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Abstract

Hyperspectral image super-resolution (HISR) is a technique
that can break through the limitation of imaging mechanism
to obtain the hyperspectral image (HSI) with high spatial res-
olution. Although some progress has been achieved by exist-
ing methods, most of them directly learn the spatial-spectral
joint mapping between the observed images and the target
high-resolution HSI (HrHSI), failing to fully preserve the
spectral distribution of low-resolution HSI (LrHSI) and the
spatial distribution of high-resolution multispectral imagery
(HrMSI). To this end, we propose a spatial-spectral-bilateral
cycle-diffusion framework (S2CycleDiff) for HISR, which
can step-wise generate the HrHSI with high spatial-spectral
fidelity by learning the conditional distribution of spatial
and spectral super-resolution processes bilaterally. Specif-
ically, a customized conditional cycle-diffusion framework
is designed as the backbone to achieve the spatial-spectral-
bilateral super-resolution by repeated refinement, wherein the
spatial/spectral guided pyramid denoising (SGPD) module
seperately takes HrMSI and LrHSI as the guiding factors
to achieve the spatial details injection and spectral correc-
tion. The outputs of the conditional cycle-diffusion frame-
work are fed into a complementary fusion block to inte-
grate the spatial and spectral details to generate the desired
HrHSI. Experiments have been conducted on three widely
used datasets to demonstrate the superiority of the proposed
method over state-of-the-art HISR methods. The code is
available at https://github.com/Jiahuiqu/S2CycleDiff.

Introduction
Hyperspectral image (HSI) is a data cube that contains hun-
dreds of spectral bands. Compared with other remote sens-
ing images, HSI can provide more detailed spectral informa-
tion that reflects the properties of objects (Dong et al. 2023).
This unique characteristic of HSI enables a diverse range
of applications, including natural disaster monitoring (Liu
et al. 2017), urban planning (Huang et al. 2017; Qu et al.
2023), and water resource management (Khan et al. 2018).
However, due to the limitation of the imaging mechanism,
there is a trade-off between spatial and spectral resolution in
HSI. This means that a sensor capturing images with high

*These authors contributed equally.
†The corresponding author.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

spectral resolution at the expense of spatial resolution. The
lack of spatial information limits the application of HSI in
downstream tasks, making it imperative to acquire images
that possess both high spectral and spatial resolution.

The fusion-based hyperspectral image super-resolution
(HISR) has become a crucial approach for improving the
spatial resolution of HSI, which aims to fuse HSI and mul-
tispectral (MSI) to generate the HSI with high spatial res-
olution. In recent years, lots of HISR methods have been
introduced, which can be roughly divided into two main
categories, i.e., traditional methods and deep learning-based
methods.

The traditional methods for HISR mainly include com-
ponent substitution (CS), multiresolution analysis (MRA),
Bayesian approaches and matrix factorization (Loncan et al.
2015). These methods require some prior knowledge to de-
sign reasonable strategies to integrate spatial information
from MSI into HSI. However, the traditional methods often
heavily rely on manually designed feature extractor, which
makes it difficult to effectively capture complex features
when dealing with high-dimensional data. In recent years,
deep learning (DL) has achieved significant advancements,
which has been widely used in HISR (Scarpa, Vitale, and
Cozzolino 2018; Xu et al. 2020; Hu et al. 2022; Yao et al.
2020). Initially, convolutional neural networks (CNNs) were
employed as a power tool for HISR and were trained un-
der the guidance of MSI to learn the nonlinear mapping
from low-resolution to high-resolution HSI (HrHSI). Fur-
thermore, deep generative models have shown remarkable
success in HISR due to their capability to approximate data
distribution. Variational autoencoders (VAEs) (Kingma and
Welling 2022) learn latent data distribution by probabil-
ity encoding and decoding. Generative adversarial networks
(GANs) (Goodfellow et al. 2014) leverage adversarial train-
ing between a generator and a discriminator to generate
visually realistic samples. Recently, Diffusion Probabilistic
Model (DPM) (Ho, Jain, and Abbeel 2020) has shown great
potential in the field of computer vision (CV). The DPM re-
fines the process of image reconstruction into multiple steps,
gradually obtaining high-quality images. In contrast to other
Generative models, the training process of the DPM exhibits
improved stability and efficiency, eliminating the need for
intricate adversarial training like GANs.

Although existing methods have made some achieve-
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ments, most of them directly learn the spatial-spectral joint
mapping between the low-resolution hyperspectral image
(LrHSI) and the target high-resolution hyperspectral im-
age (HrHSI), thereby failing to fully preserve the spectral
distribution of LrHSI and the spatial distribution of high-
resolution multispectral imagery (HrMSI) respectively.

Inspired by recent advancements in deep generative mod-
els, in this paper, we propose a spatial-spectral-bilateral
cycle-diffusion framework (S2CycleDiff), which learns
the conditional distribution of spatial and spectral super-
resolution processes bilaterally to generate the ideal HrHSI
stably. Specifically, the degraded HrHSI can be first obtained
by adding Gaussian noise to the ground truth image dur-
ing the forward process. For the reverse process, the condi-
tional cycle-diffusion framework learns the conditional dis-
tribution of the super-resolution process from the spatial and
spectral dimensions through the guidance of HrMSI and
LrHSI, and generates the preliminary HrHSIs from these
two aspects stably. Furthermore, the complementary fu-
sion module integrates the outputs of the conditional cycle-
diffusion framework to generate the high-quality HrHSI.
The contribution we have made can be summarized as fol-
lows:
• We propose a spatial-spectral-bilateral cycle-diffusion

framework (S2CycleDiff) for hyperspectral super-
resolution, which designs the conditional cycle-diffusion
framework as the backbone to learn the conditional
distribution of super-resolutions in terms of spatial and
spectral aspects, so as to obtain the high-quality HrHSI
by a sequence of refinements.

• The customized conditional cycle-diffusion framework is
designed to encode the conditional distribution of spatial-
spectral-bilateral super-resolution processes and generate
the HrHSIs with complementary spatial and spectral in-
formation.

• The spatial/spectral guided pyramid denoising (SGPD)
module is proposed, in which HrMSI and LrHSI are
adopted as the guiding factors to guide the image denois-
ing process, so as to minimize the spatial-spectral dis-
tortion by spatial details injection and spectral correction
respectively.

Related Work
Traditional Methods for HISR The traditional methods
can be categorized into four classes, i.e., component sub-
stitution (CS), multiresolution analysis (MRA), Bayesian
approaches and matrix factorization. Principal component
analysis (Shettigara 1992), intensity-hue-saturation method
(Choi 2006), and guided filtering (Qu, Li, and Dong 2017)
belong to the CS methods, in which the spatial and spectral
information of observed images is separated, and then the
HSI is improved by replacing the spatial component with
that from MSI. The MRA methods, such as smoothing filter-
based intensity modulation (SFIM) (Liu 2000), the MTF-
generalized Laplacian pyramid (MTF-GLP) (Aiazzi et al.
2006) method, and regression-based high-pass modulation
(Wang et al. 2022a), extract high-frequency details of MSI
and then inject them into the HSI. Despite the simplicity

of CS and MRA methods, the spectral discrepancy between
the MSI and HSI can lead to significant spectral distortion.
The Bayesian approaches rely on Bayesian statistics to infer
probabilistic parameters and design different Bayesian esti-
mators for combining the co-registered paired MSI and HSI
(Wei, Dobigeon, and Tourneret 2015). Coupled nonnegative
matrix factorization (CNMF) (Yokoya, Yairi, and Iwasaki
2011) is a representative work of matrix factorization meth-
ods, which relies on the unmixing procedure. Although these
two methods have made some progress, they rely heavily on
artificial prior information, making it difficult to obtain the
optimal solution for this ill-posed problem.

Deep Learning-based Methods for HISR The deep
learning-based methods have proven to be effective in ob-
taining HrHSI, which employ the elaborate network archi-
tecture to efficiently extract the spatial and spectral features
without manual parameter selection. MHFNet embedded the
mapping relationship between the observed images and the
target image into a unfolding network to gradually obtain the
HrHSI (Xie et al. 2022). In addition, generative models have
been proven to be an effective framework for HISR (Shi
et al. 2022). FusionNet was proposed as a novel VAE frame-
work for integrating the spatial and spectral information of
LrHSI and HrMSI, combined with meta-learning to enable
fast adaptation to different scenes (Wang et al. 2020). More-
over, HSSRGAN was proposed as a GAN-based method for
HISR, which designed a generator to enhance the spatial fea-
ture and refine the spectral information (Wang et al. 2021).
Recently, DPM emerged as a powerful approach for vari-
ous image generation tasks, including text-to-image transla-
tion (Rombach et al. 2022), image restoration(Kawar et al.
2022), and other high-level image manipulation tasks (Wang
et al. 2022b). The DPM stands out among other generative
models due to its stable training process and ability to gener-
ate high-quality images. Inspired by the advancements, the
proposed S2CycleDiff encodes the conditional distribution
of the spatial-spectral-bilateral super-resolution process into
a cycle-diffusion framework to stably generate the desired
HrHSI.

Proposed Method
In this section, the details of the proposed spatial-spectral-
bilateral cycle-diffusion framework (S2CycleDiff) are pre-
sented, the flow chart is shown in Figure. 1, and the illustra-
tion of each time step operation is shown in Figure. 2.

Overall Framework
Given a training paired LrHSI X ∈ RB×h×w, HrMSI
Y ∈ Rb×H×W , and the corresponding ground truth HrHsI
Z ∈ RB×H×W , where {b, B}, {h,H}, and {w,W} denote
the number of bands, heights, and widths, respectively. Since
the LrHSI contains richer spectral information and HrMSI
contains more spatial details, it is generally considered that
b < B, h < H , and w < W . We aim to train a model to ag-
gregate the complementary information between LrHSI and
HrMSI to obtain the desired HrHSI Z̃ ∈ RB×H×W . In this
paper, as depicted in Figure. 1, the proposed S2CycleDiff
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Figure 1: The flow chart of the proposed spatial-spectral-
bilateral cycle-diffusion framework (S2CycleDiff) for hy-
perspectral image super-resolution.

designs a conditional cycle-diffusion structure as the back-
bone to generate the HrHSI with high spatial-spectral fi-
delity through a series of refinement processes. Specifically,
the degraded HrHSI can be obtained by adding stochastic
noise step by step during the forward process, and then the
restored HrHSIs can be obtained by the spatial and spec-
tral guided reverse diffusion process conditioned on HrMSI
and LrHSI, respectively. In addition, we design consistency
constraint strategies for model training to ensure the spec-
tral distribution of the target HrHSI consistent with that of
LrHSI and the spatial distribution is consistent with that of
HrMSI. The ideal target HrHSI can be obtained by integrat-
ing the complementary information from the outputs of the
spatial-spectral-bilateral super-resolution process. The pro-
posed method iteratively refines the spatial details and spec-
tral signature through the cycle-diffusion process, which not
only ensures stable model training but also maximizes the
spatial-spectral fidelity.

Forward Diffusion Process
Given a clean HrHSI Z0 ∼ q(Z0), where Z0 = Z, the for-
ward diffusion process gradually add the stochastic noise to
Z0 through a Markov chain to generate noisy image ZT .
Each time step t of the forward diffusion process can be de-
fined as follows,

q(Zt|Zt−1) = N (Zt;
√

1− βtZt−1, βtI) (1)

where t ∈ [0, T ], N (Zt;
√
1− βtZt−1, βtI) represents that

Zt obeys the Gaussian distribution with mean
√
1− βtZt−1

and variance βtI, and βt ∈ (0, 1) is the variance sched-
ule. Further, we can obtain Zt from Z0 directly by
reparametrization technique as follows,

q(Zt|Z0) = N (Zt;
√
γtZ0, (1− γt)I) (2)

Zt =
√
γtZ0 +

√
1− γtε (3)

where ε ∼ N (0, I), γt = 1 − βt, and γt =
∏t

i=0 γt. The
forward process transforms the data distribution into a stan-
dard Gaussian distribution viz. ZT ∼ N (0, I).

Reverse Conditional Cycle-Diffusion Process
The reverse process aims to remove the noise added during
the forward process and infers Z0 through iterative refine-
ments, which can be approximated by a neural network. In
this paper, we design a conditional cycle-diffusion frame-
work to generate the HrHSIs by spatial-spectral-bilateral
super-resolution process. Particularly, the spatial super-
resolution process is conditioned on LrHSI and guided by
HrMSI, while the spectral super-resolution process is con-
ditioned on HrMSI and guided by LrHSI. The conditional
distribution of the spatial-spectral-bilateral super-resolution
process, viz. the reverse process, is introduced below.

The posterior distribution p(Zt−1|Zt,Z0) is useful to the
reverse process, which can be formulated as follows,

p(Zt−1|Zt,Z0) = N (Zt−1;µ(Zt,Z0),Σ(Zt,Z0)) (4)

where the mean µ(Zt,Z0) and variance Σ(Zt,Z0) can be
represent as,

µ(Zt,Z0) =

√
γt (1− γ̄t−1)

1− γ̄t
Zt +

√
γ̄t−1 (1− γt)

1− γ̄t
Z0 (5)

Σ(Zt,Z0) =

(
1− γt−1

)
(1− γt)

1− γt

(6)

It is worth noting that, in this paper, the forward pro-
cess generates two noisy images, namely ZSpa

T and ZSpe
T

(ZSpa
T = ZSpe

T = ZT ), for the spatial and the spectral super-
resolution process.

For each time step, the conditional distribution of spatial-
spectral-bilateral super-resolution process can be encoded
into the cycle-diffusion framework as shown in Figure. 2 and
produce the prediction ZSpa

t,0 and ZSpe
t,0 at each time step re-

spectively, which can be defined as follows,

ZSpa
t,0 = fθ(Z

Spa
t ,X,Y) (7)

ZSpe
t,0 = fω(Z

Spe
t ,Y,X) (8)

where θ and ω are the model parameters of the bilateral
super-resolution processes, and fθ(Z

Spa
t ,X,Y) represents

the spatial super-resolution process that is conditioned on
LrHSI and guided by HrMSI, fω(Z

Spe
t ,Y,X) represents

the spectral super-resolution process that is conditioned on
HrMSI and guided by LrHSI. Then, the inputs of the next
time step can be obtained as follows according to Eq. (5),

ZSpa
t−1 =

√
γ̄t−1(1− γt)

1− γ̄t
fθ(Z

Spa
t ,X,Y)

+

√
γt(1−γ̄t−1)

1−γ̄t
ZSpa

t +

√
(1−γ̄t−1) (1−γt)

1−γ̄t
ε

(9)

ZSpe
t−1 =

√
γ̄t−1(1− γt)

1− γ̄t
fω(Z

Spe
t ,Y,X)

+

√
γt(1−γ̄t−1)

1−γ̄t
ZSpe

t +

√
(1−γ̄t−1)(1−γt)

1−γ̄t
ε

(10)
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Figure 2: The illustration of each time step operation in the proposed spatial-spectral-bilateral cycle-diffusion framework
(S2CycleDiff) for hyperspectral image super-resolution.

Spatial/Spectral Guided Pyramid Denoising Module
To prevent the spatial texture blur and spectral distor-
tion during the super-resolution process, we design a spa-
tial/spectral guided pyramid denoising (SGPD) module as
the core component of the conditional cycle diffusion frame-
work. The HrMSI and LrHSI are used as the guiding factors
to guide the generation of high-fidelity spatial and spectral
information in the bilateral super-resolution processes, re-
spectively. The SGPDs of the bilateral super-resolution pro-
cesses exhibit a symmetrical configuration, which consist of
multiple layers of detail injection block (DIB). At each time
step, SGPD takes the multi-scale features of the noisy im-
age and the guiding factor as input and achieves image de-
noising through downsampling and upsampling operations
between each layer. Therefore, the spatial-spectral-bilateral
super-resolution process can be expressed as follows,

ZSpa
t,0 = fθ(Z

Spa
t ,X,Y)

= Spa-GPD(Conv3×3(Z
Spa
t ,X),Y)

= Spa-GPD(ẐSpa
t ,Y)

(11)

ZSpe
t,0 = fω(Z

Spe
t ,Y,X)

= Spe-GPD(Conv3×3(Z
Spe
t ,Y),X)

= Spe-GPD(ẐSpe
t ,X)

(12)

where Spa-GPD(·) and Spe-GPD(·) represent the SGPD
modules of the spatial and the spectral super-resolution pro-
cess, respectively, and Conv3×3(·) represents the 3× 3 con-
volutional layer used to unify dimensions before inputting
the noisy image into the SGPD module.

Taking the spatial super-resolution process as an example,
the illustration of the l-th DIB of SGDP is shown in Figure.
3, which leverages the cross-attention mechanism to couple
the finer spatial information of HrMSI. The operation of the
l-th DIB can be formulated as follows,

(ẐSpa,l
t ,ZSpa,l

t,0 ) = DIBl
t(Ẑ

Spa,l−1
t ,ZSpa,l+1

t,0 ,Y) (13)

where DIBl
t(·) represents the l-th DIB of SGDP,

ZSpa,l
t,0 = Rl

2([(R
l
1(Y) +

Ql
Y(Kl

Y)
T

√
B

Vl
Y);

(Rl
2(Ẑ

Spa,l−1
t ) +

Ql
Y(Kl

Z)
T

√
B

Vl
Z); (Z

Spa,l+1
t,0 ↑)])

ẐSpa,l
t = Rl

2(Ẑ
Spa,l−1
t ) ↓

(14){
Ql

Y = φl
q(Y),Kl

Y = φl
k(Y),Vl

Y = φl
v(Y)

Kl
Z = ρlk(Ẑ

Spa,l−1
t ),Vl

Z = ρlv(Ẑ
Spa,l−1
t )

(15)

where Rl
n(·) represents a sequence of n stacked residual

blocks in the l-th DIB (Rl
2(·) is to extract features from in-

puts while Rl
1(Y) is adopted to unify the dimensions of Y

and input features), B is the scale factor, ↑ represents the up-
sampling operation, ↓ represents the down-sampling opera-
tion, φl

q(·), φl
k(·), and φl

v(·) represent the specific operators
that consist of a residual block and a 1 × 1 convolutional
layer, ρlk(·) and ρlv(·) are the operators that contains two
residual block and a 1 × 1 convolutional layer for dimen-
sion unification. The residual block consists of 3× 3 convo-
lutional layer, Swish activation function, and group normal-
ization operation.
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Figure 3: The illustration of the l-th detail injection block
(DIB) of spatial guided pyramid denoising module (Spa-
GDP).

Complementary Fusion Block To make full use of the
complementary spatial and spectral information between
ZSpa

t,0 and ZSpe
t,0 , we use a complementary fusion block that

consists of a series of convolutional layers to generate the
ideal HrHSI with high spatial-spectral fidelity. The process
can be represented as follows,

Z̃ = fη(fθ(Z
Spa
t ,X), fω(Z

Spe
t ,Y))

= fη(Z
Spa
t,0 ,ZSpe

t,0 )
(16)

where η is the parameter of the complementary fusion block,
and Z̃ represents the generated ideal HrHSI.

Training Objective
Given the training sets {(Xn,Yn,Zn)|n = 1, 2, · · · , N},
where N is the number of training samples, Xn and Yn rep-
resent the n-th training samples, and Zn is the corresponding
ground truth map. Furthermore, a series of consistency con-
straint strategies are used in the process of network training
to obtain high-quality HrHSI. We define L1 to achieve this
objective,

L1 =
1

N

N∑
n=1

(∥Zn − ZSpa,n
t,0 ∥

1
+ ∥Zn − ZSpe,n

t,0 ∥
1
) (17)

where ZSpa,n
t,0 and ZSpe,n

t,0 are the n-th outputs of bilateral
super-resolution.

Additionally, a paired of HrMSI Ỹn and LrHSI X̃n can be
obtained from ZSpa,n

t,0 and ZSpe,n
t,0 by spectral response func-

tion (SRF) and point spread function (PSF), respectively. We
design L2 loss function to constrain the consistency between
{Xn,Yn} and {X̃n, Ỹn}, which can be defined as follows,

L2 =
1

N

N∑
n=1

(∥Xn − X̃n∥1 + ∥Yn − Ỹn∥1) (18)

X̃n = PSF(ZSpe,n
t,0 ), Ỹn = SRF(ZSpa,n

t,0 ) (19)

where PSF(·) represents the Gaussian blurring followed by a
3×3 convolutional operation, and SRF(·) denotes the linear
operation. Meanwhile, two consistent MSIs can be obtained
from HrMSI and LrHSI through the above PSF and SRF,
respectively, which can be constrained as follows,

L3 =
1

N

N∑
n=1

∥PSF(Yn)− SRF(Xn)∥1 (20)

Furthermore, it is necessary to constrain the consistency
between the generated ideal HrHSI and the ground truth
map, which can be formulated as follows,

L4 =
1

N

N∑
n=1

∥Zn − Z̃n∥1 (21)

where Z̃n represents the generated high-quality HrHSI.
Thus, the total loss function L can be represented as fol-

lows,
L = L1 + L2 + L3 + L4 (22)

Experiment
Datasets and Implementation Details
To illustrate the effectiveness of the proposed method, we
conduct the comparative experiments with several compet-
ing methods on three public datasets, namely CAVE, Pavia
Center, and Chikusei. The CAVE dataset consists of 32 im-
ages with a size of 512 × 512 × 31, where 22 images are
selected as the training set, while the remaining 10 images
are allocated to the test set. The size of the Chikusei dataset
is 2304 × 2048 × 110. The top area with 1792 × 2048
pixels is selected as the training data, while the remaining
area is used as the test data that is split into four patches
with the size of 512 × 512. The Pavia Center dataset con-
sists of 102 bands with the size of 960 × 640, which is
cropped into patches with 160 × 160 pixels for training
and testing. We use the Wald’s protocol (Wald, Ranchin, and
Mangolini 1997) to generate pairs of LrHSI and HrMSI for
training. The spectral bands of HrMSI in CAVE, Pavia Cen-
ter, and Chikusei are 3, 4, and 3, respectively. These three
datasets are degraded spatially with a factor of 4. In order
to match the spatial dimension of LrHSI with that of HrMSI
and HrHSI, we adopt bicubic interpolation so that the con-
catenation of noisy HrHSI and LrHSI can be regarded as
inputs for spatial super-resolution in S2CycleDiff. We con-
ducted the experiments with the PyTorch framework and
trained on two NVIDIA GeForce RTX 3090 GPU. The ex-
periments were conducted with a batch size of 8 and 100k
iterations on all datasets. The Adam optimizer is employed
for the optimization process, with a maximum learning rate
set at 0.0001.The time step T is set to 2000, and the hyperpa-
rameter sequence {β1, β2, ..., βn} was defined with uniform
growth ranging from 0 to 0.02.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4627



Methods CAVE Chikusei Pavia Center
PSNR SAM ERGAS SSIM PSNR SAM ERGAS SSIM PSNR SAM ERGAS SSIM

GSA 39.5631 5.3966 2.6803 0.9782 33.2088 2.1924 2.3728 0.9052 33.4475 5.8496 3.2015 0.9538
FUSE 33.9303 4.4017 4.7760 0.9600 35.5124 1.9726 2.3549 0.9478 28.8145 7.9142 5.5524 0.8820
CNMF 38.8704 4.9593 3.0723 0.9727 33.3137 2.2277 2.5688 0.9355 31.6690 5.0485 4.2487 0.9168

SSR-NET 42.3322 4.1381 1.8452 0.9830 39.5345 1.4703 1.5435 0.9715 42.9138 2.9478 1.6410 0.9837
MoG-DCN 40.9808 3.2583 2.1891 0.9803 39.1090 1.4171 1.4380 0.9696 42.9275 2.8845 1.6354 0.9843
LAGC-NET 42.9198 7.9494 1.7216 0.9542 40.5422 1.2895 1.7007 0.9772 40.0506 3.3257 1.7127 0.9818

LightNet 41.5682 3.5185 2.0093 0.9856 40.1045 1.3091 1.5081 0.9747 42.1629 3.0056 1.8158 0.9802
PSRT 43.4795 2.8763 1.6422 0.9896 39.7903 1.4464 1.7904 0.9729 39.7629 3.0586 2.4049 0.9827

S2CycleDiff 43.9264 2.7907 1.5834 0.9898 43.8817 1.2756 1.3402 0.9909 43.3698 2.7814 1.5903 0.9847

Table 1: Quantitative results obtained by different methods on CAVE, Chikusei, and Pavia Center datasets.

Methods CAVE ×16
PSNR SAM ERGAS SSIM

SSR-NET 37.8502 5.6890 3.0349 0.9694
MoG-DCN 35.2812 7.6792 3.9560 0.9455
LAGC-NET 39.6383 5.9763 2.4719 0.9753

LightNet 39.0308 5.3803 2.7409 0.9781
PSRT 39.3620 4.5799 2.9440 0.9716

S2CycleDiff 39.9191 4.5523 2.4022 0.9840

Table 2: Quantitative results of competing methods on
CAVE dataset with a upsampling factor of 16.

Competing Methods and Evaluation Metrics
We selected three traditional methods and five deep
learning-based methods for comparison. The traditional
methods included GSA (Aiazzi, Baronti, and Selva 2007),
FUSE (Wei, Dobigeon, and Tourneret 2015) and CNMF
(Yokoya, Yairi, and Iwasaki 2011). The Deep Learning-
based methods include PSRT (Deng et al. 2023), LightNet
(Chen et al. 2022), LAGC-NET (Jin et al. 2022), MoG-DCN
(Dong et al. 2021) and SSR-NET (Zhang et al. 2021). Four
widely used indexes are used for quantitative evaluation, in-
cluding peak signal-to noise ratio (PSNR), spectral angle
mapper (SAM), root mean squared error (RMSE), and er-
reur relative global adimensionnelle de synthese (ERGAS).

Quantitative and Qualitative Evaluation Table. 1 shows
the quantitative assessment of different methods on the three
datasets. Values in the table are averaged metrics across
all test data. Compared with other competing methods, the
proposed method can obtain superior performance on three
datasets, achieving the best values across all quantitative
evaluation metrics. Some representative visual results of
different approaches are depicted in Figure. 4. To provide
a clear demonstration of the superiority of the proposed
method, we have included the residual result beneath each
experimental result. In contrast, the proposed method can
generate the HrHSI with exceptional detail fidelity. The
residual images obtained by the proposed method exhibit the
smallest deviation from the reference images. As a result,
S2CycleDiff can achieve outstanding results in both quanti-
tative and qualitative aspects. To further validate the perfor-
mance of the proposed method at higher upsampling rate, we
conduct experiments on CAVE dataset with a upsampling

Dataset Model PSNR SAM ERGAS SSIM
Variant-Spe 41.0376 3.9461 2.2326 0.9832

CAVE Variant-Spa 41.3527 3.7541 2.0873 0.9860
S2CycleDiff 43.9264 2.7907 1.5834 0.9898
Variant-Spe 41.6815 1.9208 2.2181 0.9794

Chikusei Variant-Spa 41.4683 1.8818 1.7288 0.9854
S2CycleDiff 43.8817 1.2756 1.3402 0.9909
Variant-Spe 40.5205 3.3896 2.1224 0.9775

Pavia Center Variant-Spa 41.9572 3.1807 1.8424 0.9809
S2CycleDiff 43.3698 2.7814 1.5903 0.9847

Table 3: Effectiveness of conditional cycle-diffusion frame-
work in the proposed method.

factor of 16. Table. 2 shows that the proposed method still
maintains the optimal performance.

Ablation Study
Effectiveness of Conditional Cycle-diffusion Framework
To verify the effectiveness of the proposed conditional
cycle-diffusion framework, we set up two variants, i.e.,
Variant-Spa that with the single spatial super-resolution
branch and Variant-Spe that with the single spectral super-
resolution branch, to achieve HISR, and conduct compara-
tive experiments with the proposed method on three datasets.
The experimental results are presented in Table. 3. In com-
parison to single branch, the proposed method demonstrates
superior performance in generating HrHSI. This substanti-
ates that the conditional cycle-diffusion framework can im-
prove the spatial-spectral fidelity of the generated HrHSI.

Effectiveness of Detial Injection Block Detial Injection
Block (DIB) aims to incorporate the spectral or spatial infor-
mation of the guiding factors into the denoising process. We
devise two variants, i.e., Variant1 (the module without guid-
ing factors) and Variant2 (the module concatenates guiding
factors directly with intermediate features along the channel
dimension), for experiments on three datasets to verify the
effectiveness of DIB. The experimental results are presented
in Table. 4. It is evident that our approach, which leverages
the cross-attention mechanism to integrate finer spectral or
spatial information from guiding factors, can generate supe-
rior experimental outcomes.
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Figure 4: Visual results and reconstruction error maps obtained by different methods on CAVE, Chikusei and Pavia datasets.
The darker error maps indicate better performance.

Figure 5: Experimental results of the proposed method with
different number of DIBs.

Dataset Model PSNR SAM ERGAS SSIM
Variant1 36.2690 5.8561 3.4709 0.9652

CAVE Variant2 43.4294 2.7107 1.6931 0.9897
S2CycleDiff 43.9264 2.7907 1.5834 0.9898

Variant1 29.1468 3.5522 5.4893 0.9351
Chikusei Variant2 42.9069 1.3852 1.3401 0.9904

S2CycleDiff 43.8817 1.2756 1.3402 0.9909
Variant1 39.3987 3.7453 2.3496 0.9720

Pavia Center Variant2 42.4301 2.9805 1.7412 0.9833
S2CycleDiff 43.3698 2.7814 1.5903 0.9847

Table 4: Effectiveness of DIB in the proposed method.

The Number of DIBs in SGPD The number of DIBs in
SGPD directly affects the results of HISR. Therefore, we
conducted a series of experiments on CAVE dataset to select
the number of DIBs that can make the model perform op-
timally. The experimental results are normalized according
to their corresponding manners, as shown in Figure. 5. It is
demonstrate that the performance of the proposed method is
optimal when the number of DIBs in SGPD is set to 4.

Conclusion

In this paper, we propose a spatial-spectral-bilateral cycle-
diffusion framework (S2CycleDiff) for hyperspectral super-
resolution, which encodes the conditional distribution of
spatial and spectral super-resolution processes into a condi-
tional cycle-diffusion framework, so as to obtain the high-
quality HrHSI by a sequence of refinements. The cus-
tomized conditional cycle-diffusion framework can produce
the HrHSIs with complementary spatial and spectral infor-
mation through the bilateral super-resolution in spatial and
spectral domains, in which the spatial/spectral guided pyra-
mid denoising (SGPD) module separately adopts HrMSI and
LrHSI as the guiding factors to guide the image restoration,
effectively minimizing the spatial-spectral distortion by spa-
tial details injection and spectral correction respectively. Ex-
tensive experiments are conducted to demonstrate the supe-
rior performance of the proposed framework compared to
state-of-the-art methods.
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