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Abstract

The dot product self-attention (DPSA) is a fundamental com-
ponent of transformers. However, scaling them to long se-
quences, like documents or high-resolution images, becomes
prohibitively expensive due to the quadratic time and mem-
ory complexities arising from the softmax operation. Kernel
methods are employed to simplify computations by approx-
imating softmax but often lead to performance drops com-
pared to softmax attention. We propose SeTformer, a novel
transformer where DPSA is purely replaced by Self-optimal
Transport (SeT) for achieving better performance and com-
putational efficiency. SeT is based on two essential softmax
properties: maintaining a non-negative attention matrix and
using a nonlinear reweighting mechanism to emphasize im-
portant tokens in input sequences. By introducing a kernel
cost function for optimal transport, SeTformer effectively sat-
isfies these properties. In particular, with small and base-
sized models, SeTformer achieves impressive top-1 accura-
cies of 84.7% and 86.2% on ImageNet-1K. In object detec-
tion, SeTformer-base outperforms the FocalNet counterpart
by +2.2 mAP, using 38% fewer parameters and 29% fewer
FLOPs. In semantic segmentation, our base-size model sur-
passes NAT by +3.5 mloU with 33% fewer parameters. SeT-
former also achieves state-of-the-art results in language mod-
eling on the GLUE benchmark. These findings highlight SeT-
former applicability for vision and language tasks.

Introduction

Transformers (Vaswani et al. 2017), initially introduced for
natural language processing (NLP), have gained significant
popularity in computer vision following the groundbreak-
ing work of Vision Transformer (ViT) (Dosovitskiy et al.
2021). Its promise has been demonstrated in various vision
tasks, including image classification, object detection, seg-
mentation and beyond (Khan et al. 2022). Dot-product self-
attention (DPSA) with softmax normalization plays a cru-
cial role in transformers for capturing long-range depen-
dencies. However, the computation of this model leads to
quadratic time and memory complexities, making it chal-
lenging to train long sequence models. Therefore, research
on “efficient” transformers has gained significant impor-
tance in the last two years. Several methods with the aim
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Figure 1: Top-1 classification accuracy vs. FLOPs on the
ImageNet-1k, where the bubble size represents the number
of parameters. SeTformer improves upon the baseline accu-
racy yet require fewer parameters and FLOPs.

of increasing the efficiency of transformers (Touvron et al.
2021; Liu et al. 2021; Huang et al. 2022; Yang et al. 2022;
Liu et al. 2022; Wang et al. 2022; Hassani et al. 2023;
Grainger et al. 2023) are proposed. Although these meth-
ods have achieved impressive results on ImageNet-1K (an
area where ViT has struggled), the increased complexity
makes these models slower overall (Figure 1). One main
bottleneck in attention mechanisms is the softmax operator,
which affects the efficiency (Zandieh et al. 2023). Thus, re-
cent research has proposed kernel-based methods as a way
to approximate the attention matrix and improve computa-
tional efficiency (Choromanski et al. 2021; Peng et al. 2021;
Chowdhury et al. 2022; Choromanski et al. 2023; Zandieh
et al. 2023; Reid et al. 2023). The approximate attention
matrix is an unbiased estimate of the original attention ma-
trix, encoding token similarities via a softmax-kernel with-
out explicit construction. However, the improved efficiency
achieved through kernelization often comes with additional,
sometimes impractical assumptions on the attention matrix
(Wang et al. 2020) or with approximations of the softmax
operation under specific theoretical conditions (Choroman-
ski et al. 2023). However, when these assumptions are not
satisfied or approximation errors occur, the performance of
these methods may not be consistently better than the vanilla
transformer. For example, transformer variants with linear
complexity, such as ScatterBrain (Chen et al. 2021), and
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Figure 2: Top-1 Classification accuracy vs. FLOPs on the
ImageNet-1k. We compare SeTformer with other kernel-
based transformers while using Swin-B as the base.

KDEformer (Zandieh et al. 2023), show less satisfactory
performance on ImageNet-1k compared to Swin (Liu et al.
2021), as observed in Figure 2. Here, we emphasize that
while softmax is computationally expensive, but it is an ac-
curate function for calculating attention weights. Given this
challenge, a fundamental question arises: “Is there an alter-
native to DPSA that maintains softmax’s properties while
efficiently modeling long-range interactions?”. In softmax
attention, two factors play a vital role in its performance:
non-negative elements within the attention matrix (Zandieh
et al. 2023), and a nonlinear reweighting mechanism that
enhances the stability of attention weights (Gao and Pavel
2017; Zhu et al. 2021). We propose a new variant of DPSA
called Self-optimal Transport (SeT) that satisfies both of
these properties by using principles from optimal trans-
port (OT) and the kernel method. In SeT, input features are
mapped into a Reproducing Kernel Hilbert Space (RKHS),
in which point evaluation takes the form of a linear function
(Bietti and Mairal 2019). Instead of using the dot-product
to find the similarity score between elements, we use align-
ment scores achieved through the computation of OT be-
tween input and reference features using Sinkhorn’s method
(Cuturi 2013). OT, is an effective computational technique
for aligning distributions, that has found significant attention
in many applications, including computer vision (De Plaen
et al. 2023), and machine learning (Liu et al. 2023). As
the name indicates, OT aims to find the most efficient way
for transporting a mass from one location to another, while
in our model, it efficiently computes similarity weights by
aligning each feature in the input with a reference set.

Contributions. SeT involves a two-step process: construct-
ing the kernel feature map and then applying OT to compute
the alignment matrix. We begin by embedding input fea-
ture vectors into a RKHS, where a positive definite kernel
ensures the non-negative property. This enables the model
to avoid aggregating negatively-correlated information. The
non-linear reweighting scheme is achieved by assigning dif-
ferent weights to tokens based on their relevance with the
reference set. OT aligns input feature vectors with a refer-
ence set, enhancing local correlations and capturing com-
plex dependencies. To maintain computational feasibility,
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we use a kernel approach (Zhang, Wang, and Nehorai 2019)
to obtain a finite-dimensional embedding, and multi-level hi-
erarchical representations, similar to Swin (Liu et al. 2021),
are constructed through kernel compositions, resulting in
downsampled feature maps across levels. Our new trans-
former, SeTformer, demonstrates its effectiveness through
extensive experiments on various tasks. This highlights the
potential of content-based interactions to enhance trans-
former performance in vision and language applications.

Related Works

Vision Transformers. Transformer and self-attention mech-
anism have significantly impacted Natural Language Pro-
cessing (Vaswani et al. 2017), and their application to vi-
sion tasks has been made possible by the pioneering Vision
Transformer (ViT) (Dosovitskiy et al. 2021). Researchers
have further extended ViT models in multiple directions,
focusing on position encoding (Chu et al. 2023), data effi-
ciency (Touvron et al. 2021), and optimization techniques
(Li et al. 2022b). These advancements have led to signif-
icant progress in vision tasks (Khan et al. 2022). Several
recent works have focused on enhancing ViT* performance
on downstream tasks by exploring pyramid structures, sur-
passing convolution-based methods. PVT (Wang et al. 2021,
2022) introduces sparse location sampling in the feature map
to form key and value pairs. Swin (Liu et al. 2021) uti-
lizes non-overlapping windows with window shifts between
consecutive blocks. CSwin (Dong et al. 2022) extends this
approach with cross-shape windows to enhance model ca-
pacity. PaCa-ViT (Grainger et al. 2023) introduces a new
approach where queries start with patches, while keys and
values are based on clustering, learned end-to-end. HaloNet
(Vaswani et al. 2021) introduced a haloing mechanism that
localizes self-attention for blocks of pixels instead of pixel-
wise, aiming to address the lack of an efficient sliding win-
dow attention. Similarly, NAT (Hassani et al. 2023) adopts
neighborhood attention, considering specific scenarios for
corner pixels. FocalNets (Yang et al. 2022) replaces self-
attention with a Focal module using gated aggregation tech-
nique for token interaction modeling in vision tasks. While
these advances have been successful and achieved impres-
sive results on vision tasks, they often come with higher
complexity compared to vanilla ViT counterparts. With SeT-
former, we’ve aimed to achieve a balance between perfor-
mance and complexity, addressing this issue.

Kernel Methods for Transformers. When dealing with
large-scale input, a more efficient approach is to directly re-
duce the complexity of the theoretical calculations. Kernel-
ization accelerates self-attention by transforming the com-
putation complexity from quadratic to linear. By utilizing
kernel feature maps, we can bypass the computation of the
full attention matrix, which is a major bottleneck in softmax.
Recent advances in scalable transformers include (Choro-
manski et al. 2021; Peng et al. 2021; Chowdhury et al. 2022;
Choromanski et al. 2023; Zandieh et al. 2023), where the
self-attention matrix is approximated as a low-rank matrix
for long sequences. These methods are either very simplis-
tic (Chowdhury et al. 2022), while others are mathemati-
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cally well explained but complex (Choromanski et al. 2021;
Zandieh et al. 2023). Several of these methods rely on the
Fourier transform, leading to sin and cos random features,
which are unsuitable for transformers due to negative val-
ues in the attention matrix. To address this, Choromanski
et al. (2021) proposed a solution using positive valued ran-
dom features known as FAVOR+ for self-attention approxi-
mation. This approach was improved by Likhosherstov et al.
(2022), through carefully selecting linear combination pa-
rameters, allowing for one parameter set to be used across all
approximated values. While all these methods achieved de-
cent efficiency, they often falls behind popular vision trans-
formers like Swin in terms of performance (Figure 2). How-
ever, we explore the concept of optimal transport and kernel
learning to potentially overcome this performance gap while
still maintaining the efficiency advantages of Transformers.
Our model’s corresponding kernel is a matching kernel
(Tolias, Avrithis, and Jégou 2013), which uses a similar-
ity function to compare pairs of feature (the input vector
and reference set). Recent methods have also explored ker-
nels based on matching features using wasserstein distance
(Khamis et al. 2023; Kolouri et al. 2021). Prior studies by
Skianis et al. (2020), Mialon et al. (2021) and Lee et al.
(2019) analyze similarity costs between input and reference
features in biological data. They employ dot-product oper-
ation (Vaswani et al. 2017) for element-wise comparison.
In contrast, our model employs transport plans to compute
attention weights, providing a new perspective on Trans-
former’s attention via kernel methods. Unlike other kernel-
based methods like Performer that is not compatible with
positional encoding techniques, our model incorporates this
information, which are crucial in visual modeling tasks.

Proposed Method
From Self-Attention to Self-optimal Transport

Consider an input sequence z={z1,...,Z,} € R? of n
tokens. The DPSA is a mapping that inputs matrices
Q, K,V € R" % These matrices are interpreted as queries,
keys, and values, respectively,

Att(Q,K,V) = D tAV

A =exp (QKT/\/&); D = diag(A1Y) W
where 1,, is the ones vector, and A, D € R™*". The Soft-
max operation normalizes the attention weights A, allow-
ing each token to be a weighted average of all token values.
However, the quadratic complexity of the softmax becomes
a bottleneck as the number of tokens increases. We aim to
develop a powerful and efficient self-attention that is, above
all, simple. We do not add any complex modules like con-
volution (Wu et al. 2021), shifted windows (Hassani et al.
2023), or attention bias (Li et al. 2022a) to improve the vi-
sion task’s performance. We indeed take a different strategy.
SeT leverages the important properties of softmax, including
non-negativity and reweighting mechanism (Gao and Pavel
2017), while also prioritizing efficiency in its design. The
use of RKHS with a positive definite (PD) kernel avoids ag-
gregating negative-correlated information. SeT incorporates
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Figure 3: An input feature vector z is transported onto refer-
ence y via transport plan T'(z, y), that aggregates x features
w.rt. y, yielding A, (z). In DPSA, each z; aggregates with
all x features, forming a large sparse matrix. Our model ag-
gregates based on best-matched x and y features through OT.

a nonlinear reweighting scheme through OT. This involves
computing alignment scores between input and reference
sets within RKHS. This process introduces nonlinearity to
the alignment scores, assigning weights to elements to high-
light their significance. This helps the model in capturing
complex relationships and emphasizing local correlations.

Representing Local Image Neighborhoods in an RKHS.
In order to maintain a linear computation, we embed the
input feature vector into a RKHS, in which point evalu-
ation takes the form of linear function. Kernel methods
(Scholkopf et al. 2002) enable us to map data from its orig-
inal space X" to a higher-dimensional Hilbert space (feature
space) F through a positive definite (PD) kernel /C. For a
function u: X — F (feature map), the PD kernel is de-
noted as K(x,2") = (u(x),u(z’)) . Given that u(x) can be
an infinite-dimensional, the kernel technique allows to de-
rive a finite-dimensional representation v(x) in R¥, with an
inner product (v(z;),v(x})) denoting K(x, ). As shown
by (Fukumizu 2008), if X is positive definite, for any z, 2,
we have C(x,2’) > 0, which aligns with the non-negativity
property of softmax operator.

Optimal Transport (OT). A fundamental role in our
model is to aggregate related tokens by learning a mapping
between them. Our weighted aggregation relies on the trans-
port plan between elements x and x’ treated as distinct mea-
sures or weighted point clouds. OT has found extensive use
in alignment problems (Shamsolmoali et al. 2024), and has
an impressive capacity to capture the geometry of the data
(Liu et al. 2023). We focus throughout this paper on the Kan-
torovich form of OT (Peyré and Cuturi 2019) with entropic
regularization for smoothing transportation plans. Let g in
tn and h in p, denote the weights of discrete measures
> 9i0s; and 3, h;j6s; for the elements  and a’. The cost

matrix C € R™ ™ has entries ¢(z;, ;) for the (4, j) pairs.
In our model, the weights g and h are determined by the
transport plan that aligns the input set with the reference sets.
Instead of computing a pairwise dot product between distri-
butions, OT finds the minimal effort based on the ground
cost to shift the mass from one distribution to another,

OTiant = Ci;T;; +eH(T) 2

min
TeU(g;h)
ij

where the negative entropy function is defined as H(T) =
> Tij(log(T35) — 1) with regularization parameter €. The
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transport plan 7;; describes the amount of mass flowing
from location ¢ to location j with minimal cost, and the con-
straint U(g, h)={T € R’}rX"/ : Tl,=g; TT1,/=h} repre-
sents the uniform transport polytope. The computation of
OT in (2) is efficiently done using a matrix scaling pro-
cedure derived from Sinkhorn’s algorithm (Cuturi 2013).
OT assigns different weights to individual elements/tokens
based on their significance within the input, similar to the
reweighting scheme in softmax attention. Furthermore, OT
enforces non-negativity by optimizing alignments between
input elements (Sinkhorn and Knopp 1967; Cuturi 2013),
preserving the non-negative nature of attention weights, as
in softmax attention. Indeed, kernels capture the nonlinear
transformation of the input, while OT finds optimal align-
ments between sets of features with fast computation.

Self-optimal Transport (SeT)

With an input feature vector x and a reference y,,, in X, we
perform the following steps: (i) representing the feature vec-
tors x and y in RKHS £, (ii) aligning the elements of = with y
using OT, (iii) performing a weighted aggregation of the ele-
ments z into m clusters, resulting in an alignment matrix A,
as detailed in Figure 3. We use a reference y for efficient el-
ement aggregation. Each element in the reference set serves
as an “alignment cell”, and input features are aggregated
within these cells through a weighted sum. These weights in-
dicate the correspondence between the input and references,
computed using OT. Suppose we have an input feature vec-
torsz = {x1,...,7,} livingin X € R, randomly extracted
from input images. In the context of the Nystrom approx-
imation (Xiong et al. 2021), the samples of y is the cen-
troids obtained by conducting K-means clustering to fea-
ture vectors in the training set X', such that we obtain y =
{y1, .-, Ym} withm < n. The use of the reference set helps
optimize the computation process and enables the model to
scale effectively for longer input sequences (Skianis et al.
2020; Mialon et al. 2021). Let k be a positive-definite kernel,
like the Gaussian kernel that defined on RKHS along with
mapping u : R* — F. We create a matrix k of size n x m
that stores the comparisons k(z;, y;). Next, we compute the
transport plan between x and y based on (2), resulting in the
n x m matrix T'(z,y). The transport plan finds the best way
to align the input features with the reference elements while
minimizing the alignment cost. Our A, (x) is now defined as

Uz[ZT:cyzlu xi), ZTxylmu xi)}

i=1
m'/? T(x,y)T [u(xl), .. ,u(mn)]T(3)

This aggregation relies on a positive-definite kernel such that

-3

iy’ =1
This formulation with T, (z,2’) = m - T(x,y)T(z',y)7,
can be seen as a kernel that assigns weights to match be-
tween pairs of elements. The weights are determined by
OT in the feature space (F). Our attention process involves
aggregating the non-linearly embedded elements of = into

u(z) where u(z) =

zv’k 1'17 ) (4)
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Figure 4: Visualization of our model on COCO dataset us-
ing KC, and IC,,. They are compared with the Swin (Liu et al.
2021) and NAT (Hassani et al. 2023). While K focuses
solely on large objects, K, accurately captures multi-scale
objects without including sparse areas.

“cells”, with each cell corresponding to a reference element
in y, guided by the transport plan T'(z,y). The reweight-
ing property in A, (z) arises from using OT to align the
non-linearly embedded input = with the reference y. The
weights assigned during aggregation, driven by this align-
ment, are guided by the OT process. In other words, each
value in T, (z,z’) represents the weight or importance of
x aligned with the elements of z’. Since the OT matrix is
constructed from non-negative values (Cuturi 2013), the ag-
gregation process will involve non-negative weights, satis-
fying the non-negativity property. However, if we exclude
the use of a reference for cost calculation, we will have
K(z,a") = 37"y Tz, x")ik(zi, z},), which is compu-
tationally costly due to the quadratic number of transport
plans required. To differentiate between this kernel and /C,,
we need to find the relationship between T, (x,z’) and
T(x,2"). Consider z, z’, y with lengths n, n’, and m respec-
tively. The weighted wasserstein distance W, (z, =) based
on reference y is (T, (z,2"), d? (x,z"))'/2, where d3 (z,2")
is a distance metric induced by the kernel. The inequality
W(z,2") =Wy (x,2")| < 2min(W(z,y), W(z',y)), shows
that the weighted wasserstein distance W, (z, z’) is a valid
approximation of the actual wasserstein distance W(z, z").
The difference between these two distances is bounded by a
factor of 2 times the minimum of the wasserstein distances
between the input sets x and y; 2’ and y. This efficient com-
putation is highlighted in Figure 4 where KC,, effectively cap-
tures objects of different scales, emphasizing essential fea-
tures of each object rather than the surrounding region. X
mainly focuses on larger objects (e.g., sofa), and /C,, accu-
rately captures smaller objects like baseball bat (see Suppl.
for more results). NAT excels at capturing multi-scale ob-
jects but also includes the sparse region around each object.

Projecting Onto a Linear Subspace. When dealing with
finite-dimensional u(x), the A, (z) can be directly computed
without incurring significant computational overhead. In the
case of infinite or high-dimensional u(z), the Nystrom al-
gorithm (Xiong et al. 2021) provides an efficient approx-
imation for the embedding v : R? — RF. The Nystrom
algorithm approximates the transport plan by sampling a
subset of columns and rows, and projecting input from the
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Figure 5: SeTformer Architecture (Left). It starts with a convolutional downsampler, followed by four sequence stages contain-
ing multiple SeT blocks. Consecutive stages are bridged by downsampler layers that reduce the spatial size while doubling the
depth. On the right, we illustrate our attention formulation: mapping x and y elements to the RKHS, then aggregating x features
if they align well with the corresponding reference through OT computation between x and y.

feature space F onto a linear subspace J;, which results
in an embedding (v(z;),v(z'j))F1. The subspace F is
spanned by & centroids u(z1),...,u(zx). The explicit for-
mula v(z;) = k(z, 2)~'/?k(z, z;) represents a new embed-
ding with z = z1,..., zx as centroids. This efficient method
only requires performing K-means clustering and computing
the inverse square root matrix. To implement this approxi-
mation, replace each z; with its corresponding embedding
v(z;), updatlng the attention model i in 3),

1/2[ZT ZT

2 T(o(a), ) ol
(5)

here, v(z) € R™** with m denoting the features in y.

zl'U zmv(x )

Linear Positional Encoding. In our model, to integrate
positional information, we adopt the approach from Mairal
(2016). This involves an exponential penalty based on the
positional distance between input and reference sets. Specif-
ically, we multlply T( (z),y), with a distance matrix M,

defined as M;; = 2)(a=p)? ,where « = i/n, 8 = j/m,
and 7 representing the smoothing parameter. The resulting
value is then inserted into (5). Our similarity weights that
consider both content and positional information achieve su-
perior performance compared to other positional encoding
methods, as detailed in Table 7.

SeT via DPSA. The proposed A, performs sequence
alignment w.r.t. a reference y using OT, while the self-
attention in transformers relies on dot product similarities
for feature aggregation. This provides an alternative ap-
proach for computing attention-like weights, addressing re-
cent questions about the use of DSPA (Tay et al. 2021; Yang
et al. 2022). We obtain our attention weight by computing
T(x,y:;)T(x,y;)" for each reference y;. In comparing SeT
with DPSA, the differences are evident in the elements of
aggregation and alignment schemes. For DPSA, the atten-
tion matrix is computed as W = W7TQ, where W and Q
are learned parameters, with an aggregation based on z, size
of O(n?) (n is the number of input x), and a position in-
formation function P(¢,¢"). On the other hand, SeT uses T'
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for the attention matrix, with aggregation based on ¥, size of
O(nm) (m is the number of elements in reference y), lever-
ages y as the learnable parameter, and employs the exponen-

tial function e~ 7)) for position information, where
« and B are normalized positions in the input and reference
sets, respectively. This distinct framework of SeT allows for
more efficient computation of attention weights.

Model Layers # Param. FLOPs
SeTformer-Miny  3,4,6,5 16M 2.8G
SeTformer-Tiny 3,4,18,5 22M 4.1G
SeTformer-Small 3,4, 18,5 35M 6.9G
SeTformer-Base 3,4,18,5 5T 10.2G

Table 1: Different variants of the SeTformer architecture.

SeTformer. We use Swin as our baseline model, replacing
its self-attention with our SeT module. Our model consists
of four stages, each with a different spatial resolution, result-
ing in a spatial size 1/4th of the input image. Inputs are em-
bedded using two-layer 3x3 convolutions with 2x2 strides.
After each stage, except the last, there’s a down-sampler via
33 convolutions with 2x2 strides. This is different from
Swin, which uses non-overlapping 2x2 convolutions. The
overall network architecture is presented in Figure 5, and
different variants of our model are reported in Table 1.

Experimental Validation

We conduct experiments on both image and language do-
mains, including ImageNet, COCO, and ADE20K, as well
as the GLUE to demonstrate the impact of our model. We
fine-tuned hyper-parameters like the number of references
(m), entropic regularization € in OT, and 7 in position em-
bedding. We observed that € and 7 showed stability across
tasks, while careful selection is required for the value m. In
the supplementary materials, we provided additional visual-
ization results and the source code.

Classification on ImageNet-1K. The ImageNet-1K
(Deng et al. 2009) has ~1.28M images in 1000 classes.
Following Swin’s training setting, we utilize an AdamW
(Kingma and Ba 2014) for 300 iterations, with 20 for
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Model #Param. FL. Thro. Top-1
SeTformer-M 16.2M 2.8G 793/s 81.7
Swin-T (Liu et al. 2021) 282M  4.5G 755/s 81.3
ConvNeXt-T (Liu et al. 2022) | 28.4M 4.5G 775/s 82.1
FocalNet-T (Yang et al. 2022) | 28.6M 4.5G 696/s 82.3
CSWin-T (Dong et al. 2022) 22.8M  43G 701/s 82.7
MViTv2-T (Li et al. 2022b) 24.0M  4.7G 776/s 82.3
NAT-T (Hassani et al. 2023) 28.0M 4.3G 752/s 83.2
SeTformer-T 223M  4.1G 785/s 83.9 +0.7)
Swin-S (Liu et al. 2021) 49.6M 8.7G 437/s 83.0
ConvNeXt-S (Liu et al. 2022) | 49.5M 8.7G 448/s 83.1
FocalNet-S (Yang et al. 2022) | 50.3M 8.7G 406/s 83.5
CSWin-S (Dong et al. 2022) 35.IM  69G 437/s 83.6
MViTv2-S (Li et al. 2022b) 35.0M  7.0G 341/s 83.6
NAT-S (Hassani et al. 2023) 51.0M 7.8G 435/s 83.7
SeTformer-S 35.0M 69G 451/s 84.7 (+1.0)
Swin-B (Liu et al. 2021) 87.4M 15.4G 278/s 83.3
ConvNeXt-B (Liu et al. 2022) | 88.9M 15.4G 297/s 83.5
FocalNet-B (Yang et al. 2022) | 88.7M 15.4G 296/s 83.9
CSWin-B (Dong et al. 2022) | 78.2M 15.2G 250/s 84.2
MViTv2-B (Li et al. 2022b) 52.0M 10.2G 253/s 84.4
NAT-B (Hassani et al. 2023) 90.0M 13.7G 294/s 84.4
SeTformer-B 56.7M 10.2G 298/s 86.2 (+1.8)

Table 2: Classification accuracy on the ImageNet-1K at
224 %224 resolution.

Model
Baseline (Yuan et al. 2021)

Performer (Dosovitskiy et al. 2021)
Reformer (Kitaev et al. 2020)
ScatterBrain (Chen et al. 2021)
KDEformer (Zandieh et al. 2023)
SeTformer

Top-1 acc. GFLOPs

82.55 161.10
5.06 (31.87 %)
11.71 (13.75x)
7.18 (22.43 )
8.80 (18.30x)
6.9 (23.35%)

80.50
81.44
81.95
82.08
83.17

Table 3: Classification results on the ImageNet-1K adopting
T2T-ViT, with the kernel-based methods.

warm-up of the learning rate, followed by gradual decay,
and then perform ten cool down epochs. The results of
top-1 accuracy are reported in Table 2, and Figure 1. In our
ablation study we showed that the optimal reference size
for this task is 500. Raising m can enhance performance
until reaching a saturation point. We also set ¢ to 0.1 and
7 to 0.5. SeTformers consistently outperform ConvNeXt
with smaller model size, Flops, and throughput. Our
mini variant exceeds Swin-T by +0.4%, using 40% fewer
parameters (28M — 16M) and 37% fewer Flops. Our Tiny
model (83.9%) surpasses CSWin by +1.2% in performance
with a similar model size, resulting in a 12% speedup
(from 701/s to 785/s). It also outperforms FocalNet-T by
+1.6% while being lighter. With larger models, we achieve
state-of-the-art performance with fewer parameters and
lower computational costs. For example, SeTformer-B
outperforms NAT-B (84.4%) by a margin of +1.8%, while
having over 24% and 36% fewer Flops and parameters. We
also note that, the throughputs are measured on a V100
GPU. We also evaluate the kernel-attention models on
ImageNet classification, and ensuring fairness by using the
same T2T-ViT backbone for all models. With a pre-trained
24-layer model, we apply our method to 2 attention layers
in the T2T module. On the ImageNet validation set, we
measure top-1 accuracy and Flops of the first attention layer,
which is the most resource-intensive. The results (Table
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Mask R-CNN - 3x schedule

Model AP® AP, AP, [AP™ AP, APZ:|Param. FL.
ResNet-50  |41.2 61.8 449372 584 40.1| 44M 260
ResNet-101  |42.7 632 47.5 (384 603 41.5| 63M 335
SeTformer-M|46.7 682 51.7 |41.9 65.1 44.7 | 32M 190
Swin-T 46.0 682 50.4 |41.6 65.2 44.8| 48M 264
FocalNet-T ~ |48.0 69.7 53.0 [42.9 66.5 46.1 | 49M 268
CSWin-T 49.0 70.7 53.7 |43.6 679 46.6| 42M 279
NAT-T 477 69.0 52.6|42.6 66.1 459 | 48M 258
MVITv2-T  |482 70.9 53.3|43.8 67.9 47.2| 44M 279
SeTformer-T |49.3 71.5 53.9 [44.0 68.3 47.8 | 40M 245
Swin-S 485 703 535|433 674 465| 69M 359
FocalNet-S  |49.3 70.7 54.2 438 68.0 47.4| 72M 365
CSWin-S 50.0 713 54.7 |44.5 68.4 47.7| 54M 342
NAT-S 484 69.8 532|432 669 46.5| 70M 330
MVITv2-S  [49.9 72.0 55.0|45.1 69.5 48.5| 54M 326
SeTformer-S |51.3 73.1 55.6|45.9 712 494 | 52M 312
FocalNet-B [49.8 70.9 54.6 |44.1 682 47.2[11IM 507
CSWin-B 50.8 72.1 55.8 449 69.1 483 | 97M 526
MViTv2-B  |51.0 72.7 56.3 |45.7 69.9 49.6| 7IM 392
SeTformer-B |51.9 72.8 57.2|46.3 703 51.2| 68M 351

Table 4: Object detection using Mask R-CNN on the
COCO. FLOPs (FL) are measured on the input resolution of
1280x800. All backbones are pre-trained on ImageNet-1K.

Model # Param. FLOPs SS/MS mloU
SeTformer-M 40M 758G 45.8/46.9
Swin-T (Liu et al. 2021) 60M 946G 44.5/45.8
ConvNeXt-T (Liu et al. 2022) | 60M 939G  46.1/46.7
NAT-T (Hassani et al. 2023) 58M 934G 47.1/484
CSWin-T (Dong et al. 2022) 60M 959G  49.3/50.7
SeTformer-T 51IM 873G  50.6/51.4
Swin-S (Liu et al. 2021) 8IM  1040G 47.6/49.5
ConvNeXt-S (Liuetal. 2022) | 82M  1024G 48.7/49.6
NAT-S (Hassani et al. 2023) 82M  1010G 48.0/49.5
CSWin-S (Dong et al. 2022) 65M  1027G 50.4/51.5
SeTformer-S 59M 986G  51.1/51.9
Swin-B (Liu et al. 2021) 12IM  1188G 48.1/49.7
ConvNeXt-B (Liu et al. 2022) | 122M  1170G  49.1/49.9
NAT-B (Hassani et al. 2023) 123M  1137G  48.5/49.7
CSWin-B (Dong et al. 2022) 109M  1222G  51.1/52.2
SeTformer-B 8IM  1008G 52.0/52.8

Table 5: Semantic segmentation on the ADE20K. FLOPs are
computed based on an input resolution (2048, 512).

3) highlight that our model achieves the highest accuracy
at 83.17%, while demanding 23 times fewer operations.
The Performer, although the fastest, exhibits a significant
-2.05% accuracy drop compared to the vanilla transformer.

Object Detection on COCO. We perform object detec-
tion on MS-COCO (Lin et al. 2014). Models are trained on
118K training images and evaluated on 5K validation set us-
ing Mask R-CNN (He et al. 2017). We pre-train the back-
bone on ImageNet-1k, fine-tune on COCO for 36 epochs
(3xschedule). We choose the number of references m as
750, and set € to 0.3 and 7 to 0.8. Table 4 presents our
results. SeTformer outperforms CNN (e.g., ResNet) and
Transformer backbones (e.g., CSWin, NAT, MViTv2). For
example, SeTformer-T outperforms NAT-T by +1.6/+1.4 in
APY/AP™, while requiring less computation and having a
smaller model size. When scaling up, SeTformer-B (51.9)
improves over CSWin-B (50.8) by +1.1 AP?, while using
28% fewer parameters and 33% fewer Flops.
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Model QQP SST-2 MNLI
Roberta-base (Liu et al. 2019) 88.41 92.31 79.15
Performer (Dosovitskiy et al. 2021) 69.92 5091 35.37
Reformer (Kitaev et al. 2020) 63.18 50.92 3547
Linear Trans. (Katharopoulos et al. 2020) | 74.85 84.63 66.56
Longformer (Beltagy et al. 2020) 85.51 88.65 77.22
FAVOR++ (Likhosherstov et al. 2022) 88.43 92.23 7891
SeTformer 88.76 92.28 79.16

Table 6: classification results on GLUE for different kernel-
based transformers using (Liu et al. 2019) as baseline.

ImageNet COCO
Model / datasets
odel/ datasets Top/l | AP° Train(iter/s)
1) no pos. 83.78 [49.63 3.2
2) APE (Dosovitskiy et al. 2021) | 83.96 |50.41 2.9
3) RPE (Liu et al. 2021) 84.35 150.89 1.5
4) LPE (ours) 84.72 [51.32 3.1
GLUE
Model / datasets QQP SST-2  MNLI
5) dot product instead of OT 87.85 89.26  78.03
6) Sliced-OT (Kolouri et al. 2021)| 86.74  88.96 76.51
7K 88.92 91.73  78.60
8) K (w/o position encoding) 86.32 88.25 77.38
9) ICy 89.36 93.54 79.81

Table 7: Ablation study. Rows [1-4] explore positional bias;
Rows [5-6] examine the effect of using OT; Rows[7-8] ana-
lyze the reference impact in the SeTformer-S.

Semantic Segmentation on ADE20K. We also evaluate
SeTformer on ADE20K (Zhou et al. 2019) for semantic seg-
mentation using UperNet (Xiao et al. 2018). Methods are
trained for 160K epochs using batch size 16, following (Liu
et al. 2021). Our optimal result is achieved with m = 800,
e and 7 set to 0.3 and 0.8, respectively. In Table 5, we re-
port the mloU and MS mloU results of different methods.
SeTformer-T and Setformer-S outperform CSWin counter-
parts by +1.3/+0.7 and +0.7/40.4 mloU (SS/MS), respec-
tively, while being lighter with lower complexity.

Experiments on Language Modeling. In this section, we
investigate SeTformer’s efficacy on the GLUE benchmark
(Wang et al. 2018) across QQP, SST-2, and MNLI tasks.
To ensure fairness, all transformers, including SeTformer,
are pre-trained for 50K iterations on the WikiText-103
(Merity et al. 2017). We fine-tune the models using training
parameters from RoBERTa (Liu et al. 2019). By comparing
SeTformer with other scalable transformers in Table 6, we
observe that SeTformer consistently outperforms the base-
line (Liu et al. 2019). It achieves competitive or superior
performance across various datasets in comparison to other
transformers. The GLUE benchmark is a diverse set of
language tasks that rely on context and word relationships.
SeTformer’s unique attention mechanism based on optimal
transport could effectively model these relationships, poten-
tially leading to improved performance.

Ablation Studies

Positional Encoding Comparison: In this section, we eval-
uate the important components of the SeTformer using Ima-
geNet, COCO, and GLUE datasets. Table 7, Rows [1-4] ab-
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Model ‘NOA of ref. ImageNet COCO ADE20K
100 7981 45.76 46.93
Wb b

SeTformer-T | 750600 8325  49.34/4937  50.62
1000 8174 48719 50.08

Table 8: Number of m vs. performance: performance im-
proves with increasing m, but saturates at high values.

Model ImageNet-1k COCO

Acc. Test (im/s)| AP Train(iter/s) GFLOPs
MViTv2-B [84.4 253 51.0 2.1 392
SeTformer-S | 84.7 451 51.3 3.1 245
SeTformer-B | 86.2 298 51.9 2.4 371

Table 9: Runtime comparison on ImageNet-1K and COCO.

lates the different position embedding techniques. We find:
(i) Absolute positions (2) only slightly improve over no
position (1), as pooling operators already encode position.
(ii) Relative positions (3) boost performance by introducing
shift-invariance. Notably, our linear positional information
proves remarkably efficient, particularly in COCO, where it
accelerates training by 2.1x versus relative positions. Re-
placing OT with other variants: Rows [5-6] utilize dot
product (Vaswani et al. 2017) and sliced-OT instead of OT.
The results are less favorable compared to our model. Effect
of using references: Rows [7-8] explore the impact of ref-
erences. (7) employs K without the reference concept, while
(8) indicates using /C without adding positional encoding.
Comparing Rows (9) with (7), the presence of references
enhances performance. We analyze the model’s sensitivity
to the number of elements m in Table 8. For example, in the
COCO scenario, using m = 800 yields slightly improved re-
sults (49.37), while m = 750 also provides good performance
(49.34) and it has the advantage of being lighter. While in-
creasing m can enhance performance, it becomes less im-
pactful for very large values. Runtime comparison: The
runtime comparison between SeTformer, NAT, and Swin
is presented in Table 9. SeTformer-S surpasses MViT-B in
both ImageNet (+0.3%) and COCO (+1.2%) datasets, while
having higher throughput (451 im/s vs. 253 im/s) on Ima-
geNet and faster training (3.1 iter/s vs. 2.1 iter/s) on COCO.
SeTformer-B is slightly slower but remarkably more accu-
rate (+1.8% on ImageNet-1K and +0.9% on COCO.

Conclusion

We proposed SeTformer, an efficient transformer based on
Self-optimal Transport (SeT). Our SeTformer benefits from
the properties of kernel methods and optimal transport effec-
tively captures complex relationships and ensures that atten-
tion scores are both non-negative and follow a reweighting
scheme similar to the softmax mechanism. By leveraging
this unique structure, we have created a series of SeTformer-
X architectures that consistently surpass existing transform-
ers across vision and language domains. Our work can pro-
vide another perspective on attention modulation to explore
better content-based interactions, which can benefit visual
recognition models.
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