-k retrieved results (Rank-k ac-
curacy). Besides, we randomly divide the RegDB dataset for
training and testing. The above process is repeated ten times
and we report the average performance. We also randomly
split the gallery set of the SYSU-MMO1 and LLCM datasets
ten times to report the average performance.

Comparison with State-of-the-Art Methods

The comparison results are given in Table 1. More results
are shown in Supplement B.

SYSU-MMO1. As shown in Table 1, our proposed HOS-
Net obtains the best or comparable performance among all
the competing methods. Specifically, HOS-Net gives about
13.0% and 15.2% improvements in terms of mAP over some
image-level methods (such as JSIA-ReID and TSME) for
both all and indoor search modes, respectively. Compared
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with the CNN-based method (DDAG) and Transformer-
based method (PMT), HOS-Net surpasses them by at least
8.1% in Rank-1 and 9.2% in mAP for the all search mode.
Moreover, for the indoor search mode, HOS-Net outper-
forms the second-best method DEEN by 3.9% in Rank-1 and
3.4% in mAP. DEEN ignores the importance of high-order
structure information, leading to inferior performance.
RegDB. From Table 1, we can also observe that our pro-
posed HOS-Net achieves the best performance for two
search modes. For two search modes, our HOS-Net outper-
forms MMN by 3.1%/6.3% and 5.8%/8.7% in Rank-1/mAP,
respectively. Moreover, compared with G?DA and SPOT,
which rely on high-quality person structure labels to ob-
tain modality-shared features, HOS-Net improves the Rank-
1 and mAP by at least 13.9% and 16.9%, respectively, for the
IR to VIS search mode. This further indicates the superiority
of our high-order structure-based network for VI-RelD.
LLCM. We also report the comparison results on the LLCM
dataset in Table 1. For the IR to VIS search mode, our
HOS-Net outperforms MMN by 3.9% and 4.3% in terms
of Rank-1 and mAP, respectively. Moreover, HOS-Net per-
forms significantly better than the second-best DEEN for
the VIS to IR search mode, achieving the best results
with 64.9%/67.9% in Rank-1/mAP. Therefore, HOS-Net can
learn a discriminative and reasonable common feature space
to reduce the modality discrepancy.

Ablation Studies

Effectiveness of Key Components. We conduct ablation
studies to validate the effectiveness of each key component
of the proposed HOS-Net (including SLE, HSL, CFL, and
the MRIC loss). The results are shown in Table 2, where
Method 1 represents the baseline AGW method.

SLE: By introducing SLE, Method 2 achieves about 2.5%
and 5.7% higher mAP than Method 1 on the SYSU-MMO1
and RegDB datasets, respectively. This shows the effective-
ness of our SLE, which explores different ranges of person
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SYSU-MMOI | RegDB
# | Methods R-1/mAP | R-1/mAP
T [ Baseline 6997669 | 85.0770.1
5 | Baseline+SLE 7177694 | 89.6/84.8
3 | +HSL 73371724 | 92.0/87.1
4 | +CFL 721/702 | 91.6/865
5 | +HSL+CFL 74.0/729 | 92.7/87.38
6 | +CFL +Lasmic 7451727 | 93.2/88.4
7 | +HSL+CFL +LmRric 75.6 / 74.2 94.7/90.4

Table 2: The influence of key components of HOS-Net on
the performance on the SYSU-MMOI and RegDB datasets.

Settings SYSU-MMO1 RegDB
Hypergraph ~ Whitening R-1/mAP R-1/mAP
- - 71.7/69.4 89.6/84.8
v - 72.5/70.3 91.1/86.3
v v 73.3/72.4 92.0/87.1

Table 3: The influence of the hypergraph and the whitening
operation on the SYSU-MMO1 and RegDB datasets.

features by taking advantage of both CNN and Transformer.
HSL: By incorporating HSL into Method 2, Method 3
achieves 1.6%/3.0% and 2.4%/2.3% improvements in Rank-
1/mAP on two datasets, respectively. This validates the im-
portance of HSL, which adopts the whitened hypergraph
network to model the high-order relationship across differ-
ent local features of each person image and avoid model col-
lapse. CFL: Method 5 introduces CFL to Method 3 and it
obtains higher accuracy (0.7%/0.7% improvements in Rank-
1/mAP on the RegDB dataset) than Method 3. This demon-
strates that learning reliable middle features can effectively
reduce the modality discrepancy. The MRIC loss: Com-
pared with Method 5, Method 7 achieves 1.6%/1.3% and
2.0%/2.6% improvements in Rank-1/mAP on two datasets,
respectively. The MRIC loss can improve feature represen-
tations and reduce discrepancies between the VIS and IR
modalities, achieving a reasonable common feature space.

Effectiveness of the Hypergraph and the Whitening Op-
eration. HSL is based on a whitened hypergraph network
to discover the high-order relationship of person features
and avoid model collapse. As shown in Table 3, by model-
ing the high-order structure with the hypergraph, the model
brings about 0.8%/0.9% gains in Rank-1/mAP on SYSU-
MMOL1. Note that the original hypergraph network allows
unrestricted connections among nodes to capture high-order
structure information, suffering from model collapse during
hypergraph learning. By adding the whitening operation into
the hypergraph learning, the performance is improved by
0.8%/2.1% and 0.9%/0.8% in Rank-1/mAP on two datasets,
respectively. Hence, the whitening operation is beneficial to
alleviate mode collapse and improve the final performance.
Influence of Different Middle Features. The CFL mod-
ule leverages graph attention to align features from differ-
ent modalities and ranges to generate reliable middle fea-
tures. In this subsection, we evaluate the influence of dif-
ferent middle features on the performance. The results are
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Settings SYSU-MMO1
Modalities  Ranges R-1/mAP
v - 72.0/71.1
Addition - v 71.8/70.9
v v 71.4/70.4
v - 71.9/770.8
Concatenation - v 72.3/71.1
v v 72.5/71.2
v - 7347723
GAT - v 73.6/72.4
v v 74.0/72.9

Table 4: The influence of generating middle features from
different modality and range features on SYSU-MMOI.

Settings SYSU-MMOI RegDB

R-1/mAP | R-1/mAP
- 7407729 | 9277878
+L3E 0 743/73.3 93.4/88.6
+LMID 74.4173.2 93.3/88.3
+L o +LMED 75.0/73.8 | 93.8/89.2
+L3 o +LAER LM 75.6/74.2 94.7 /90.4

Table 5: The influence of each term in the MRIC loss.

given in Table 4. Compared with the methods that gener-
ate middle features by adding or concatenating the VIS or
IR features, our method with GAT improves mAP on the
SYSU-MMOI datasets, respectively. This clearly indicates
the effectiveness of the middle features generated by GAT.
Influence of Each Term in the MRIC Loss. The MRIC
loss is proposed to improve feature representations and re-
duce the distances between the VIS, IR, and middle features.
As shown in Table 5, when all the terms in the MRIC loss are
used to jointly train the network, Rank-1/mAP is improved
by 1.6%/1.3% and 2.0%/2.6% in comparison with HOS-Net
trained without the MRIC loss on two datasets, respectively.
This indicates that HOS-Net trained with the MRIC loss can
achieve a reasonable common feature space.

More ablation studies and visualization results can refer
to Supplement C and D.

Conclusion

In this paper, we propose a novel HOS-Net consisting of
the backbone, SLE, HSL, and CFL modules for VI-RelD.
The SLE module is first designed to learn short-range and
long-range features by taking advantage of both CNN and
Transformer. Then, the HSL module exploits diverse high-
order structure information of features without suffering
from model collapse based on a whitened hypergraph. Fi-
nally, the CFL module generates reliable middle features
and obtains a reasonable common feature space. Extensive
experiments on three VI-RelD benchmarks verify the effec-
tiveness of HOS-Net in comparison with several state-of-
the-art methods. Currently, the training complexity of our
method is still high (see Supplement C for more details). We
plan to explore new ways to reduce the training complexity.
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