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Abstract

The goal of conditional image-to-video (cI2V) generation is
to create a believable new video by beginning with the condi-
tion, i.e., one image and text. The previous cI2V generation
methods conventionally perform in RGB pixel space, with
limitations in modeling motion consistency and visual con-
tinuity. Additionally, the efficiency of generating videos in
pixel space is quite low. In this paper, we propose a novel
approach to address these challenges by disentangling the tar-
get RGB pixels into two distinct components: spatial content
and temporal motions. Specifically, we predict temporal mo-
tions which include motion vector and residual based on a
3D-UNet diffusion model. By explicitly modeling temporal
motions and warping them to the starting image, we improve
the temporal consistency of generated videos. This results in a
reduction of spatial redundancy, emphasizing temporal details.
Our proposed method achieves performance improvements by
disentangling content and motion, all without introducing new
structural complexities to the model. Extensive experiments
on various datasets confirm our approach’s superior perfor-
mance over the majority of state-of-the-art methods in both
effectiveness and efficiency.

Introduction
Deep generative models have garnered wide attention, driven
by the emergence of approaches like Generative Adversarial
Models (Goodfellow et al. 2020) and Diffusion Models (Ho,
Jain, and Abbeel 2020). These models have recently demon-
strated remarkable success in tasks such as image generation.
In the field of the conditional Image-to-Video (cI2V), most
works (Ramesh et al. 2021; He et al. 2022a; Yu et al. 2022;
Mei and Patel 2022; Voleti, Jolicoeur-Martineau, and Pal
2022; Blattmann et al. 2023) have showcased the potential
and versatility of these cutting-edge techniques.

A line of works (Yu et al. 2022; Mei and Patel 2022; Voleti,
Jolicoeur-Martineau, and Pal 2022) in cI2V aims to directly
extend images into videos by generating a series of image
frames in RGB space (see in Fig 1(b)). However, they en-
counter the following challenges: (1) Information redundancy
of videos makes it difficult for a model to focus on the video’s
important temporal information. The slight variations present
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Figure 1: Motivations and our ideas. Conventional methods
(see in (b)), involve extending the RGB space with time
sequences, resulting in limited memory efficiency and tem-
poral coherence. Latent Diffusion Models employ a vari-
ational autoencoder for compression (depicted in (a)), en-
hancing efficiency but potentially reducing spatial quality
and poor temporal coherence because temporal consistency
hasn’t been directly modeled. Our approach (refer to (c))
decouples the content and motion, capitalizing on existing
temporal coherence in compressed video data, resulting in a
memory-efficient and temporally consistent video generation
approach.

in each frame, combined with inherent redundancies within
the video space, lead to a neglect of temporal details for the
model when attempting to construct the video. This neglect
hinders the ability of the model to focus on sequential video
frames effectively. Consequently, the process of pixel-based
generation can cause the model to disproportionately high-
light the spatial content, thereby complicating the modeling
of temporal motions. Achieving accurate and efficient gen-
eration of temporal information is notably demanding. (2)
Time consuming. Generating the whole video for each frame
in pixel space consumes significant resources, i.e., for a 16-
frame 128x128x3 video, the target vector dimension would
be 16x128x128x3.

To address the high computational request of directly ex-
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tending images into videos, some work (Blattmann et al.
2023) encodes the image into latent space (see in Fig. 1(a)).
However, this approach can cause a reduction in the quality
of the frames due to the use of VAE, and still can not gen-
erate temporal consistent videos. Recent work LFDM (Ni
et al. 2023) uses a diffusion model to predict optical flow and
then uses the optical flow in conjunction with the original
image content to generate videos. However, optical flow can-
not be easily inverted and is inaccurate, leading to the use of
specialized flow predictors that may encounter local optima.

The approach of separating time and content information
holds great potential. First, we can model the temporal in-
formation of videos individually, rather than considering all
pixels together. Secondly, this approach allows us to save a
considerable amount of computational cost. In comparison
to LFDM, our method uses rigorous computation to model
temporal information and is invertible.

Specifically, we first employ a simpler approach, named
Decouple-Based Video Generation (D-VDM) to directly pre-
dict the differences between two consecutive frames. Then
we propose the Efficient Decouple-Based Video Generation
(ED-VDM) method. We separate the content and temporal
information of videos using a CodeC (Le Gall 1991) to ex-
tract motion vectors and residual content. During training,
we input the motion vectors, residual, and the first frame
image together. The predictive model generates the motion
vectors and residual output, and then we use the CodeC de-
coder to warp them with the image to restore the video. As
we decouple the temporal and content information, during
the prediction process, we aim for the joint probability distri-
bution of input motion vectors and residual, while the model
outputs the score of that distribution. Diffusion models have
been proven effective in learning the score of joint distribu-
tion (Bao et al. 2023).

To recap, our main contributions are as follows:
• Our proposed D-VDM decouples the video into content

and temporal motions, enabling explicit modeling of the
temporal motions. To model the decouplings separately,
we use a diffusion-based method to model the temporal
motions of a video and warp it to the given first frame.

• We investigate various compression techniques to decrease
the spatial dimension of the temporal motion features. Our
proposed ED-VDM, which employs an autoencoder to
compress residuals, provides a 110x improvement in train-
ing and inference speed while maintaining state-of-the-art
(SOTA) performance.

• Extensive experiments are conducted, and the SOTA per-
formance has been achieved on MHAD (Chen, Jafari, and
Kehtarnavaz 2015), NATOPS (Yale Song and Davis 2011),
and BAIR (Ebert et al. 2017) datasets, demonstrating that
our model can generate realistic and temporal consistent
video.

Related Work
Diffusion Model
Diffusion denoising probabilistic models (DDPMs) (Sohl-
Dickstein et al. 2015) learn to generate data samples through
a sequence of denoising autoencoders that estimate the

score (HyvärinenAapo 2005) of the data distribution (a di-
rection pointing toward higher density data). Recently, diffu-
sion probabilistic models (Springenberg 2015; Ho, Jain, and
Abbeel 2020; Song et al. 2020; Karras et al. 2022) achieve re-
markable progress in image generation (Rombach et al. 2022;
Bao et al. 2022), text-to-image generation (Nichol et al. 2023;
Ramesh et al. 2023; Gu et al. 2022), 3D scene generation
(Poole et al. 2023) and image editing (Meng et al. 2021; Choi
et al. 2021).

Our video generation approach leverages the outstanding
performance of the diffusion model, with the primary goal of
generating the video motion feature, thereby achieving better
video temporal consistency. Furthermore, we reduce the spa-
tial redundancy in generation processes by compressing the
temporal feature.

Video Generation with Diffusion Model
Video generation aims to generate a sequence of images
with temporal consistency. In the context of diffusion-based
methods, VDM (Ho et al. 2022b) extended the 2D Unet
architecture to 3D, and generate 3D video signals. Make-a-
Video (Singer et al. 2022), ImageN-Video (Ho et al. 2022a),
and Phenaki (Villegas et al. 2022) have applied similar archi-
tecture to generate high-resolution and long-duration videos,
resulting in high computational resources. To get rid of high
GPU memory usage, MCVD (Voleti, Jolicoeur-Martineau,
and Pal 2022) generates videos in a temporal auto-regressive
manner to reduce memory usage. PVDM (Yu et al. 2023) and
LVDM (He et al. 2022a) propose a latent diffusion model
that utilizes a VAE to compress RGB pixels to latent space.
However, the RGB pixels usually only contribute a limited
8× spatial downsample ratio. Unlike previous methods that
generate videos in RGB space or VAE latent space, our ap-
proach transfers the target space into a compressed temporal
information space, resulting in significant performance im-
provements and a notable spatial downsample ratio (16×).

Video Compression
Video compression is to reduce the amount of data required
to store or transmit a video by removing redundant informa-
tion. MPEG-4 (Le Gall 1991) is one of the most commonly
used methods for video compression. MPEG-4 uses CodeC
to decompose a video into I-frames and P-frames, represent-
ing the first frame and temporal information respectively.
P-frames encode temporal information via motion vectors
and residuals for object movement and image variance.

Computer Vision on Decoupled Videos
Video decoupling based methods means represents a video in
spatial and temporal information, and use both information
to improve the performance of computer vision task. Recent
works, such as (Cheng, Tai, and Tang 2021; Yang and Yang
2022; Huang et al. 2021), have highlighted the importance
of video decoupling in video perception and understanding.
Moreover, some methods have achieved impressive perfor-
mance in video understanding by decoupling the video into
the first frame and motion vectors and residuals. (Wu et al.
2018) trained a deep network on compressed videos, which
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simplifies training and utilizes the motion information al-
ready presents in compressed videos. (Huang et al. 2021)
use key frames and motion vectors in compressed videos as
supervision to improve the performance of video representa-
tions.

Decouple Content and Motion Generation
The goal of conditional image-to-video is to generate a video
given the first frame and conditions. Assume s ∼ N (0, I)
is a Gaussian noise with the shape of N × H × W × C
where N , H , W , and C represents the number of frames,
height, width, and channel respectively. Denote x0 as the first
frame of a video clip, and x0 = {x0, x1, ..., xK} represents
the video clip which has the same shape as the Gaussian
noise. During training, the diffusion model learns the score
of the video distribution. During sampling, starting with the
initial frame x0 and condition y we generate a video clip
x̂0 = {x̂0, x̂1, ..., x̂K} from the learned distribution, begin-
ning with Gaussian noise s. Based on the datasets, we only
use text labels as the condition y. In this section, we first
introduce the preliminary diffusion models and explain our
proposed D-VDM and ED-VDM methods in detail.

Diffusion Model
Denoising Diffusion Possibility Model (DDPM) (Ho, Jain,
and Abbeel 2020) consists of a forward process that perturbs
the data to a standard Gaussian distribution and a reverse
process that starts with the given Gaussian distribution and
uses a denoising network to gradually restore the undisturbed
data structure.

Specifically, consider x0 as a data sample from the distri-
bution x0 ∼ q(x0), representing a video clip in this study.
We denote T as the total step of the perturbation. In the for-
ward process, DDPM produces a Markov chain x0, ...,xT by
injecting Gaussian noise N (0, I) to x0, that is:

q(xt|xt−1) := N (xt−1;
√
αtxt−1, βtI). (1)

q(x1:T |x0) =
T∏

t=1

q(xt|xt−1), (2)

where αt = 1− βt and βt is the noise schedule.
Regarding the denoising process, when the value of T

is sufficiently large, the posterior distribution q (xt−1 | xt)
can be approximated as a Gaussian distribution. The reverse
conditional probability can be computed using Bayes’ rule
conditioned on x0:

q (xt−1 | xt,x0) := N (xt; µ̂(xt,x0), σ̂) , (3)

where µ̂(xt,x0) is obtained as:

µ̂(xt,x0) =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0, (4)

Moreover, by integrating equation 2, predicting the original
video x0 is equivalent to predict the noise ϵ added in xt:

µ̂(xt,x0) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
, (5)

Hence, to estimate µ̂(xt,x0), we need to learn the function
µθ(xt, t). We can achieve this by directly learning the noise
ϵθ(xt, t):

Et∼U(0,T ),x0∼q(x0),ϵ∼N (0,1)[λ(t)∥ϵ− ϵθ(xt, t)∥2], (6)

Decoupled Video Diffusion Model
Video diffusion models aim to use DDPM to estimate
the score of the video distribution v0 ∼ q(v0), where
v0 = {v0, v1, ..., vK} belongs to the RGB pixel space
Z3×K×W×H
[0,255] , and K is the frame number, W and H is frame

width and height respectively. The denoising 3D Unet is de-
signed to learn a denoising parameter ϵθ(vt, t).

One simple approach to decouple a video into spatial and
temporal representations, as illustrated in Figure 3, is to retain
the first frame and then compute the differences between it
and the subsequent frames, noted as v̂0 ∈ V(v̂0), where
v̂n
0 = vn

0 − vn−1
0 , v̂2...n0 ∼ Z3×K−1×W×H

[−255,255] .
To align the difference with the first frame and provide

spatial information, low-level semantic information of the
first frame is incorporated into the learning target. This is
achieved by using a ResNet (He et al. 2016) bottleneck mod-
ule to encode the first frame (denoted as τθ(v0)) and concate-
nating it to the learning target along the channel dimension.
Subsequently, the learning objective is slightly modified as

L = Et,v̂0∼V(v̂0),ϵ∼N (0,1)[λ(t)∥ϵ−ϵθ(v̂t, t, τθ(v0))∥2], (7)

where τθ and ϵθ is jointly optimized.

Efficient Decoupled Video Diffusion Model
As discussed in the previous section, another efficient rep-
resentation of decoupled video can be achieved through I-
frames and P-frames. P-frames comprise motion vectors and
residuals, as depicted in Figure 3.

We follow the H.264 protocol to obtain the motion vector
m and residuals r from a video tube v, using a reversible
function f(v) =< m, r >:

Let vn and vn−1 be the current and the previous frame,
respectively. We divide vn−1 into non-overlapping micro-
blocks of size 16 × 16 pixels, denoted as Bi, where i rep-
resents the index of the micro-blocks. To obtain the motion
vector mi for each micro-blocks Bi, we search for a corre-
sponding block B′

i in the current frame vn that is similar to
Bi. This can be achieved by minimizing the sum of absolute
differences between the two blocks, which can be formulated
as:

mi = argmin
u,w

∑
j,k

|Bi(j, k)−B′
i(j + u, k +w)|

Once the motion vector mi is obtained, the residual r can
be calculated as the difference between the previous micro-
blocks Bi and the motion-compensated block B′

i in the cur-
rent frame, i.e., ri = Bi −B′

i(mi), The motion vectors and
residuals for all micro-blocks can then be combined to form
the P-frame.

Motion vectors that are used to represent the motion in-
formation of 16 × 16 blocks in the video frames contain
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Figure 2: Illustration of our proposed decoupled video diffusion model. (a) Pipeline. The green pathway represents the Decoupled
Video Diffusion Model (D-VDM), which directly generates motion features in the compressed video domain, while the blue
pathway illustrates the Efficient Decoupled Video Diffusion Model (ED-VDM), which includes a reversible compression function.
(b) Compression techniques used in the ED-VDM model. Since the separated motion vectors and residuals are of unequal lengths,
it is necessary for us to apply equal-length processing to both components. (c) The architecture of the 3D U-Net. We employed
the 3D U-Net architecture in both models.

identical numbers, and thus can achieve a high spatial com-
pression ratio of 256×. Residuals, on the other hand, have
the same spatial size as the video frames, but contain less
information than the original frames and thus can be com-
pressed efficiently. For the residual compression, we utilize a
Latent Diffusion (Rombach et al. 2022) autoencoder to com-
press the residuals into a latent space. In order to match the
spacial dimension of the motion vector, the residual down-
sampling rate is set equal to the motion vector compression
rate and in our case is 16×. Specifically, given a residual
r ∈ z3×W×H

[−255,255], the encoder E encodes the residual to a latent

space z = E(z) ∈ R16×W
16×

H
16 , and the decoder D could

reconstruct the image from the latent r′ = D(E(r)). We use
L1 as our objective to train the autoencoder.

The dense representation of motion vector and residual
with the same spatial resolution enables us to concatenate
them channel-wise as [m, r]. We can uniformly sample the
time steps t to learn the joint distribution of [m, r] with the

following objective function:
L = Et,m,r=f(v0),v0∼V,ϵ∼N (0,1) [λ(t)mse]

mse = ∥ϵ− ϵθ(mt, E(rt), t, τθ(v00))∥2.
(8)

Experiments
Datasets and Metrics
Datasets We conduct our experiment on well-known video
datasets used for image-to-video generation: MHAD (Chen,
Jafari, and Kehtarnavaz 2015), NATOPS (Yale Song and
Davis 2011), and BAIR (Ebert et al. 2017). The MHAD hu-
man action dataset comprises 861 video recordings featuring
8 participants performing 27 different activities. This dataset
encompasses a variety of human actions including sports-
related actions like bowling, hand gestures such as ’draw x’,
daily activities like transitioning from standing to sitting, and
workout exercises like lunges. For training and testing pur-
poses, we’ve randomly picked 602 videos from all subjects
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Method MHAD NATOPS
FVD↓ cFVD↓ sFVD↓ FVD↓ cFVD↓ sFVD↓

ImaGINator (WACV 2020) 889.48 1406.56 1175.74 721.17 1122.13 1042.69
VDM (Arxiv 2022) 295.55 531.20 398.09 169.61 410.71 350.59
LDM64(CVPR 2022) 280.26 515.29 427.03 251.72 506.40 491.37
LFDM64(CVPR 2023) 152.48 339.63 242.61 160.84 376.14 324.45
D-VDM64 145.41 308.33 244.73 152.19 358.47 266.53
LDM128 (CVPR 2022) 337.43 594.34 497.50 344.81 627.84 623.13
LFDM128 (CVPR 2023) 214.39 426.10 328.76 195.17 423.42 369.93
ED-VDM128 (110× speedup) 204.17 389.70 348.10 179.65 373.23 351.26

Table 1: Quantitative comparison of conditional Image-to-Video generation on MHAD and NATOPS datasets. We compare FVD,
sFVD, and cFVD on 16 frames clip. The 64 and 128 in the subscript indicate that the resolution of synthesized video frames is
64× 64 and 128× 128, respectively.

for the training set and 259 videos for the testing set. The
NATOPS aircraft handling signal dataset encompasses 9,600
video recordings that involve 20 participants executing 24 dis-
tinct body-and-hand gestures employed for interaction with
U.S. Navy pilots. This dataset features common handling
signals like ’spread wings’ and ’stop’. We have arbitrarily
chosen 6720 videos from all subjects for the training phase,
while the remaining videos are for the testing phase. Detailed
data preprocess methods are listed in Appendix.

Metrics For evaluation metrics of the text conditional
image to video task, we follow the protocol proposed by
LFDM (Ni et al. 2023) and report the Fréchet Video Dis-
tance (FVD) (Unterthiner et al. 2018), class conditional FVD
(cFVD) and subject conditional FVD (sFVD) for MHAD and
NATOPS datasets. FVD utilizes a pre-trained I3D (Carreira
and Zisserman 2017) video classification network from the
Kinetics-400 (Kay et al. 2017) dataset to derive feature repre-
sentations of both real and generated videos. The cFVD and
sFVD evaluate the disparity between the actual and gener-
ated video feature distributions when conditioned on the same
class label y or the identical subject image x0, respectively.
In addition, for the image-to-video task, we report the FVD
score on BAIR datasets. All evaluation is conducted on 2048
randomly selected real and generated 16 frames video clips
following the protocol proposed by StyleGAN-V (Karras
et al. 2019).

Implementation Details
We use a conditional 3D U-Net architecture as the de-
noising network, and directly apply the multi-head self-
attention (Cheng, Dong, and Lapata 2016) mechanism to
the 3D video signal. Additionally, we use a ResNet(He et al.
2016) block to encode the first frame as a conditional fea-
ture map and provided it to ϵθ by the concatenation with the
noise ϵ. In ED-VDM, The feature map of the first frame is
downsampled 16× to match the size of the motion feature,
and in D-VDM the feature map remains the original size.
We use the pre-trained CLIP (Radford et al. 2021) to encode
text y as text embedding e, and we adopt the classifier-free
guidance method in the training process. The embedding e
is concatenated with the time step embedding. Detailed U-

net structures of ED-VDM and D-VDM can be found in the
supplementary material.

For ED-VDM, we compress the motion vector according
to the motion block size (values in the same block inside the
motion vector are the same), and we employ a VAE (Rom-
bach et al. 2022) with slight KL-regularization of 1e−6 to
encode the residual into a 16× 16× 16 latent representation.
Detailed model architectures are listed in the supplementary
material. For different datasets, we take the middle 4 resid-
uals out of 16 in a video clip as the training set to train our
VAE model.

Baselines
We compare our approach with the most recent diffusion-
based methods including MCVD (Voleti, Jolicoeur-
Martineau, and Pal 2022), CCVS (Moing, Ponce, and Schmid
2021), and VDM (Ho et al. 2022b) on image-to-video tasks in
BAIR datasets. We also compare our method with LFDM(Ni
et al. 2023), VDM (Ho et al. 2022b), and LDM (He et al.
2022b) on MHAD and NATOPS for text condition image-to-
video tasks. We collect the performance scores of the above
methods from their original paper.

Main Results
Stochastic Image to Video Generation. Table 3 shows the
quantitative comparison between our method and baseline
methods for the image-to-video (I2V) task on the BAIR
dataset with 64 × 64 resolution. By simply changing the
target space from RGB pixels to image residuals, D-VDM
improved the previous best FVD from 66.9 to 65.5. By uti-
lizing motion vector and residual, ED-VDM achieves a high
compression rate and a competitive performance. For image
quality, our D-VDM method surpasses previous methods on
PSNR, SSIM, and LPIPS from 16.9 to 17.6, 0.780 to 0.799,
and 0.122 respectively. The image quality of the generated
video by ED-VDM is slightly lower than the SOTA method
but with a much higher speed advantage. We assume that due
to the low image resolution, the compressed temporal latent
only has a spatial size of 4× 4 which can not contain enough
information to restore the original video. Further experiments
on high-resolution videos demonstrate the superiority of our
ED-VDM method.
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CodeC
Motion+Residual
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Motion Vector +
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Figure 3: Different ways to represent video temporal feature
between frames. Frame difference used by D-VDM, a sim-
ple technique, calculates direct frame discrepancies, encom-
passing both fundamental and advanced temporal alterations.
D-VDM findings reveal its potency in refining the temporal
consistency of a generated video. Motion Vector and Resid-
ual used by ED-VDM, as in H.264, disentangles temporal
shifts into intermediate motion blocks and pixel residuals.
Notably, correlated with motion vectors, these residuals offer
a sparse representation with potent compression potential.
In our experiments, ED-VDM attains an impressive 110x
compression ratio.

Conditional Image to Video Generation. We conduct
experience on NATOPS and MHAD following the protocols
proposed by LFDM (Ni et al. 2023). Our D-VDM achieved
remarkable results on MHAD and NATOPS at 64×64 resolu-
tions, outperforming all previous SOTA methods. In specific,
D-VDM achieves an FVD score of 145.41 on MHAD and
152.19 on NATOPS. Considering the effect of the text con-
dition and the subject image, we further report the cFVD
and sFVD scores of our method, and our method achieves
SOTA performance. We conducted further experiments with
the ED-VDM method on NATOPS and MHAD with larger
resolutions. Our results are presented in Table 1, and ED-
VDM achieved comparable results at 128 resolutions with
110 times speedup than VDM (He et al. 2022a). Specifically,
our proposed ED-VDM achieved an FVD score of 204.17 on
MHAD and 179.65 on NATOPS which surpasses all previous
methods. For the different text conditions and subject images,
our method achieves SOTA performance on both sFVD and
cFVD.

For qualitative results, Figure 4 illustrates the video gen-
eration samples from our D-VDM and ED-VDM methods
on BAIR, MHAD, and NATOPS datasets. The figure demon-
strates that our proposed approach can generate realistic and
temporally consistent videos on three datasets. With the text
condition on dataset MHAD and NATOPS, generated videos

R-FVD↓ PSNR↑ SSIM↑

128-MHAD 130.62 31.80 0.95
128-NATOPS 131.91 31.60 0.96

Table 2: The upper bound of our ED-VDM method. R-FVD
score is evaluated with 2,048 samples. PSNR and SSIM are
evaluated on an average of 16 frames with 100 samples.

achieve a strong correlation with the text condition. Further-
more, using ED-VDM, we can still generate high-fidelity
videos with comparable quality, which leverage a 110 times
training and inference efficiency.

Analysis
Reconstruction Quality
Table 2 summarizes the results of the reconstruction quality
of our residual autoencoder. We use the R-FVD, which in-
dicates FVD between reconstructions and the ground-truth
real videos, peak-signal-to-noise ratio (PSNR), and structural
similarity index measurement (SSIM) to evaluate the image
quality with residual reconstruction. All evaluations are con-
ducted on randomly selected reconstructed videos and real
videos. Quantitative results in Figure 5 show that our resid-
ual reconstruction method achieves a small image quality
degradation.

BAIR (64x64) FVD↓ PSNR ↑ SSIM ↑ LPIPS ↓
CCVS 99.0 - 0.729 -
MCVD 89.5 16.9 0.780 -
VDM 66.9 - - -
D-VDM 65.5 17.6 0.799 0.122
ED-VDM (110×speedup) 92.4 16.0 0.775 0.132

Table 3: Image-to-Video Generation Results on BAIR dataset.
Our method surpasses the SOTA methods with regard to FVD
score.

Method FLOPs(×109) Memory (GB)

VDM (Ho et al. 2022b) 8814 11.56
LFDM (Ni et al. 2023) 627 6.69

D-VDM 8611 11.49
ED-VDM 78 3.47

Table 4: FLOPs and memory usage for our model to train on
1 batch of 16× 128× 128× 3 resolution videos.

Speed Comparison
As shown in Table 4, we evaluate the FLOPs and memory
consumption to train on 128×128×3 video clips of different
methods. Since D-VDM directly uses a 3D U-net to train on
original video frames, it has approximately the same FLOPs
and memory as the video diffusion model (VDM). With
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BAIR
Stochastic Generation

MHAD
”cross arms in the chest”

NATOPS
“All Clear”

MHAD
“baseball swing from right”

NATOPS
“I Have Command”

Figure 4: Selected samples on BAIR, NATOPS, and MHAD dataset. First two rows are the results of unconditionally generation
results on BAIR, and the down four rows are text conditional generation results on MHAD and NATOPS. The visualization
results show our method generated realistic and temporally consistent video frames.

Reconstructed 
Residual Frames 

Ground 
Truth Frames 

Figure 5: Video quality on residual reconstruction.

128-MHAD-101 PSNR↑ SSIM↑

Autoencoder 31.80 0.96
DCT 17.08 0.85

Table 5: Image quality comparison between our proposed
autoencoder method and traditional DCT method.

the residual compression and motion vector, our ED-VDM
model achieves a 256× spatial compression rate than VDM
and ∼ 110×, ∼ 8× better computation efficiency than VDM
and LFDM, respectively.

Compression Method Exploration
To compress the residual to match the dimension with the
motion vector, we evaluated two methods to compress and
reconstruct, including Discrete Cosine Transformation (DCT)

and autoencoder compression. Table 5 shows the image re-
construction quality of different approaches. We can see that
the adopted autoencoder achieves better reconstruction qual-
ity in both metrics.

Conclusion
This paper demonstrates that transforming the target gener-
ation space from RGB pixels to temporal features can sig-
nificantly improve the temporal consistency and reduce the
computational efficiency of video generation. We propose De-
coupled Video Diffusion Model (D-VDM), which achieves
SOTA performance on various video generation tasks by
decoupling the video into key frame and frame residuals. Fur-
thermore, our proposed ED-VDM further takes advantage of
the sparsity in the motion and frame compensation features
to achieve comparable SOTA results with notable speedup
(110×). These results demonstrate the effectiveness of our
decouple-based approach and open up possibilities for future
work in video generation research.
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