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Abstract

Visual grounding, a crucial vision-language task involving
the understanding of the visual context based on the query
expression, necessitates the model to capture the interactions
between objects, as well as various spatial and attribute in-
formation. However, the annotation data of visual grounding
task is limited due to its time-consuming and labor-intensive
annotation process, resulting in the trained models being con-
strained from generalizing its capability to a broader domain.
To address this challenge, we propose GroundVLP, a simple
yet effective zero-shot method that harnesses visual ground-
ing ability from the existing models trained from image-
text pairs and pure object detection data, both of which are
more conveniently obtainable and offer a broader domain
compared to visual grounding annotation data. GroundVLP
proposes a fusion mechanism that combines the heatmap
from GradCAM and the object proposals of open-vocabulary
detectors. We demonstrate that the proposed method sig-
nificantly outperforms other zero-shot methods on RefCO-
CO/+/g datasets, surpassing prior zero-shot state-of-the-art
by approximately 28% on the test split of RefCOCO and Re-
fCOCO+. Furthermore, GroundVLP performs comparably to
or even better than some non-VLP-based supervised mod-
els on the Flickr30k entities dataset. Our code is available at
https://github.com/om-ai-lab/GroundVLP.

Introduction
Visual grounding seeks to pinpoint the image region de-
scribed by a linguistic expression containing complex se-
mantic information. It includes two typical tasks, Referring
Expression Comprehension (REC) and Phrase Grounding.
REC aims to localize an object in an image given a tex-
tual referring expression, while phrase grounding seeks to
ground every entity in the sentence to objects in the image.
Generally, models are trained via task-specific datasets in
the supervised setting (Yu et al. 2018; Liu et al. 2019c; Sun
et al. 2021; Yang et al. 2019; Liao et al. 2020; Deng et al.
2021) to perform visual grounding.

However, creating these task-specific datasets poses chal-
lenges due to their intricate annotation process. Annotating
a query demands a detailed examination of object interac-
tions and an understanding of various spatial and attribute
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Figure 1: With the combination of existing models trained
with image-text matching and object detection, we could
conduct zero-shot visual grounding without fine-tuning on
any additional supervised dataset.

information within the image. As a result, these datasets are
limited in quantity, especially when compared to two other
dataset types, as detailed in Table 1. Undoubtedly, this finite
amount of data restricts a model’s adaptability to broader do-
main. Compared to the difficulty of obtaining visual ground-
ing data, two alternative data types—image-text pairs and
object detection (OD) data—are comparatively easier to ob-
tain, as shown in Table 1.

Recently, Vision-Language Pre-training (VLP) models,
when trained on image-text pairs, have demonstrated im-
pressive results in image-text matching (ITM) (Zhang et al.
2021; Kim, Son, and Kim 2021; Li et al. 2021). Similarly,
Open-Vocabulary object Detectors (OVD) trained with OD
data have excelled in detecting specific categories (Zareian
et al. 2021; Gu et al. 2021; Zhou et al. 2022), as refer-
enced in the top of Figure 1. Therefore, a natural question
arises: Can we harness the semantic comprehension of VLP
and the category-specific detection prowess of OVD to per-
form visual grounding without any additional training, just
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as shown in the bottom of Figure 1.

Data Type Name Total Size

Visual
Grounding

RefCOCO/+/g(Yu et al. 2016)

∼ 220kCLEVR-Ref+ (Liu et al. 2019b)
Cops-Ref (Chen et al. 2020b)

Flicker30k (Plummer et al. 2015)

Image-Text
Pair

COCO (Lin et al. 2014)

∼ 6.2B
Visual Genome (Krishna et al. 2017)

CC (Changpinyo et al. 2021)
LAION (Schuhmann et al. 2022, 2021)

Object
Detection

COCO (Lin et al. 2014)

∼ 23.3MLVIS (Gupta, Dollar, and Girshick 2019)
OpenImages (Kuznetsova et al. 2020)

ImageNet-21K† (Deng et al. 2009)

Table 1: The list of some widely used datasets for three tasks.
Size means the number of images included in the dataset.†
ImageNet, an image classification dataset, has been proven
to be applicable to OD task by (Zhou et al. 2022).

In this paper, we introduce GroundVLP, a novel method
for zero-shot visual grounding tasks that encompasses both
REC and phrase grounding. GroundVLP comprises three
main components: (1) a VLP model that employs GradCAM
to identify the image regions that are most semantically rel-
evant to the given [expression]1, (2) an OVD to detect the
candidate objects, and (3) a fusion mechanism that combines
the aforementioned two parts using a weighted grade to se-
lect the answer judiciously. In contrast to its previous usage
in the literature (Li et al. 2021; He et al. 2022), we aggre-
gate the GradCAM attention values only for visually recog-
nizable words to optimize the modality mapping from text
to image. Another significant difference is that we narrow
down the candidate boxes to those belonging to a given ob-
ject category with an OVD for to reduce noisy candidates
compared to previous zero-shot methods (Yao et al. 2021;
Subramanian et al. 2022). The object category can be man-
ually defined or predicted from the textual query using off-
the-shelf NLP toolboxes such as Spacy (Honnibal and John-
son 2015) or Stanza (Qi et al. 2020).

We conduct main experiments on RefCOCO/+/g datasets
for REC and Flickr30k Entities dataset for phrase ground-
ing. GroundVLP outperforms all other zero-shot methods,
which obtains an accuracy on average ∼18% better than
ReCLIP (Subramanian et al. 2022) on all splits of RefCO-
CO/+/g and ∼36% better than CPT (Yao et al. 2021) on
all splits of Flickr30k Entities. Experiment results further
show that it performs on par or even better than some non-
VLP-based supervised models on most of the test data. This
outstanding performance indicates that we can tackle visual
grounding tasks, which is traditionally constrained by lim-

1In this paper, [query] refers to the query sentence provided by
the grounding datasets and [expression] refers to a specific object
we need to ground. For REC, [expression] is equivalent to [query].
For phrase grounding, it denotes a certain entity phrase included in
[query].

ited annotations, using easily accessible data such as image-
text pairs and pure object detection data. Additionally, we
take ablation studies on each component of GroundVLP,
demonstrating their effectiveness.

Our contributions could be summarized as: (1) We pro-
pose a simple yet effective zero-shot method supporting both
REC and phrase grounding, which achieves performance
comparable to some non-VLP-based supervised models,
demonstrating that visual grounding could be addressed us-
ing easily accessible data. (2) We probe the cause of the de-
cline in performance when not using the ground-truth cate-
gory and discover inherent noise and bias on RefCOCO/+/g
datasets. (3) We conduct detailed ablation studies to verify
the effectiveness of each proposed component and demon-
strate the weak visual grounding capability of OVD.

Preliminary
There are two widely used attention modules: self-attention
and co-attention, where the former employs the query(Q),
key(K), and value(V) matrices created by the input sequence
itself while the latter collects K and V from another se-
quence(Vaswani et al. 2017). Existing VLP models can be
roughly grouped into three types of architecture consisting
of the aforementioned two attention modules: one-stream,
two-stream, and dual-encoders. We mainly take the first two
types into account and depict them in Figure. 2. Our usage
of GradCAM (Selvaraju et al. 2017) for these two attention
architectures is described in detail here.

Given a text-image pair, we input them into VLP and de-
fine T, I as the number of text and image input tokens re-
spectively. The attention map of a certain layer, denoted as
A, can be computed by the product of Q and K with fur-
thermore post-processes, as defined specifically in the equa-
tion: A = softmax(Q·K⊤

√
dh

), where Q ∈ RNh×s×dh , K ∈
RNh×q×dh and A ∈ RNh×s×q . Nh is he number of atten-
tion heads of multi-head attention, dh means the dimension
of hidden states, and s, q are assigned different values in dif-
ferent architecture:

(s, q) =
{

(T+I, T+I) one-stream
(T, I) two-stream

(1)

where for the two-stream architecture, we compute A in
the co-attention module of the fusion encoder in which Q
is from the language encoder and K from the image. Next,
we compute the gradients map via back propagation:∇A =
(∂Litm

∂A )+, where Litm represents the VLP model’s output
value of the ITM head, and we remove the negative contri-
butions. Finally, the result map G ∈ Rs×q is given by:

G = Eh(∇A ⊙ A)

where Eh is the average calculation across heads dimension
and ⊙ means element-wise multiplication.

To sum up, for a given layer in the encoder, we can obtain
a map G ∈ Rs×q via GradCAM.

The Proposed Method
Figure. 3 demonstrates an overview of GroundVLP. We first
obtain G via GradCAM. Then we crop its size and apply our
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(a) (b)

Figure 2: Two types of attention architectures: (a) One-
stream. (b) Two-stream. The two-stream model has an ad-
ditional co-attention module in its cross-modality encoder
compared to the one-stream model, which is used to interact
with the information from two modalities.

proposed visual-word attention aggression to obtain the heat
map of VLP. For the OVD module, we input the category of
the referring target into it to receive n instances including
boxes and confidence scores. Finally, we fuse two parts to
calculate the weighted grades of each instance and output
the one with the highest grade.

Generating a Heat-map for VLP
To ground the [expression], we prompt the [query] and feed
it into the model along with the image to obtain G by Grad-
CAM. Then we can generate a heat map for VLP. First, we
crop G ∈ Rs×q to G′ ∈ RT×I, where G′ denotes the influ-
ence of the image tokens on each text token:

G′ =

{
G[i, j]I≤j≤T+I

1≤i≤T one-stream
G two-stream

(2)

Next, G′ needs to be further squeezed to G̃ ∈ RI so that
it can represent the connections between the whole [ex-
pression] and each image token. To this end, we propose
visual-word attention aggregation, distinguished from pre-
vious methods which are implemented by either using the
row corresponding to the [CLS] token (Subramanian et al.
2022) directly or averaging the scores of rows across all text
tokens (Li et al. 2021; He et al. 2022), as shown in Figure.
4.

Visual-Word Attention Aggregation: An [expression]
consists of words with various part-of-speech (POS) tags,
where some words can be easily mapped to a specific image
region. For instance, for the phrase “black and white cat”,
it is easy to locate “black”, “white” and “cat”, but “and” is
less clear. Thus, we conjecture that VLP models will also
perform well when mapping visually recognizable words to
the image.

We define V as a set of POS tags, including nouns, ad-
jectives, verbs, proper nouns, and numerals, which are rel-
atively easy to visualize. An off-the-shelf NLP processing
toolbox is utilized to parse the POS tag of each word in the
[expression] and only those whose tag is included in V will

remain. We denote W as the set of [expression]’s text to-
kens. Filtered by V , original set W is cut down to W ′, and
we further add [CLS] token into W ′ when conducting REC
because of its general representation of all the tokens. After
that G̃ ∈ RI can be calculated as:

G̃ = Et(G′), t ∈ W ′

where Et means the average calculation across text dimen-
sion and we only calculate the text tokens included in W ′.

We then reshape G̃ to H ∈ Rh×w having the same size as
the input image. VLP can be divided into region-based and
end-to-end by whether relying on an external object detec-
tor to obtain the visual inputs, which should be applied by
different reshaping patterns. We introduce both types into
GroundVLP and use different patterns for each type.

Heat-map for Region-Based Models: Region-based
VLP models transform the image into a set of region pro-
posals as visual features. Thus, we select a subset of image
tokens with high attention values and superimpose their val-
ues onto the corresponding image regions to generate the
heat-map.

To do this, we sort each element of G̃ in descending or-
der according to their attention values and select the top m
tokens among them, defined as {(vk, bk)}m1 , where vk and
bk = (xk1, yk1, xk2, yk2) are the corresponding attention
value and coordinates of the proposal. The heat map of the
region-based model HR is computed as:

Hk[i, j] =

{
vk (i, j) ∈ bk

0 otherwise
(3)

HR =
∑m

k=1 Hk, where Hk is a h × w matrix, R repre-
sents Region-based, and the sum calculation for Hk is im-
plemented by element-wise addition.

Heat-map for End-to-End Models: End-to-end VLP
models process visual input as a set of patch embeddings
with vision-transformer (Dosovitskiy et al. 2020). Its image
tokens are a series of image patches. Following (Li et al.
2021; He et al. 2022), we employ a bicubic interpolation on
G̃ to reshape it to HE ∈ Rh×w, where E represents End-to-
end.

Fusion with Open-Vocabulary Detectors
Having obtained the heat-map H ∈ Rh×w, we proceed to
generate a set of candidate boxes, calculate the weighted
grades of regions enclosed by each one, and output the box
with the highest grade. We focus on the boxes belonging to
the predetermined category merely, simplifying the selection
of the final answer box as it reduces the number of candidate
boxes. In view of a user should have a specific category in
mind when it comes to real-world applications, we employ
the ground-truth category during the REC task to mimic the
user’s input. Meanwhile, we also present an alternative man-
ner to extract the target unit from the [expression] as the pre-
dicted category when no category is provided.

Category Extraction: Inspired by (Sun et al. 2021), we
exploit an NLP toolbox to extract the target unit of the [ex-
pression] as the predicted category. Specifically, a depen-
dency tree of the [expression] is generated by the NLP tool-
box, and its rightmost Normal Noun (NN) node of the far
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Figure 3: Overview of GroundVLP. The underline words indicate the [expression]. The blue arrow lines denote the procedures
involving GradCAM, and the pink lines are related to the open-vocabulary object detector. The dashed line indicates that the
module may not exist. {(sk, boxk)}n1 represents an array of confidence scores and bounding boxes detected by OVD based on
the given category. The symbol ⊙ means element-wise multiplication of attention map and gradients,and ⊕ means fusing the
instances detected by OVD and heat-map. At location ①, we utilize visual-word attention aggregation, while at location ②, we
employ weighted grade to select the answer box.

(a) Use [CLS] merely (b) Use all text tokens (c) Ours

Figure 4: The difference between the proposed visual word attention aggregation and prior methods

left-bottom Noun Phrase (NP) node is viewed as the pre-
dicted category. An example is illustrated in Figure. 5.

Figure 5: An example of category extract. The original query
is “a red and white checkered table with two wooden chairs”.
The blue dash rectangle indicates the bottom-left NP node
and yellow NN node is the target unit.

Furthermore, we map the extracted predicted categories
to the class vocabulary of the evaluation dataset to conform
to the ground-truth categories. Let C be the set of classes
vocabulary of the evaluation dataset, ci ∈ C be one of the
classes, and cp be the extracted predicted category. Next, we
employ CLIP (Radford et al. 2021) to embed ci and cp as
eci ∈ RD and ep ∈ RD for projecting them into an uniform
embedding space, where D denotes the dimension of CLIP
embedding. As per CLIP, the prompt “a photo of ” is added
as a prefix to ci and cp before embedding them. We then

define cmap as the category mapped from cp to C and simi as
the similarity between cp and ci, which are given as follow:

simi = P (cmap = ci | cp) =
exp(e⊤cie

p)∑|C|
j=1 exp(e⊤cj ep)

(4)

cmap = ci, i = argmaxi(simi)

Through this equation, each cp can be mapped to a spe-
cific class. For instance, “table” in Figure. 5 will be mapped
to “dining table” when using COCO vocabulary.

Generating Candidate Boxes: Given an image I, the
predetermined category c and a score threshold θ, an OVD
is allowed to detect n instances:

{(sk, boxk)}n1 = OVD (c, θ, I ) (5)
boxk = (xk1, yk1, xk2, yk2) (6)
sk = P (ok ∈ c | I ), sk > θ (7)

where ok represents the object entity included in boxk, and
sk denotes the confidence score that ok belongs to c , which
should be greater than θ.

Weighted Grade: A crucial challenge we face now is as-
certaining the value of θ. If it is set too low, the superflu-
ous boxes, which do not belong to c, may be included. Con-
versely, if θ is too high, certain boxes belonging to c may be
missed. For this problem, we raise a formula that set a rela-
tively low threshold and let sk be a weight of rk, where rk
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is defined as the total heat-map value of the region enclosed
by boxk. Through it, we balance both not omitting boxes
that pertain to c and preventing low-scoring boxes from dis-
turbing the result. Finally, we calculate gk which represents
a weighted grade of (sk, boxk) and output boxpred with the
highest grade as the prediction of GroundVLP:

rk =

xk2∑
i=xk1

yk2∑
j=yk1

H[i, j] (8)

gk =
1

Aα
k

· sk · rk (9)

boxpred = boxk, k = argmaxk(gk) (10)

where Ak means the area of boxk used to avoid the ten-
dency to choose boxes with large areas and α is a hyperpa-
rameter.

Experiments
Datasets
Referring Expression Comprehension: We adopt three
widely used datasets: RefCOCO, RefCOCO+ (Yu et al.
2016) and RefCOCOg (Mao et al. 2016). RefCOCO and
RefCOCO+ are both split into validation, testA, and testB
sets, where testA generally contains queries with persons as
referring targets and testB contains other types. RefCOCO
is described by more spatial information compared to Ref-
COCO+, whereas RefCOCO+ contains queries using more
appearance-related words instead. In contrast, RefCOCOg
has longer and more detailed expressions than the other two
datasets.
Phrase Grounding: We adopt Flickr30k entities
dataset (Plummer et al. 2015) for the task and evalu-
ate the performance in terms of Recall@1, 5. On Flickr30k,
a sentence contains several phrases that need to be grounded,
each of which may correspond to multiple bounding boxes.
Hence, previous researches propose two protocols named
ANY-BOX and MERGED-BOX by MDETR (Kamath et al.
2021). In our evaluation, we use the ANY-BOX protocol.

Implementation Details
Selected VLP models and Prompt Templates: I, T is
defined as the input image and text. We introduce a
typical model from both region-based and end-to-end:
VinVL (Zhang et al. 2021) and ALBEF (Li et al. 2021). We
adopt VinVL-Large and ALBEF-14M as the checkpoints
for two models. The input format of VinVL is a triple tu-
ple {w, q , v} and can be formed as two types. We adopt
the VQA-resemble and prompt the query to adapt it to this
format. Specifically, we let T = “there is a [query]?” on
REC task and T = “[query]?” on phrase grounding, and
let q always be “yes”. For ALBEF, we prompt T = ‘‘there
is a [query].” on REC task and T = “[query].” on phrase
grounding, where [query] denotes the query sentence pro-
vided by the datasets.

GradCAM Layer: For ALBEF, we use the 3rd layer of
the cross-modality encoder for GradCAM. For VinVL, we

use the 20th layer of the cross-modality encoder and select
m = 7. All setting is based on tuning on the RefCOCOg val-
idation dataset.

Methods for Category Prediction: We employ
Stanza (Qi et al. 2020) to extract predicted category. When
testing on RefCOCO/+/g, we map the predicted category
to the COCO class via equation 4. For Flickr30k entities,
given that its ground-truth category is slightly abstract2,
we use the predicted category directly. Besides, in order to
detect a person entity better, we set c = {cp, person} if the
cosine similarity of ep and ep∗ is greater than 0.9, where ep∗
denotes the textual CLIP embedding of “a photo of person”.

Selected Open-vocabulary Detector: We choose De-
tic (Zhou et al. 2022) as our open-vocabulary detector
(OVD). Other OVDs can also be considered (Li et al. 2022;
Zhao et al. 2022). For REC, we set α = 0.5, θ = 0.15 when
using ground-truth category and θ = 0.3 for predicted cate-
gory. For phrase grounding, we set α = 0.25 and θ = 0.15.
If Detic detects no box, we use all proposals as candidate
boxes instead. For RefCOCO/+/g, we adopt the proposals
from MAttNet (Yu et al. 2018). For Flickr30k entities, we
use all proposals detected by Detic.

Compared Baseline: We choose two previous zero-shot
REC methods to compare—ReCLIP (Subramanian et al.
2022) and CPT (Yao et al. 2021). CPT masks the regions
of each proposal with different colors and predict the color
word in ” [query] is in [MASK] color”, while ReCLIP scores
each proposal by using the contrastive scoring ability of
CLIP. Furthermore, we construct a CPT-adapted baseline
for phrase grounding to compare. A [query] on Flickr30k
contains N phrases, denoted as {[expression]i}N1 . We then
copy [query] with N times and add “where [expression]i is
in [MASK] color” after ith duplication. We use all propos-
als detected by Detic and colored blocks (Yao et al. 2021)
for CPT-adapted.

Main Results
Referring Expression Comprehension: Table 2 shows the
results on RefCOCO/+/g. GroundVLP outperforms other
zero-shot methods, especially in the testA split of RefCOCO
and RefCOCO+. When using the ground-truth category,
GroundVLP is comparable or superior to some non-VLP-
based supervised models.

However, it is also noted that there is an inevitable decline
in performance when using the predicted category compared
to the case of using the ground truth. It can be attributed to
several factors: (1) Unclear referring targets: the word of the
target unit in the query may not clearly indicate the referring
target. For instance, the query “black hat” indicates a person
wearing a black hat, and the word “hat” will be extracted.
However, “hat” cannot be mapped to “person” exactly, lead-
ing to mistakes. (2) Undisciplined grammar: there is a part
of coarse queries on RefCOCO/+/g, where the NLP tool-
box cannot extract the target unit accurately. For example,
“woman red coat”, an undisciplined expression of “woman
in red coat” or “woman wearing red coat”, will cause the

2They are: people, clothing, bodyparts, animals, vehicles, in-
struments, scene, and other.
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RefCOCO RefCOCO+ RefCOCOg
Model val testA testB val testA testB val test

Supervised SOTA (Yan et al. 2023) 92.64 94.33 91.46 85.24 89.63 79.79 88.73 89.37

Supervised method w/o VLP
NMTree (Liu et al. 2019a) 76.41 81.21 70.09 66.46 72.02 57.52 65.87 66.44
TransVG (Deng et al. 2021) 81.02 82.72 78.35 64.82 70.70 56.94 68.67 67.73

Other zero-shot
CPT-Seg w/ VinVL (Yao et al. 2021) 32.2 36.1 30.3 31.9 35.2 28.8 36.7 36.5
ReCLIP w/ relations (Subramanian et al. 2022) 45.78 46.10 47.07 47.87 50.10 45.10 59.33 59.01

Ours using predicted category
GroundVLP w/ ALBEF 52.58 61.30 43.53 56.38 64.77 47.43 64.30 63.54
GroundVLP w/ VinVL 59.05 69.21 48.71 61.80 70.56 50.97 69.08 68.98

Ours using ground-truth category
GroundVLP w/ ALBEF 58.22 65.48 49.75 63.57 72.02 53.57 69.63 69.15
GroundVLP w/ VinVL 65.01 73.50 55.01 68.87 78.10 57.31 74.73 75.03

Table 2: Accuracy (%) on referral expression comprehension datasets. We show both the results of GroundVLP using the
predicted category and that using the ground-truth category. The best zero-shot accuracy in each column is in bold, and the
second best is underlined. Supervised SOTA refers to UNINEXT (Yan et al. 2023).

Flickr30k val Flickr30k test
Model R@1 R@5 R@1 R@5

Supervised method with VLP
MDETR-ENB5 (Kamath et al. 2021) 83.6 93.4 84.3 93.9
GLIP-L (Li et al. 2022) 86.7 96.4 87.1 96.9

Supervised method w/o VLP
BAN (Kim, Jun, and Zhang 2018) - - 69.69 84.22

Zero-shot method
CPT-adapted (Yao et al. 2021) 27.06 61.78 27.57 61.55
GroundVLP w/ ALBEF(Ours) 63.76 75.02 63.89 74.80
GroundVLP w/ VinVL(Ours) 63.89 74.53 64.19 74.57

Table 3: Accuracy (%) on the Flickr30k entities dataset. We
compare GroundVLP with VLP-based, non-VLP-based su-
pervised methods and prior zero-shot method. The best zero-
shot accuracy in each column is in bold. Note that we only
use the predicted category during this task.

NLP toolbox to regard “woman” as a noun adjective used
to describe “red” and treat “coat” as the target instead. (3)
No target in query: there are a few queries consisting of pure
spatial information, not containing the referring target (e.g.
“left”, “the closest to you”). We argue that these datasets in-
herently include bias and noise, which makes it difficult to
accurately map the predicted category to a COCO class, re-
sulting in a decline in performance.

Phrase Grounding: Table 3 shows the results on the
Flickr30k entities dataset. GroundVLP is far ahead of CPT
for the R@1 score, outperforming it by 38.29% and 37.79%
in the val and test split. Moreover, GroundVLP performs
comparably to or even better than some non-VLP-based su-
pervised approaches. Finally, it is noticed that we only use
predicted category for phrase grounding, demonstrating the
effectiveness of the proposed fusion method for grounding

tasks and the disciplined expression on the Flickr30k dataset
that is beneficial for our predicted category extraction.

Model RefCOCO RefCOCO+ RefCOCOg Difference

GroundVLP
w/ TCL 59.59 64.96 70.92 5.37
w/ PTP 56.81 61.17 68.53 4.36
w/ Lxmert 63.14 60.99 67.99 -2.15

Table 4: Accuracy (%) of using other VLP models. We re-
port the difference of the score on RefCOCO+ minus that on
RefCOCO for each model in column Difference. All datasets
in the table indicate their val split and all results on RefCO-
CO/+/g are obtained by using the ground-truth category.

Extending to Other VLP Models
In order to verify the versatility of our method, we
further incorporate more VLP models into GroundVLP.
We present the results using TCL (Yang et al. 2022),
PTPc̃itewang2022position and Lxmert (Tan and Bansal
2019) in Table 4, among which TCL and PTP belong to
end-to-end and Lxmert belongs to region-based. We found
that GroundVLP with all models outperforms other zero-
shot methods recorded in Table 2 , showing its versatility
that could be applied to various VLP models effectively.
We also report the difference in accuracy between the mod-
els obtained on RefCOCO and RefCOCO+ in the last col-
umn. As previously mentioned, RefCOCO includes more
spatial information while RefCOCO+ is composed of more
appearance-related queries. Thus, the Difference could indi-
cate whether the model is better at position or appearance
attributes. It can be observed that Lxmert is better at spa-
tial information while the other two end-to-end models are
the opposite. We conjecture that the preliminary modeling of
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objects by the OD module could facilitate the understanding
of the visual context for the region-based models and render
it position-sensitive. (Yao et al. 2022; Wang et al. 2022).

Ablation Studies
The evaluation in this section uses the val split of all datasets
and ground-truth category on RefCOCO/+/g datasets if there
is no supplementary statement.

Different Assembly of θ and sk: Table 5 investigates the
effect of the value of θ and the usage of the weighted grade.
It can be observed that a low threshold for OVD (θ = 0.15)
leads to the detection of superfluous boxes, which will im-
pair the performance if we calculate rk as grade directly.
For this condition, our proposed weighted grade considering
both sk and rk could effectively mitigate the interference
from redundant boxes. A high threshold with the weighted
grade (θ = 0.5 and sk is used), on the other hand, uplifts the
quality of detected boxes but probably excludes the answer
box. Thus, the optimal assembly is a relatively low thresh-
old with the weighted grade. In Figure 6, we illustrate the
impact of using the weighted grade on the final results. It
can be observed that when employing the weighted grade,
GroundVLP produces the correct answer.

Backbone θ Use sk RefC RefC+ RefCg Flickr30k

ALBEF
0.15 55.13 60.12 66.52 62.88
0.50 ✓ 57.31 62.64 68.24 62.12
0.15 ✓ 58.22 63.57 69.63 63.76

VinVL
0.15 63.82 67.10 73.43 63.33
0.50 ✓ 64.17 68.00 72.61 61.01
0.15 ✓ 65.01 68.87 74.73 63.89

Table 5: Ablation study on the value setting of θ and whether
using sk as the weight of rk.

Backbone Candidate RefC RefC+ RefCg Flickr30k

ALBEF
all 49.51 53.80 55.11 55.05

pred 52.58 56.38 64.30 63.76
gt 58.22 63.57 69.63 -

VinVL
all 58.39 60.87 63.40 53.23

pred 59.05 61.80 69.08 63.89
gt 65.01 68.87 74.73 -

Table 6: Ablation study on the type of candidate boxes. all
means using all proposals, pred means using predicted cate-
gory, and gt means using ground-truth category.

Type of Candidate Boxes: Table 6 investigates the influ-
ence of different candidate boxes. The performance is en-
hanced after shrinking the number of candidate boxes by a
predetermined category. We observe that the improvements
on RefCOCO and RefCOCO+ were not as pronounced as
those on RefCOCOg and Flickr30k entities when using the
predicted category. Combined with the aforementioned brief

Figure 6: An example of the weighted grade. If sk is not
used, GroundVLP would achieve an error prediction. This
query is from RefCOCOg val set.

about the datasets, it is evident that the extracting for a cat-
egory is more precise on datasets with concrete and disci-
plined expressions, such as RefCOCOg and Flickr30k enti-
ties that are more practical and common in the real world.

Backbone Use vw RefC RefC+ RefCg Flickr30k

ALBEF 57.34 63.02 69.34 63.47
✓ 58.22 63.57 69.63 63.76

PTP 55.42 59.43 67.89 -
✓ 56.81 61.17 68.53 -

Table 7: Ablation study on the type of aggregating attention.
vw denotes visual word attention aggregation.

Type of Aggregating Attention: Table 7 investigates the
improvement of using visual word attention aggregation.
The compared baseline is implemented by averaging the
attention scores across all text tokens (i.e. Figure 4 (b)).
PTP (Wang et al. 2022) is another VLP we incorporate. It
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could be observed that our method achieves better perfor-
mance, especially on PTP, indicating that filtering based on
visually recognizable words could facilitate models’ text-to-
image mapping, which is beneficial for grounding tasks.

Model RefCOCO RefCOCO+ RefCOCOg

Detic 6.65 6.69 8.52
GroundVLP w/ ALBEF 58.22 63.57 69.63

Table 8: Comparison of using Detic solely and GroundVLP
with ALBEF.

Applying OVD for visual grounding: In order to figure
out whether an OVD could be applied to visual ground-
ing, we exclusively utilized Detic for testing on RefCO-
CO/+/g. Initially, we fed the ground-truth category into De-
tic to produce a set of candidate boxes. Subsequently, we
input [query] to Detic, taking into account only these can-
didate boxes when evaluating the similarity score between
each proposal and the text embedding of [query]. The box
with the highest score is the final output. The results in Ta-
ble 8 demonstrate that an OVD struggles to grasp the intri-
cate semantic information of visual grounding without the
semantic insight offered by ITM.

Model Type val testA testB

GroundVLP
w/ ALBEF 63.57 72.02 53.57
w/ ALBEF† 68.40 77.07 55.82

Table 9: The comparison of GroundVLP with pre-trained
model and fine-tuned model. † means the fine-tuned model.

Fine-tuning GroundVLP
We note that GroundVLP can be further fine-tuned with an-
notation data to enhance the performance. Using the Ref-
COCO+ training set, we paired queries with their images as
image-text pairs, fine-tuned ALBEF using ITM loss and ob-
served performance improvements, as shown in Table 9.

Related Work
Visual Grounding. The widely used pipelines to resolve
visual grounding can be broadly grouped into two-stage (Yu
et al. 2018; Liu et al. 2019c; Sun et al. 2021) and one-
stage (Yang et al. 2019; Liao et al. 2020; Deng et al. 2021),
where two-stage methods exploit a proposal-query match-
ing paradigm while one-stage methods generate the an-
swer box with end-to-end. Thanks to the emergence of self-
supervised pre-training, the results on visual grounding have
been improved substantially by pre-trained models (Chen
et al. 2020a; Kamath et al. 2021; Li et al. 2022). Addi-
tionally, though pre-trained with objectives not related to
grounding task, there exist various pre-trained models hav-
ing a strong capacity for vision-language alignment (Zhang
et al. 2021; Radford et al. 2021). Thus, the works utilizing

their strengths to conduct zero-shot visual grounding were
proposed, such as CPT and ReCLIP (Yao et al. 2021; Sub-
ramanian et al. 2022). It is noteworthy that there is another
definition of zero-shot different from us, which predicates
the objects that are unseen during training and still need to
be trained on a grounding dataset (Sadhu, Chen, and Nevatia
2019; Shi et al. 2022). CPT, ReCLIP and us were not trained
on any grounding dataset while could carry grounding tasks
via triggering the capacity of VLP.

GradCAM for Grounding. GradCAM (Selvaraju et al.
2017) is proposed to visualize the regions that the model
focuses on for a specific output head. When it is used in
the VLP models’ ITM head, GradCAM could represent a
modality mapping from text to image, which is adapted for
visual grounding. Therefore, it was employed in REC with a
weakly-supervised setting (Li et al. 2021; He et al. 2022) and
in robot 3D-navigation (Ha and Song 2022) by some works.
Different from theirs, our method (1) uses the presented
visual word attention aggregation to optimize the text-to-
image mapping, (2) could generate a heat-map for any VLP
models pre-trained with ITM by the approach described in
section, which is a universal method, and (3) introduce the
weighted grade to improve the matching between the heat-
map and candidate boxes instead of calculating the heat-map
values enclosed by boxes directly as other methods.

Conclusion
We note the ready availability of image-text pairs and ob-
ject detection data and then present GroundVLP, a zero-
shot method for visual grounding via combining the models
trained using these datasets. GroundVLP employ GradCAM
for a VLP model to identify the image regions, introduce an
open-vocabulary object detector to generate the object pro-
posals that belong to a given category, and fuse these two
components via the weighted grade. Experiments show the
state-of-the-art performance of GroundVLP, which outper-
forms other zero-shot methods and is comparable to some
non-VLP-based models. In the future, we plan to refine the
method of category prediction and also continue to introduce
diverse VLP models and open-vocabulary object detectors
for better performance and application of zero-shot ground-
ing models such as embodied agents.

Limitations
Despite the strong accuracy that GroundVLP achieves, there
are still some potential limitations. GroundVLP may inad-
vertently inherit biases or errors presented in those founda-
tional models. However, we note that both VLP and OVD
serve as plug-and-play modules in our implementation. This
modular design means that GroundVLP stands to benefit
from advancements in both of these areas. Should there be a
more robust or improved foundational model in the future, it
can be seamlessly integrated into our framework to replace
any prior model exhibiting errors or biases. Furthermore, as
shown in Table 9, GroundVLP achieves a performance im-
provement after fine-tuning its VLP backbone, showing that
the employed foundation model could be fine-tuned to ef-
fectively alleviate these deficiencies.
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