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Abstract

Conventional image set methods typically learn from image
sets stored in one location. However, in real-world applica-
tions, image sets are often distributed or collected across dif-
ferent positions. Learning from such distributed image sets
presents a challenge that has not been studied thus far. More-
over, efficiency is seldom addressed in large-scale image set
applications. To fulfill these gaps, this paper proposes Dis-
tributed Manifold Hashing (DMH), which models distributed
image sets as a connected graph. DMH employs Riemannian
manifold to effectively represent each image set and further
suggests learning hash code for each image set to achieve ef-
ficient computation and storage. DMH is formally formulated
as a distributed learning problem with local consistency con-
straint on global variables among neighbor nodes, and can be
optimized in parallel. Extensive experiments on three bench-
mark datasets demonstrate that DMH achieves highly com-
petitive accuracies in a distributed setting and provides faster
classification and retrieval than state-of-the-arts.

Introduction
With the rapid advancement of multimedia technology, there
has been a surge in the amount of images captured from
cameras or surveillance videos. An image set is consid-
ered as a collection of images belonging to a specific ob-
ject and offers more rich variability information about object
than a single-shot image. Image set tasks, e.g., classifica-
tion, retrieval have attracted increasing attention (Wang et al.
2018b), and showed its great potential (Wang et al. 2012;
Huang et al. 2015b). These tasks utilize rich data available
in image sets to improve the performance of various appli-
cations, from object recognition to information retrieval.

Image set modeling is a critical component in image set
tasks, and various effective methods have been proposed,
such as affine or convex hull (Cevikalp and Triggs 2010),
linear subspace (Kim, Kittler, and Cipolla 2007), covariance
matrix (Wang et al. 2012). Given an image set representa-
tion, it becomes crucial to measure distance between two
sets. Existing image set methods can be broadly divided into
four categories based on representation and measurement:
linear subspace methods (Yamaguchi, Fukui, and Maeda
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Figure 1: Illustration of an example distributed image set
dataset, where a subset of image sets is stored in each node.

1998; Kim, Kittler, and Cipolla 2007), affine/convex hull
methods (Cevikalp and Triggs 2010; Hu, Mian, and Owens
2012), kernel methods (Ham and Lee 2008; Wang et al.
2012), Riemannian metric learning methods (Huang et al.
2015a,b). Based on these well-studied Riemannian metrics
(Arsigny et al. 2006; Huang et al. 2015a), a variety of im-
age set methods (Huang et al. 2018; Wang et al. 2022; Chen
et al. 2023; Wang, Wu, and Kittler 2022) have been pro-
posed to obtain nonlinear feature. Despite the success of ex-
isting image set methods, they often perform in a continuous
space, which in practice imposes severe challenges in terms
of storage and computation cost, particular for large-scale
datasets. Therefore, it is imperative to learn compact image
set representation, which remains relatively underexplored
and presents substantial challenges.

In real-world scenarios, e.g., surveillance applications,
image sets are often distributed or stored in various locations
(Yang et al. 2019; Verbraeken et al. 2021). The distributed
image sets can be viewed as an undirected network, as de-
picted in Figure 1. In this network, each node stores a subset
of image sets, and each edge denotes the neighborhood re-
lationship between two nodes. A straightforward approach
to handle such distributed image sets is to first gather them
in one node and then apply conventional image set meth-
ods. However, data gathering inevitably results in prohibitive
communication and storage costs. Therefore, it is impera-
tive to develop distributed image set methods, which has not
been studied thus before.

Hashing (Wang et al. 2018a; Gao et al. 2023; Kou et al.
2022; Wang et al. 2021) has gained increasing interests in
many large-scale applications. Its primary goal is to encode
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Figure 2: Illustration of the proposed DMH. DMH first employs Riemannian manifold to represent each image set, and further
learns hash code on Riemannian manifold kernel to effectively capture intrinsic geometric structure of the image sets. DMH
constructs within-class and between-class scatters and jointly learns hash code and classifier to improve discrimination. DMH
imposes local consistency constraint on global variables among neighbor nodes, and is optimized in parallel across multiple
nodes to improve computational efficiency.

data into a set of short hash codes while preserving sim-
ilarity. The calculation and storage of hash codes are low
in Hamming space, which motivates us to leverage the ad-
vantages of hashing to address concerns related to compu-
tational and storage cost. As such, we propose a new dis-
tributed manifold hashing method (DMH) method for im-
age set classification and retrieval. The overview of DMH is
shown in Figure 2. The contributions of this work are sum-
marized as follows:
• We propose a novel distributed manifold hashing (DMH)

method for compact image set representation. DMH rep-
resents each image set using hash code, significantly re-
ducing computational and storage costs. To our knowl-
edge, DMH is the first attempt at learning compact rep-
resentation on distributed image sets.

• DMH is formulated as a distributed learning problem
with local consistency constraint on global variables
among neighbor nodes. It can be optimized in parallel
across multiple nodes, leading to a reduction in training
time.

• Extensive experiments on three benchmark image set
datasets demonstrate the superiority of the proposed
DMH over the state-of-the-arts in terms of accuracy and
efficiency in a distributed setting.

Related Work
Image Set Classification Traditional image set classifica-
tion methods can be generally categorized into four types:
linear subspace methods, affine/convex hull methods, kernel
methods, and Riemannian metric learning methods.

Affine/Convex hull based methods, e.g., Affine/Convex
Hull Based Image Set Distance (AHISD/CHISD) (Cevikalp
and Triggs 2010) employ the affine/convex hull to model
image set. The similarity between two image sets is then

determined by measuring the Euclidean distance between
their hulls. These methods are computationally expensive
due to redundant parameters and high complexity of opti-
mization. Linear subspace methods model each image set as
a linear subspace. For example, Mutual Subspace Method
(MSM) (Yamaguchi, Fukui, and Maeda 1998) calculates
Canonical Correlation (CC) between two linear subspaces
as a measurement of distance. Later Discriminant-Analysis
of CC (DCC) (Kim, Kittler, and Cipolla 2007) learns a lin-
ear mapping by maximizing CCs among within-class sets
and minimizing the CCs among between-class sets. To cap-
ture nonlinear relationships, kernel methods embed Rieman-
nian manifold into Hilbert space. Grassmann Discriminant
Analysis (GDA) (Ham and Lee 2008) first maps the linear
subspace on Grassmann manifold into Hilbert space using
Grassmann kernel function based on Projection Metric (PM)
(Huang et al. 2015a). Covariance Discriminative Learning
(CDL) (Wang et al. 2012) utilizes covariance matrix on SPD
manifold to model image set and employs Log-Euclidean
metric (LEM) (Arsigny et al. 2006) based SPD kernel. Rie-
mannian metric learning methods, e.g., Projection Metric
Learning (PML) (Huang et al. 2015a) learn discriminative
low-dimensional Riemannian manifold using metric learn-
ing.

Existing image set methods primarily focus on learning
effective continuous image set representation. The efficiency
issue is seldom considered, which pose challenges in terms
of high computational and storage costs especially for large-
scale image set applications. There have been a few prelim-
inary explorations (Sun et al. 2023, 2022) on learning hash
code for image sets, which warrant further research. Further-
more, all the image set methods have not considered cases
where image sets are distributed across different positions.
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Hashing Hashing (Wang et al. 2018a,a; Gao et al. 2023;
Kou et al. 2022; Wang et al. 2021) aims to learn com-
pact hash code in Hamming space while preserving simi-
larity, which can be particularly useful for efficient large-
scale search. Many existing hashing methods (Gong et al.
2013; Shen et al. 2015) employ machine learning technique
to learn hash function and hash code. For instance, Itera-
tive Quantization (ITQ) (Gong et al. 2013) learns a rotation
matrix on data after PCA processing to minimize quantiza-
tion error. Supervised Discrete Hashing (SDH) (Shen et al.
2015) uses semantics to enhance performance, and jointly
learns hash code and a linear classifier. Most existing hash-
ing methods are designed to learn hash code for single im-
ages. This work focuses on learning hash code on distributed
image sets.

Distributed Manifold Hashing
Problem Setup
Suppose we are given a distributed image set dataset
{Si,Yi}Pi=1 that has N samples distributed in P nodes of
a network, as shown in Figure 1. In the i-th node, local
image set features and labels are denoted as Si = {Sij ∈
Rd×nij}Ni

j=1 and Yi = {yij ∈ RC}Ni
j=1 respectively, where

Sij , yij , and nij are image feature matrix, one-hot label
vector, and number of images of the j-th image set in the
i-th node respectively, d is dimension of image feature, C
is number of classes, and Ni is dataset size in the i-th node.
The goal of this work is to learn a distributed image set hash-
ing model and hash code {Bi ∈ {−1, 1}L×Ni}Pi=1 from
such distributed image set dataset, by which efficient image
set classification and retrieval can be conducted, where L is
hash code length.

Riemannian Manifold Representation
SPD manifold For all non-zero vector v ∈ Rd, a real
Symmetric Positive Definite (SPD) matrix C has the prop-
erty of vTCv > 0. Sd

+ forms a convex cone in the
d(d+1)

2 -dimensional Euclidean space. Log-Euclidean Dis-
tance (LED) is widely used to measure the geodesic distance
on Sd

+. The distance between Ci and Cj can be written as:

d(Ci,Cj) = ∥ logCi − logCj∥F (1)

where log is the matrix logarithm operator and ∥.∥F repre-
sents matrix Frobenius norm. Under this metric, a Rieman-
nian kernel function can be derived as:

klog(Ci,Cj) = Tr
(
logCi logCj

)
(2)

Grassmann manifold A Grassmann manifold (Edelman,
Arias, and Smith 1998) G(q, d) is spanned by a set of linear
subspaces of Rd×q . Each linear subspace is spanned by an
orthonormal basis matrix Y of size d× q with the constraint
Y⊤Y = Iq and can be regarded as an element of G(q, d). As
shown in (Harandi et al. 2013), each element in Grassmann
manifold can be represented as a unique projection matrix
YY⊤. The Projection Metric (Huang et al. 2015a) can ap-
proximate the true geodesic distance on G(q, d). For any pair

of YiY
⊤
i , YjY

⊤
j , this metric can be written as:

d
(
YiY

⊤
i YjY

⊤
j

)
=

1√
2
∥YiY

⊤
i −YjY

⊤
j ∥F (3)

where ∥ · ∥F represents the matrix Frobenius norm. A well-
defined Grassmann kernel (Ham and Lee 2008) can be in-
duced by:

kp

(
YiY

⊤
i ,YjY

⊤
j

)
=Tr

((
YiY

⊤
i

)(
YjY

⊤
j

))
= ∥Y⊤

i Yj∥2F
(4)

where Tr (·) denotes trace of square matrix.

Formulation
We employ Riemannian manifold representation to repre-
sent each image set due to superior capability of image set
modeling of manifold. In the i-th node, Xi is denoted as gen-
eral manifold representation matrix of all image sets, and xij

is denoted as manifold representation vector of the j-th im-
age set, where SPD and Grassmann manifolds can be cho-
sen. With great success of kernel learning, we consider to
map original Representation into a high dimensional Hilbert
space, where subspace learning can be performed. Specifi-
cally, nonlinear mapping can be defined as ϕ : x → ϕ(x),
where ϕ(x) denotes representation of x of Hilbert space.
Now we consider the case in the i-th node, and the distance
between two image sets, i.e., i.e., xip and xiq in the i-th node
d(xip,xiq) is defined as:

Tr
(
(ϕ(xip)− ϕ(xiq))

⊤
V⊤V (ϕ(xip)− ϕ(xiq))

)
(5)

where V denotes projection matrix defined in Hilbert space.
As ϕ is nonlinear and implicit, it is difficult to compute xw

i

and xb
i . With idea of kernel learning, V can be regarded

as linear combinations of the samples in the i node, i.e.,
V = ϕ(Xi)U, where U denotes linear coefficient matrix,
and we have V⊤ϕ(sip) = U⊤ϕ(Xi)

⊤ϕ(xip) = U⊤Kip,
where Kip is the p-th column of kernel matrix Ki induced
by specific in the i node.

To improve discrimination of the learned representation, a
straightforward approach is to maximize distances of image
sets in different classes and minimize distances of image sets
in the same classes. With this idea, we have the following
objective function using kernel trick:

min
U

P∑
i=1

(
Tr(U⊤Rw

i U)− αTr(U⊤Rb
iU)

)
(6)

where α is a regularization parameter to balance two terms,
Rw

i and Rb
i denote within-class and between-class scatters

in the i-th node, which are specifically defined as:
Rw

i = 1
Mw

i

Ni∑
p=1

∑
yip=yiq

(Kip −Kiq)(Kip −Kiq)
⊤

Rb
i =

1
Mb

i

Ni∑
p=1

∑
yip ̸=yiq

(Kip −Kiq)(Kip −Kiq)
⊤

(7)
where Mw

i and M b
i are numbers of sample pairs from the

same class and different classes in node i respectively.
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Existing image set methods perform classification or re-
trieval by first finding nearest neighbors in Euclidean space.
However, this approach suffers from high storage and com-
putational costs on large-scale datasets. To address these ef-
ficiency issues, we propose performing classification and re-
trieval in Hamming space, leveraging superior capability of
hashing to handle large-scale data efficiently. We propose to
employ compact hash code to represent each image set, and
further minimize least square classification loss to improve
discrimination. To this end, the hash code learning frame-
work on the P nodes is defined as follows:

min

P∑
i=1

(
∥Yi −W⊤Bi∥2F + υ∥Bi −U⊤Ki∥2F + β∥W∥2F

)
s.t. Bi ∈ {−1, 1}L×Ni (8)

where Bi and Yi denote hash code and label of the i-th
node, W denotes classification weight matrix, β and υ are
two nonnegative regularization parameters. The first term is
classification loss, the second term is quantization loss be-
tween hash code and continuous feature, and the third term
is a regularizer. By Combining (6) and (8), we have the fol-
lowing loss function:

min
Bi,U,W

P∑
i=1

(
Tr(U⊤Rw

i U)− αTr(U⊤Rb
iU) (9)

+ ∥Yi −W⊤Bi∥2 + υ∥Bi −U⊤Ki∥2F + β∥W∥2F
)

s.t. Bi ∈ {−1, 1}L×Ni

It is a distributed learning problem. The local variable Bi

can be optimized individually in each node. However, global
variables U and W are shared among all the nodes, and thus
difficult to optimize. Motivated by block splitting strategy,
we introduce a new set of local auxiliary variables, i.e., Ui

and Wi, and optimize the new local variables in parallel.
To this end, (9) can be transformed to the following final
distributed objective function:

min
Bi,Ui,Wi

P∑
i=1

(
Tr(U⊤

i R
w
i Ui)− αTr(U⊤

i R
b
iUi) (10)

+ ∥Yi −W⊤
i Bi∥2F + υ∥Bi −U⊤

i Ki∥2F + β∥Wi∥2F
)

s.t. Bi ∈ {−1, 1}L×Ni ,Ui = Uj , Wi = Wj , j ∈ N (i)

where N (i) represents the neighbors of the i-th node in the
network. In (10), we impose consistency constraint on global
variables in neighbor nodes rather than all the nodes by uti-
lizing transitivity property of a connected graph.

Optimization
The optimization problem is non-convex with variables Bi,
Ui, and Wi. In this work, we divide it into several subprob-
lems, and optimize one set of variables in one node while
fixing variables in other nodes. We employ the well-known
ADMM to solve (10) as ADMM can decompose variables
and converge fast. The augmented Lagrangian of (10) can

be written as follows:

J =

P∑
i=1

(
Tr(U⊤

i R
w
i Ui)− αTr(U⊤

i R
b
iUi) (11)

+ ∥Yi −W⊤
i Bi∥2F + υ∥Bi −U⊤

i Ki∥2F + β∥Wi∥2F
+

∑
j∈N (i)

Tr(Λ⊤
i,j(Ui −Uj)) +

ρ1
2

∑
j∈N (i)

∥Ui −Uj∥2F

+
∑

j∈N (i)

Tr(Γ⊤
i,j(Wi −Wj)) +

ρ2
2

∑
j∈N (i)

∥Wi −Wj∥2F
)

where Λi,j and Γi,j are Lagrangian multipliers for the con-
straint Ui = Uj and Wi = Wj respectively, ρ1 and ρ2 are
penalty parameters of augmented Lagrangian.

Update Bi By fixing the other variables, the subproblem
with respect to Bi is defined as:

min
Bi

∥Yi −W⊤
i Bi∥2F + υ∥Bi −U⊤

i Ki∥2F (12)

s.t. Bi ∈ {−1, 1}L×Ni

It is challenging to directly optimize Bi as discrete con-
straint is NP hard. Following the widely-used coordinate
descent in optimization, We employ discrete cyclic coor-
dinate descent (DCC) to optimize Bi bit by bit. At each
iteration, DCC determines one bit as a coordinate, then it-
eratively minimizes a subproblem with respect to each bit,
which admits a closed-form solution.
Theorem 1. For the problem of optimizing hash code, i.e.,
(12), we can learn Bi by iteratively updating each bit using
the following rule

bl
i = sign

(
ql
i −Bl′⊤

i Wl′

i w
l
i

)
(13)

where bl⊤
i is the l-th row of Bi, Bl′

i is remaining matrix in
Bi except bl⊤

i , Qi = WiYi + υU⊤
i Ki, wl⊤

i and ql⊤
i are

the l-th row of Wi and Qi respectively, and Wl′

i is remain-
ing matrix in Wi except wl⊤

i .

Proof. The solution of the problem is simple to obtain. The
proof of this theorem can be adapted from (Shen et al. 2015).

Update Ui After removing all the terms irrelevant to Ui,
(11) is reduced to:

JUi
=

P∑
i=1

(
Tr(U⊤

i R
w
i Ui)− αTr(U⊤

i R
b
iUi) (14)

+ υ∥Bi −U⊤
i Ki∥2F +

∑
j∈N (i)

Tr(Λ⊤
i,j(Ui −Uj))

+
ρ1
2

∑
j∈N (i)

∥Ui −Uj∥2F
)

ADMM solves (14) by repeating the following two steps: U
(t)
i = argmin

Ui

J (t−1)
Ui

Λ
(t)
i,j = Λ

(t−1)
i,j + ρ1

(
U

(t−1)
i −U

(t−1)
j

) (15)
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Datasets #Samples #Classes #Training #Testing #Dim
BBT 4,667 15 3,268 1,399 512
PB 9,435 20 6,602 2,828 512

YTC 1,856 47 1,484 372 900

Table 1: Statistics of three datasets.

where t and t − 1 represent the current and last iterations
respectively. We provide the following lemma to simplify
the Lagrangian multipliers.

Lemma 1. The augmented Lagrangian with respect to Ui,
i.e., (14) is equivalent to the following form:

JUi
=

P∑
i=1

(
Tr(U⊤

i R
w
i Ui)− αTr(U⊤

i R
b
iUi) (16)

+ υ∥Bi −U⊤
i Ki∥2F +Tr(Λ⊤

i Ui)

+
ρ1
2

∑
j∈N (i)

∥Ui −Uj∥2F
)

where a new Lagrangian multiplier Λi =
∑

j∈N (i)

(Λi,j −

Λj,i)(i ∈ {1, 2, ...P}).
In (14), there are totally Pκ Lagrangian multipliers if κ

denotes the average number of neighbors of each node in the
network. In (16), a Lagrangian multiplier is assigned to each
node in the network, and thus there are only P Lagrangian
multipliers. The number of Lagrangian multipliers has been
reduced, and computational complexity of ADMM can be
greatly reduced by optimizing (16). Based on Lemma 1, we
have the following theorem to update Ui:
Theorem 2. For the new augmented Lagrangian, i.e., (16),
we can update Ui by using the following updating rule:

U
(t)
i =

( (
Rw +R⊤

w

)
− α

(
Rb +R⊤

b

)
+ 2υKiK

⊤
i

+
∑

j∈N (i)

ρ1
)−1( ∑

j∈N (i)

ρ1U
(t−1)
j −Λ

(t−1)
i + 2υKiB

⊤
i

)
Λ

(t)
i = Λ

(t−1)
i + 2ρ1

∑
j∈N (i)

(
U

(t−1)
i −U

(t−1)
j

)
(17)

Update Wi Similar to optimizing Ui, we first define new
Lagrangian multiplier Γi =

∑
j∈N (i)

(Γi,j − Γj,i), and then

repeat the following steps to optimize Wi:

W
(t)
i =

(
2BiB

⊤
i + 2β +

∑
j∈N (i)

ρ2

)−1

( ∑
j∈N (i)

W
(t−1)
j − Γ

(t−1)
i + 2BiY

⊤
i

)
Γ
(t)
i = Γ

(t−1)
i + 2ρ2

∑
j∈N (i)

(
W

(t−1)
i −W

(t−1)
j

)
(18)

Testing Procedure
Once training of the proposed method is complete, we ran-
domly select a local hash function trained on the i-th node.

Methods Type Accuracy mAP
BBT PB YTC BBT PB YTC

MSM [L,C,E] 87.56 82.00 70.92 63.82 32.38 26.43
DCC [L,C,E] 93.85 69.76 69.89 61.60 29.00 22.26

AHISD [A,C,E] - - - - - -
CHISD [A,C,E] - - - - - -
GDA [M,C,E] 97.71 92.72 66.13 94.73 63.22 72.91
CDL [M,C,E] 87.56 52.55 70.70 88.49 57.75 14.92
PML [M,C,E] 95.42 84.47 72.04 72.31 36.89 22.85

LEML [M,C,E] - - - - - -
ITQ-GM [M,H,E] 95.57 71.11 60.48 59.79 30.31 23.76
ITQ-SPD [M,H,E] 95.21 72.21 67.47 63.57 34.76 25.13
SDH-GM [M,H,E] 98.21 87.16 75.27 93.20 88.23 74.23
SDH-SPD [M,H,E] 95.93 90.59 74.19 96.00 91.40 75.65
DMH-GM [M,H,D] 96.38 96.19 73.39 99.14 89.02 63.97
DMH-SPD [M,H,D] 98.72 98.03 76.48 97.30 96.69 79.37

Table 2: The accuracies and mAPs of all the methods on im-
age set classification and retrieval tasks respectively. [L], [A],
and [M] denote linear subspace, affine hull, and nonlinear
manifold methods respectively; [C] and [H] denote contin-
uous and hashing methods respectively; [E] and [D] denote
centralized and distributed methods respectively. ‘-’ denotes
no available result in this case as running time of the method
exceeds one week.

Given a testing image set, i.e., Sq , we obtain hash code via
bq = sign(UiKq), where Kq denotes its kernel representa-
tion. We calculate Hamming distances between testing im-
age set bq and database B, and obtain its ranking list Lq by
sorting these Hamming distances. For image set classifica-
tion, we predict label by nearest neighbor method. For image
set retrieval, we return ranking list Lq . As Hamming dis-
tance computation is much efficient than Euclidean distance
computation, the proposed DMH is theoretically faster than
conventional continuous image set methods during classifi-
cation and retrieval stages.

Experiments
Datasets
To our knowledge, three large-scale image set datasets, i.e.,
BBT (Li et al. 2015), PB (Li et al. 2015), YTC (Kim et al.
2008) are used for experiment. The statistics of the three
datasets are summarized in Table 1. For YTC, each im-
age is first resized into a 30 × 30 grayscale image, and
histogram equalization is used to eliminate lighting effects
as done in (Wang et al. 2012). For BBT and PB, a 512-
dimensional deep feature for each image is extracted by
a CNN (Schroff, Kalenichenko, and Philbin 2015) that is
specifically designed for general still face recognition task.

Experiment Setting
Comparison Methods We compare the proposed method
with various state-of-the-art image set classification meth-
ods that fall into four categories: Linear subspace methods,
including MSM (Yamaguchi, Fukui, and Maeda 1998), DCC
(Kim, Kittler, and Cipolla 2007); Affine/Convex hull meth-
ods, including AHISD/CHISD (Cevikalp and Triggs 2010);
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Datasets Original Feature Manifold Feature Kernel Matrix Continuous Feature Hash Code
Mem. Red. Mem. Red. Mem. Red. Mem. Red. Mem.

BBT 1.81 GB 104110× 9.11 GB 524288× 27.54 MB 1547× 1.14 MB 64× 18.23 KB
PB 2.94 GB 83635× 18.42 GB 524288× 111.79 MB 3105× 2.30 MB 64× 36.86 KB

YTC 859.71 MB 121427× 11.19 GB 1620000× 6.02 MB 850× 0.45 MB 64× 7.25 KB

Table 3: Storage of several image set representation. ‘Mem.’ denotes memory usage, ‘Red.’ denotes memory reduction (×) of
other representations over hash code.

Methods BBT PB YTC
DCC/MSM 2875.74 11743.71 347.2
GDA/CDL 0.0730 0.2717 0.0126

PML 6.46 20.70 1.61
Hashing 0.0093 0.0352 0.0013

Table 4: Running time (in seconds) of distance calculation
of several methods.

Nonlinear manifold methods, including GDA (Ham and Lee
2008), CDL (Wang et al. 2012), PML (Huang et al. 2015a),
LEML (Huang et al. 2015b); Hashing methods, including
ITQ (Gong et al. 2013), SDH (Shen et al. 2015). The imple-
mentations of the baseline methods are kindly provided by
authors. As all the baseline methods can only handle central-
ized data, they are trained on data stored in single node. We
apply the proposed DMH on SPD and Grassmann manifolds
respectively, which are denoted as DMH-SPD and DMH-
GM respectively. For the proposed method, we equally dis-
tribute the training set across all four nodes in the network
to construct distributed data.

Evaluation Metrics We evaluate performance on two im-
age set-related tasks, i.e., image set classification and re-
trieval. Accuracy and mean Average Precision (mAP) are
used as evaluation metrics for classification and retrieval
tasks respectively.

Performance Evaluation
Image Set Classification The classification accuracies of
all the methods on the three datasets are summarized in Ta-
ble 2. We find some interesting points:

• The proposed methods achieve the highest classification
accuracies among all the cases, and DMH-SPD outper-
forms DMH-GM. DMH-SPD improves accuracies of the
best baselines by 0.51%, 5.31%, and 1.21% on BBT, PB,
and YTC respectively.

• Among nonlinear manifold baselines, GDA performs the
best on BBT and PB, and CDL performs the best on
YTC. Among conventional hashing baselines, SDH-GM
outperforms ITQ, as SDH is supervised.

• AHISD, CHISD, and LEML cannot scale to large-scale
datasets due to high computational complexity, and their
accuracies are not reported.

Image Set Retrieval Table 2 reports mAP results of all
the methods on image set retrieval of the three datasets. We
observe that retrieval results are generally consistent with
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Figure 3: Training time (in seconds) and classification ac-
curacies (%) of the proposed DMH on PB with respect to
different numbers of nodes.
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Figure 4: The performance of the proposed DMH with vary-
ing (a) α and (b) υ.

classification results. The proposed methods obtain the high-
est mAPs among all the cases, and DMH-SPD outperforms
DMH-GM on PB and YTC, and DMH-GM outperforms
DMH-SPD on BBT. Among all the baselines, SDH-SPD
takes the first place, followed by SDH-GM and GDA. ITQ-
GM and ITQ-SPD are inferior to the continuous baselines.

Efficiency Evaluation
Storage We compare storages of original feature, SPD
manifold, kernel matrix, continuous feature, and hash code,
where dimension of continuous feature and hash code is set
to 32. Table 3 represents storage usages for these different
representations. As can be clearly observed, storage usages
using hash code are significantly lower than those using
other representations. Particularly, the storage required us-
ing hash code is 64 times less than that required for contin-
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(a) GDA (b) CDL (c) ITQ-SPD (d) ITQ-GM (e) SDH-SPD (f) SDH-GM (g) DMH-SPD (h) DMH-GM

Figure 5: The visualization of BBT by different methods, i.e., (a) GDA, (b) CDL, (c) ITQ-SPD, (d) ITQ-GM, (e) SDH-SPD,
(f) SDH-GM, (g) DMH-SPD, (h) DMH-GM. Each point represents an image set, and each color indicates a class.

uous feature, and considerably less compared to other fea-
tures. The learned hash code only requires less than 100
KB of storage for the three datasets. The empirical results
demonstrate the superiority of the proposed method in terms
of efficient storage usage.

Time Table 4 presents running time associated with dis-
tance calculation for several representative methods, where
time of embedding generation is not included. As can be
seen from Table 4, hashing methods clearly require less
time than other methods. Specifically, hashing methods are
nearly 8 times faster than GDA and CDL, 700 times faster
than PML on BBT. The time reduction is more obvious
compared to DCC and MSM, as the two methods require
eigen decomposition to calculate distance, which is notably
time-consuming. Hashing methods, including the proposed
DMH, which calculate Hamming distance, are theoretically
faster than conventional image set methods that calculate
Euclidean distance. The above empirical results verify the
theoretical superiority of the proposed method.

Further Analysis
Node Number Analysis This section analyzes the impact
of number of nodes in the network on the performance of
the proposed method. Figure 3 illustrates its running time
of distance calculation and classification accuracies of the
proposed method, varying from 1 to 8 nodes on PB with
32-bit hash code. As can be seen, training time sharply de-
creases while accuracy sightly drops as more nodes are uti-
lized. Specifically, parallel training across 8 nodes is approx-
imately 10 times faster than centralized training on just 1
node. This experiment confirms that parallel optimization
scheme of the proposed method can improve training effi-
ciency.

Trade-off Parameter Analysis The two trade-off param-
eters, i.e., α, υ are varied from [10−3, 103] and [0, 500] re-
spectively. Figure 4 reports accuracies and mAPs of the pro-
posed DMH with respect to different values of the two pa-
rameters on BBT. We observe that the performance drops
with large α. The performance improves with increase of υ.
The good performance can be achieved when α is suggested
to be less than 0.1 and υ is suggested to be larger than 100.

Discrete versus Continuous This section compares the
performance of the proposed method and with its continu-
ous variant that removes binary constraint. This variant is

Metric Method BBT PB YTC

Accuracy

DMH-SPD 98.72 98.03 76.48
DMH-SPD-C 98.70 97.86 68.68

DMH-GM 96.38 96.19 73.39
DMH-GM-C 91.67 83.52 53.52

mAP

DMH-SPD 97.30 96.69 79.37
DMH-SPD-C 94.99 97.50 72.00

DMH-GM 99.14 89.02 63.97
DMH-GM-C 94.49 81.09 58.41

Table 5: Performance of the proposed DMH using hash code
and continuous representation.

denoted by adding the suffix ’-C’. The performances of the
proposed method and its continuous variant in classification
and retrieval tasks are reported in Table 5. From this table,
we see that even with binary constraint, the proposed method
still outperforms its variant in most cases, mainly due to its
discrimination learning. The above empirical results suggest
that does not degrade performance in image set classification
and retrieval tasks.

Visualization
This section conducts qualitative empirical study and per-
forms visualization. The widely-used t-SNE (der Maaten
and Hinton 2008) is applied on learned representations of
eight methods, and the visualization results on BBT are
shown in Figure 5. From the above figure, we observe
that compared to the baselines, the proposed DMH-SPD
and DMH-GM generate much smaller clusters, and separate
multiple clusters better. These qualitative results are consis-
tent with previous quantitative results, intuitively reinforcing
the effectiveness of the proposed DMH.

Conclusion
This paper presents the first attempt to study challenging
hash code learning from distributed image sets, and pro-
poses Distributed Manifold Hashing (DMH) for fast image
set classification and retrieval. The basic idea is to model dis-
tributed image sets as a connected graph, and then to build
a distributed model on this graph. The primary advantage of
the proposed method lies in its capability of handling dis-
tributed image sets while maintaining competitive accuracy
and high computational and storage efficiency. The empiri-
cal studies verify our theoretical findings.
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