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Abstract

A large amount of User Generated Content (UGC) is up-
loaded to the Internet daily and displayed to people world-
widely through the client side (e.g., mobile and PC). This
requires the cropping algorithms to produce the aesthetic
thumbnail within a specific aspect ratio on different devices.
However, existing image cropping works mainly focus on
landmark or landscape images, which fail to model the rela-
tions among the multi-objects with the complex background
in UGC. Besides, previous methods merely consider the aes-
thetics of the cropped images while ignoring the content in-
tegrity, which is crucial for UGC cropping. In this paper, we
propose a Spatial-Semantic Collaborative cropping network
(S2CNet) for arbitrary user generated content accompanied
by a new cropping benchmark. Specifically, we first mine
the visual genes of the potential objects. Then, the suggested
adaptive attention graph recasts this task as a procedure of in-
formation association over visual nodes. The underlying spa-
tial and semantic relations are ultimately centralized to the
crop candidate through differentiable message passing, which
helps our network efficiently to preserve both the aesthetics
and the content integrity. Extensive experiments on the pro-
posed UGCrop5K and other public datasets demonstrate the
superiority of our approach over state-of-the-art counterparts.

Introduction
Image cropping, with the aim to automatically excavate ap-
pealing views in photography, is widely used for image
aesthetic compositions such as thumbnail generation (Chen
et al. 2018; Esmaeili, Singh, and Davis 2017), shot recom-
mendation (Li et al. 2018; Wei et al. 2018) and portrait sug-
gestion (Zhang et al. 2018; Yee, Tantipongpipat, and Mishra
2021), etc. Among them, image thumbnailing or cover crop-
ping is a vital application for the explosive emerging User
Generated Content (UGC). Since users upload their self-
created images or videos to the social media platform using
different types of shooting equipment with lenses of various
aspect ratios, as shown in Fig 1, this requires the cropping
algorithms to generate the fixed aspect ratios cover images
for content aesthetics and format unity.

However, several previous works (Chen et al. 2017b; Wei
et al. 2018; Zeng et al. 2019, 2020; Pan et al. 2021; Jia
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(a): UGC on mobile side (b): UGC on PC or Pad sides
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Figure 1: Illustrative example of cropping for UGC in a real-
life application. Note that the original size is marked above
each image. For intuitive explanation, the red dashed box
indicates the cropped image produced by our algorithm for
a fixed aspect ratio and the extraneous content is removed.

et al. 2022) mainly focus on some iconic landscape im-
ages (Chen et al. 2017a; Zeng et al. 2020) collected from
Flickr or even some human-centric (Zhang et al. 2022) im-
ages, where these images have clean backgrounds and they
are relatively simple to crop. By contrast, the main chal-
lenges of cropping the user generated content are three folds:
(i) UGC is more complex with different foreground multi-
objects and chaotic backgrounds, thus it’s necessary to mine
the relations between different objects to find the appeal-
ing crops. Meanwhile, some of the saliency-based cropping
methods (Chen et al. 2016; Tu et al. 2020; Zhang et al.
2022; Cheng, Lin, and Allebach 2022) may fail to locate
the accurate content; (ii) In addition to ensuring the aesthet-
ics of the cropped images, content integrity is also crucial,
which conveys the main message to the viewers. As shown
in Fig 1(b), for some news clips or lyric videos, the crop-
ping target should retain the main attributes of the image ex-
cept for the people, such as the news headline and the com-
plete lyrics. As for the multi-people images, incomplete face
cases should be avoided; (iii) UGC cropping usually requires
the fixed aspect ratio image output for display. Therefore,
some anchor-generation-based methods (Hong et al. 2021;
Jia et al. 2022) are unsuitable since they follow the process
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like object detection (Carion et al. 2020) and yield the crop
candidates without aspect ratio constraint, which inevitably
hinders their application in real-world scenarios.

The common practice of image cropping is to rank can-
didate views by data-driven methods using deep neural net-
works (Simonyan and Zisserman 2014; Sandler et al. 2018).
Although numerous efforts have been made, due to the lim-
itations of the public datasets and the technical solutions,
many existing methods fail to achieve satisfactory perfor-
mance for user generated content. To learn the relations
between different image regions, an alternative solution is
to utilize graph convolution networks (GCNs) (Chen et al.
2020). Li et al. (Li et al. 2020) exploited relations between
different candidates with a graph-based module. However,
it does not consider the instance-level cues in the images
and the vanilla GCN may lead to the over-smoothing phe-
nomenon. Pan et al. (Pan et al. 2021) adopted the vision
transformer (ViT) (Dosovitskiy et al. 2021) to model the vi-
sual element dependencies. Yet, the original ViT ignores the
edge and spatial information between the unstructured data.

To tackle the issues mentioned above, we propose a
Spatial-Semantic Collaborative cropping network (S2CNet)
to effectively crop arbitrary user generated content. Firstly,
we mine the visual genes of the potential objects utilizing the
off-the-shelf approach (Ren et al. 2015) to obtain region-of-
interests (RoIs). Afterwards, they are used as the bias com-
bined with the crop candidate and are fed into the proposed
framework. Specifically, we design an adaptive attention
graph where each RoI is viewed as the node and the corre-
lation between each other is represented as the edge. Unlike
prior works, we build the graph considering semantic and
spatial collaborative information to capture both feature ap-
pearance and topological composition representations. Fur-
thermore, we modify the graph convolution operation into a
graph-aware attention module to efficiently model the high-
order relations among each RoI, which recasts the network
as a procedure of information association over visual nodes.
The updated messages are ultimately centralized to the crop
candidate for aesthetic score prediction. Furthermore, we
also construct a large UGCrop5K dataset to fill the gap in
the image cropping domain, which contains 450,000 exhaus-
tive annotated candidate crops on 5,000 images varying in
different topics (e.g., lecture, gaming, VR, and vlog, etc).
Massive experimental results on the UGCrop5K dataset and
other public benchmarks all reveal the superiority and ef-
fectiveness of our proposed network, which can outperform
the state-of-the-art methods while keeping a good trade-off
between speed and accuracy. Our contribution can be sum-
marized as follows:

• We experimentally investigate the limitations of the ex-
isting cropping algorithms and analyze the main chal-
lenges in real-life applications. We then construct a new
UGCrop5K benchmark, to our best knowledge, which is
the largest densely labeled cropping dataset with 450,000
high-quality annotated candidate crops.

• We propose an efficient S2CNet with a modified adaptive
attention graph to capture the relations between different
objects in the images. By exploiting both semantic and

spatial information, we can produce aesthetic cropped
images and maintain content integrity.

• Extensive experiments conducted on the proposed and
other general datasets validate the merits of our approach
against state-of-the-art cropping methods.

Related Work
Aesthetic Image Cropping. Most of the early conventional
works (Suh et al. 2003; Stentiford 2007; Marchesotti, Ci-
farelli, and Csurka 2009; Liu et al. 2010; Zhang et al. 2013;
Fang et al. 2014) are based on hand-craft aesthetic fea-
tures (Li et al. 2006; Ma and Guo 2004) and some criteria-
based detection features such as face detection (Zhang et al.
2005) and eye tracking (Santella et al. 2006), etc. Later,
benefiting from the deep learning models, more researchers
pay attention to designing data-driven methods in various
ways. VFN (Chen et al. 2017b) proposed an end-to-end
deep ranking net to implicitly model images. Later, Wei
et al. (Wei et al. 2018) constructed a comparative photo
composition (CPC) dataset for pairwise learning. However,
pairwise learning cannot provide sufficient evaluation met-
rics for image cropping as pointed in (Zeng et al. 2019). Re-
cently, some works (Wang and Shen 2017; Li et al. 2019; Tu
et al. 2020) exploited saliency detection (Goferman, Zelnik-
Manor, and Tal 2011; Hou et al. 2017) to first locate the
salient region and then generate candidate crops preserv-
ing the important content. However, some of the complex
UGC images and landscape photos have multiple salient
objects or even no salient ones, which may lead to crop-
ping failure (Lu et al. 2019). Hong et al. (Hong et al. 2021)
designed a dual branch network with the key composition
map. However, it requires auxiliary composition datasets
and manually defined rules, which lowers the upper bound
of the usage. Zeng et al. (Zeng et al. 2019, 2020) intro-
duced an efficient grid-based cropping method and proposed
a densely annotated benchmark with new evaluation metrics.
Jia et al. (Jia et al. 2022) formulated the task as object detec-
tion as DETR (Carion et al. 2020). However, this kind of an-
chor generation approach can not yield specific aspect ratio
crops. More recently, HCIC (Zhang et al. 2022) proposed a
specific content-aware human-centric approach, which hin-
ders its application for general object photos.
Region-based Relations Mining. Region-based relations
mining is popular in visual tasks, which is widely used
in video classification (Wang and Gupta 2018), segmenta-
tion (Wang et al. 2019), tracking (Gao, Zhang, and Xu 2019)
and image outpainting (Yang et al. 2022), etc. In the image
cropping area, yet, rare works attempt to model the visual
regional correlations. Although the most relevant approach
CGS (Li et al. 2020) proposed to model the mutual rela-
tions between the candidates, the global feature of each crop
ignores the instance-wise information inside or outside the
candidate, which fails to explicitly compose the visual ele-
ments and decides what should be preserved or abandoned.
Besides, all the aforementioned strategies are usually built
on graph (Chen et al. 2020), where they merely consider the
semantic message of each node while neglecting the spatial
location information. Furthermore, the conventional graph
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Figure 2: The overall pipeline of our proposed framework. We first use the convolutional backbone to extract visual features
followed by RoIAlign (He et al. 2017) and RoDAlign (Zeng et al. 2019) extracting d-dimension features for each potential
object and the crop candidate. These features are then provided as inputs to the proposed adaptive attention graph (AAG),
which performs joint spatial-semantic information propagation over each node in the graph. Ultimately, the updated messages
are centralized to the crop candidate node to perform aesthetic score prediction.

convolution networks will cause an over-smoothing prob-
lem when layers become deeper. TransView (Pan et al. 2021)
later employed a vision transformer to capture image pixel-
wise dependencies. However, not all tokens are equally im-
portant in vision tasks as stated in (Zeng et al. 2022). In addi-
tion, the self-attention mechanism in the transformer ignores
the effective use of edge cues of nodes, such cues enjoy
a good inductive bias (Goyal and Bengio 2022) for multi-
object region learning. To alleviate these issues, we propose
a modified adaptive attention graph to perform image crop-
ping, which can well model the instance-level relations and
find aesthetically pleasing crops.

Methodology
Network Overview
Our motivation is based on explicitly building the composi-
tional relations among the crop candidate and all object pro-
posals. According to this, the network learns what should be
removed, partially reserved and reserved for an appealing
crop that enjoys considerable content integrity. As shown
in Fig 2(a), for the visual object outside the crop candi-
date (e.g., the old man on the far left), since the person
looks to the left, making the content semantically irrele-
vant to the crop and its aesthetic contribution is thereby
weak. For the elements inside the crop candidate, we at-
tempt to make the network capture mutual visually signif-
icant dependencies. And for some uncertain background ob-
jects, we learn to preserve the attractive parts while remov-
ing the redundant parts. To achieve this goal, we adopt the
adaptive attention graph (AAG) to model the scalable con-
nections among the regional contents rather than using the
plain transformer (Dosovitskiy et al. 2021; Pan et al. 2021)
to model the visual patches equally.

Concretely, given an input image I corresponding with
the crop candidate, we leverage Faster RCNN (Ren et al.
2015) pretrained on Visual Genome (Krishna et al. 2017)
to mine top-N potential visual objects. We then obtain the

feature map F by passing the image into the convolutional
backbone (Simonyan and Zisserman 2014; Sandler et al.
2018). After that, we apply RoIAlign (He et al. 2017) and
RoDAlign (Gao, Zhang, and Xu 2019) operations followed
by the FC layer to get d-dimensional features of the total
visual regions as X = [x1, x2, ..., xN+1] ∈ R(N+1)×d (N
detection boxes and one crop candidate). These features are
then fed into our proposed network to capture high-order in-
formation. Finally, we predict the aesthetic score by aggre-
gating the updated features.

Adaptive Attention Graph
Formally, a graph G = (V , E) is defined as a set consisting of
nodes and edges. Each node vi ∈ V represents the extracted
feature xi, and each ei,j ∈ E denotes the correlation between
vi and vj . Note that we construct a fully connected graph
since we consider that not only the relations between crop
candidates and other regional objects are important, but the
global relations among different visual objects also provide
useful information for aesthetic composition.
Semantic Edges. To represent the pair-wise relation among
different nodes (e.g., xi and xj) and distribute different
weights to the edges, we establish the relevance in an em-
bedding space (Vaswani et al. 2017) to compute the feature
appearance similarity matrix Ma ∈ R(N+1)×(N+1) as:

Ma(i,j) =
ϕ(xi)

Tφ(xj)√
d

, (1)

where ϕ(x) = Wϕx + bϕ and φ(x) = Wφx + bφ are two
learnable linear functions that project the feature into the
high-dimensional subspace.
Spatial Edges. In addition to building the semantic relations
among the nodes, the spatial information should also be con-
sidered since it contains useful topological representation.
Specifically, we view the center coordinate pi = (pxi , p

y
i ) of

the node xi’s bounding box as an initial spatial feature. To
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this end, we explicitly model the spatial position connections
of nodes in the following optional ways:

DisDrop: One assumption is that the nodes that are closer
in space have more important information than nodes that
are far away. And some of the distant nodes contribute less
or even zero to aesthetic composition. In this way, we try to
drop out the spatial relations of nodes whose distance ex-
ceeds a certain threshold and compute the spatial position
matrix Mp ∈ R(N+1)×(N+1) as follows:

Mp(i,j) =

{
ψ(D(pi, pj)) if D(pi, pj) ≤ ϵ ∗ wid
0 if D(pi, pj) > ϵ ∗ wid , (2)

where D(·) is the Euclidean distance calculating function. ϵ
denotes the threshold, and wid is the width of image. ψ(·)
denotes a Multi-Layer Perceptron (MLP) layer that projects
the 1-dimensional distance to a high-dimensional vector.

DisEmb: However, in some cases, the relations between
the nodes that are farther away are also significant. For ex-
ample, if two people are far away, but they are facing each
other and have communication (e.g., greeting or having eye
contact), then the relation between these two nodes is much
stronger than the closer nodes but without any connection.
Based on this observation, we formulate the spatial position
matrix Mp as follows:

Mp(i,j) = ||(Wmpi + bm)− (Wnpj + bn)||22, (3)

whereWm;n and bm;n are the different learnable weight ma-
trices and biases that embed the distance into a vector.
Correlation Adjacency. In order to jointly capture suf-
ficient spatial-semantic information, we then construct
a spatial-semantic correlation adjacency matrix A ∈
R(N+1)×(N+1) combining both representations as follows:

A(i,j) =
Ma(i,j) · eMp(i,j)∑N+1

j=1 Ma(i,j) · eMp(i,j)

, (4)

where normalization is performed for each element. Thus,
we have Ai,j ∼ [0, 1].

Graph-Aware Attention Module
After assembling the graph, we perform the feature extrac-
tion over the nodes. As aforementioned, we modify the stan-
dard GCN to the graph-aware attention operation similar to
Transformer (Dosovitskiy et al. 2021) but merge the spatial-
semantic features to generate the attention weights.
Feature Aggregation Gate (FAG). As depicted in Fig 2(c),
before calculating the self-attention of the node features,
they are first fed into the feature aggregation gate to im-
plicitly embed the information from the adjacency tensor.
Specifically, we view the nodes as tokens. Considering the
input feature X and the correlation adjacency tensor A, the
scheme of FAG is computed as follows:

X = RELU(AZX), (5)

where Z ∈ R(N+1)×d is the learnable weight matrix. The
output featuresX aggregate the neighbouring node features,

which can dynamically generate tokens with the appropriate
importance to perform graph understanding.
Spatial-Semantic Oriented Self-Attention (S2O-SA). Af-
terwards, the outputs from FAG are viewed as queries Q,
and the original nodes are used as keys K and values V . We
then reformulate the self-attention as follows:

S2O-SA = softmax(
QKT

√
d

+Ma +Mp)V. (6)

By injecting both spatial and semantic edge features, it
endows the self-attention mechanism with semantic-aware
and topology-aware structures that models the nodes non-
equally. We omit the multi-head operation for clarity. In
practice, we adopt several parallel multi-head attention to
concatenate the features for better representation fusion.
Generally, the whole process can be stacked into multi-
layers as follows:

X = FAG(X),

X ′ = S2O-SA(LN(X)) +X,

X = FFN(LN(X ′)) +X ′,

(7)

where LN(·) indicates the LayerNorm (Ba, Kiros, and Hin-
ton 2016) and FFN is the feed-forward network. Note that
unlike the position encoding in the transformer that is added
for sequential input data, the nodes in our paper are not ar-
ranged sequentially and are connected by edges. The pro-
posed spatial edge encodes the structural information in the
self-attention of a graph with the capability to modulate the
distance-related receptive field.

Network Optimization
Ultimately, after obtaining the features from the adaptive
attention graph, two layers of the MLPs are exploited to
centralize the update message of all the nodes to the crop
candidate to predict the aesthetic score. We first utilize the
weighted smooth ℓ1 loss (Ren et al. 2015) for score regres-
sion as follows:

Lpred =
1

K

K∑
i=1

ℓ1(yi − ŷi), (8)

where K is the number of the crop candidate within an im-
age, yi and ŷi are the predicted and ground-truth score of the
i-th candidate view, respectively.

In addition, following (Li et al. 2020; Zhang et al. 2022),
we also use the ranking loss (Chen et al. 2017b) to explicitly
learn the relative sorting orders between different crops as
follows:

Lrank =

∑
i,j max(0, σ(ŷi − ŷj)((yi − yj)(ŷi − ŷj)))

K(K − 1)/2
,

(10)
where σ(·) is the sign function. And the whole network is
trained in an end-to-end manner.

Experiment
Datasets and Metrics
Datasets: To fill the gap in the image cropping domain of
real-life applications, we construct a large dataset, term as
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Figure 3: Statistics of the proposed UGCrop5K dataset, including (a) some visualization sample images, (b) taxonomic struc-
ture, (c) scatter plot of image width versus image height distribution with marker size indicating the number, and (d) histograms
of the MOS.

Spatial Edge UGCrop5K GAICv1
ACC5 ACC10 ACC5 ACC10

DisDrop
ϵ = 0.1 58.7 70.4 59.6 77.2
ϵ = 0.2 60.4 71.6 60.5 77.8
ϵ = 0.3 59.6 70.7 59.9 77.4

DisEmb 60.8 72.1 61.0 78.1

Table 1: Analysis of different spatial edges.

UGCrop5K. Specifically, we first collect parts of the user
generated content from the opensource databases, includ-
ing KoNViD-1k (Hosu et al. 2017), LIVE-VQC (Sinno and
Bovik 2018a,b; Z. Sinno and A.C. Bovik 2018), YouTube-
UGC (Wang, Inguva, and Adsumilli 2019) and Bilibili (Ma
et al. 2019) social video websites. Furthermore, we also pro-
vide approximately 500 self-made contents using different
devices (e.g., shooting by iPhone 13 Pro Max, DJI Mavic 3
and Canon EOS R5 vertically or horizontally within various
aspect ratios) from different scenarios to guarantee the va-
riety of the proposed dataset. We then use HECATE (Song
et al. 2016) to generate the top-3 cover images from the col-
lected videos automatically. For data cleaning, we manually
remove low-quality ambiguous images (i.e., pure colour im-
ages, highly similar content images, and blurry images) and
reduce repetition. Particularly, we also remove images that
are potentially not necessary for cropping. Finally, we have
a total of 5,000 images with different aspect ratios covering
different scenes, as shown in Fig 3(a) ∼ (c).

Subsequently, 20 annotators are invited to our image com-
position annotation task, including 3 non-professional stu-
dents, 10 medium-professional people engaged in art-related
studies and 7 experienced workers in photography. We gen-
erate 90 predefined anchor boxes similar to (Zeng et al.
2020) for each image and develop an online website anno-
tation tool instead of the annotation software (Zeng et al.
2020) that depends on the specific computer environment to
ease the burden of the annotators. Concretely, annotators as-
sign each predefined crop an integer score ranging from 1
to 5, with higher scores representing the better composition.
Each crop needs to be rated by at least 5 people. We finally
calculate the mean opinion score (MOS) for each candidate

Object Proposal UGCrop5K GAICv1
ACC5 ACC10 ACC5 ACC10

N = 8 59.9 71.2 61.2 78.0
N = 10 60.8 72.1 61.0 78.1
N = 12 60.6 71.9 59.6 77.4
N = 15 60.4 71.5 58.7 77.0

Table 2: Analysis of the object proposal number.

crop as its ground-truth quality score, and Fig 3(d) shows
the histograms of the MOS. In general, we have 5,000 im-
ages with 450,000 high-quality annotated candidate crops
in the dataset, and we split 4,200 images for training and
800 images for testing. Due to resource constraints, we con-
ducted experiments on an early version of the dataset anno-
tated by partial annotators. The complete dataset and results
will be released in Github. To verify the generalization of
our model, we also conduct experiments on other public im-
age cropping benchmarks: GAICv1 (Zeng et al. 2019) and
GAICv2 (Zeng et al. 2020) datasets.

Metrics: Following (Zeng et al. 2019, 2020), we adopt
the averaged Spearman’s Rank-order Correlation Coeffi-
cient (SRCC) and the averaged top-k accuracy (ACCk) for
both k = 5 and k = 10 as evaluation metrics instead of the
unreliable Intersection-over-Union (IoU) metric.

Implementation Details

Following the existing methods (Zeng et al. 2020; Pan et al.
2021; Zhang et al. 2022), we adopt MobileNetV2 (Sandler
et al. 2018) pretrained on ImageNet (Deng et al. 2009) as
backbone to extract multi-scale feature map. The short side
of the input sample is resized to 256 and maintains the aspect
ratio. The aligned size of RoIAlign is set to 15× 15 and the
proposal number is set to 10 empirically. We stack 2 layers
of the adaptive attention graphs with the multi-head number
of 4. The network is optimized by AdamW with the learning
rate of 1e-4 for 80 epochs. Data augmentations are similar
to prior works (Zeng et al. 2020; Li et al. 2020), including
random flipping, saturation, and lighting noise are adopted.
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G Ma Mp
UGCrop5K GAICv1

ACC5 ACC10 ACC5 ACC10

54.3 64.8 49.7 68.4
✔ 55.2 65.7 51.1 70.5

✔ 54.7 65.3 50.8 70.2
✔ 54.9 65.8 53.4 72.6

✔ ✔ 58.7 69.6 56.7 76.1
✔ ✔ 59.2 70.9 58.9 77.0

✔ ✔ 60.0 71.5 60.2 77.4
✔ ✔ ✔ 60.8 72.1 61.0 78.1

Table 3: Analysis of different proposed components. G indi-
cates FAG module.

Ratios Perc. (%)
Ours Mars GAICv2

3:4 47.7 35.3 17.0
4:3 44.0 24.3 31.7
16:9 52.0 23.3 24.7

Table 4: User study results.

Ablation Analysis
Exploration of different spatial edges: As shown in Ta-
ble 1, we first explore different constructions of spatial edge
mentioned before. It shows that when ϵ = 0.2, DisDrop
can yield relatively good performance. Although different
thresholds ϵ can be altered, DisEmd can always outperform
DisDrop. As aforementioned, the reason for the above ob-
servation is that the mutual contributions of visual features
at different locations weakened by distance may miss some
high-order spatial information. Therefore, in the following
paper, we adopt the DisEmd strategy to build the spatial edge
in a more holistic manner.
Exploration of object proposal number. We also explore
the effect of different object proposal numbers, as shown in
Table 2. When N = 10, we can achieve satisfactory results
on both datasets. When N = 8, ACC5 can be improved in
GAICv1 benchmark since it does not contain many objects
as in UGCrop5k. When continuously increasing the N , the
cropping performance will drop. We conclude that too many
object proposal features are redundant, which may confuse
the network for learning effective relations.
Exploration of different proposed components. Table 3
analyzes that each component can boost our network to
varying degrees compared to the baseline (our baseline de-
pends on pure Transformer block). Particularly, + Mp ob-
tains more improvement than + Ma, we conjecture that the
topological spatial cues are more unique and useful in the
self-attention operation. By combining all the components,
we can achieve the best performance, which verifies the pro-
posed modules are helpful and indispensable.
Exploration of different graphs. we further compare our
proposed graph with the conventional GCN (Li et al. 2020)
and GAT (Shaked Brody 2022). After replacing our graph
with GCN, ACC5 will drop from 60.8 −4.6−−−→ 56.2 and

AfterBefore

Figure 4: The t-SNE feature visualization before and after
the proposed graph. Different colours indicate the crop can-
didates, the regions should be removed, reserved, or partially
reserved, respectively. The features before the graph show
indistinguishable clusters, while the features learned by our
graph are more discriminative, which can guide the model to
find good views more reasonably. Zoom in for the best view.

61.0 −3.7−−−→ 57.3 on UGCrop5k and GAICv1 benchmarks,
respectively. When replacing with GAT, ACC5 will drop to
59.4 and 58.6 on two above benchmarks. This validates the
effectiveness of our proposed adaptive attention graph.
Model interpretability: As shown in Fig 4, we show how
our proposed adaptive attention graph encodes the informa-
tion. The top-1 crop candidate and some detected object pro-
posals are depicted in the leftmost image. By comparing
the feature distribution maps (Van der Maaten and Hinton
2008), we can observe that the different regional features
will diffuse or aggregate rather than in a mixed cluster. More
specifically, the crop view features are closer to reserved fea-
tures and have a certain degree of overlap with the partially
reserved ones while far away from the removed features.
This is because the relations between the crop view and
aesthetically unnecessary contents are weakened via graph
learning, and the edge weights between the crop view and
potentially necessary contents are strengthened. This can
help the network explicitly discriminate good and bad views
through backpropagation learning with annotation scores.

Compare with the State-of-the-art Methods
Quantitative Results. As shown in Table 5, S2CNet can not
only outperform state-of-the-art methods on the proposed
challenging UGCrop5k dataset but also achieve satisfactory
results on two other general GAICv1 and GAICv2 bench-
marks. Nevertheless, our network can also achieve reliable
results in general scenarios, which demonstrates the effec-
tiveness and soundness of the proposed network. Note that
SFRC (Wang et al. 2023) utilized additional unlabeled test
data for training. For fair comparisons, we report its per-
formance under the inductive setting. Besides, we also re-
port the model complexity and runtime, all the experiments
are executed on a single NVIDIA RTX 2080Ti GPU. Our
method can process images at rates of 162.8 FPS while keep-
ing competitive results, which guarantees the efficiency and
practicality of the network.
Qualitative Analysis. Fig 5(a) shows the qualitative com-
parisons, from which we can observe that: (i) Our method
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Model Param (M) FPS ↑ UGCrop5K GAICv1 GAICv2
SRCC ACC5 ACC10 SRCC ACC5 ACC10 SRCC ACC5 ACC10

VFN 11.55 0.4 0.372 25.4 36.1 0.450 26.7 38.7 0.485 26.4 40.1
A2-RL 24.11 2.6 - 22.8 33.9 - 23.0 38.5 - 23.2 39.5
VEN 40.93 0.3 0.394 31.3 42.7 0.621 37.6 50.9 0.616 35.5 48.6
VPN 65.31 96.2 - 35.8 44.3 - 40.0 49.5 - 36.0 48.5

GAICv1 13.54 129.8 0.418 45.7 52.8 0.735 46.6 65.5 0.832 63.5 79.0
GAICv2 1.81 212.4 0.466 54.7 64.5 0.783 57.2 75.5 0.849 63.9 79.7

ASM-Net 14.95 102.0 0.435† 52.8† 63.2† 0.766 54.3 71.5 0.837† 63.2† 79.1†

CGS 13.68 100.0 0.467 56.4 66.8 0.795 59.7 77.8 0.848 63.5 79.4
TransView 4.62 147.3 0.482† 57.9† 69.4† 0.789† 59.2† 77.4† 0.857 63.9 82.4

HCIC 19.47 128 0.449 54.5 64.1 0.793 58.6 74.5 0.851 63.8 81.3
SFRC 5.91 40 - - - - - - 0.865 63.7 82.6

S2CNet 3.92 162.8 0.502 60.8 72.1 0.793 61.0 78.1 0.861 64.0 82.7

Table 5: Quantitative comparison to other state-of-the-art approaches on UGCrop5K, GAICv1 and GAICv2 datasets. The best
performance is in bold, and the second-best is underlined. † indicates our re-implement results since the authors do not provide
codes. Other results are derived from the open-source codes and the original papers.

Input 9:16 3:4 1:1 4:3 16:9 CirclularInput A2-RL VEN VPN GAICv2 HCIC Ours
(a) (b) 

Figure 5: (a): Qualitative comparisons of different state-of-the-art methods. The first two rows of images are from the GAICv1
and GAICv2 datasets, and the last two rows of images are from the UGCrop5k dataset. The top-scored best crops are in the
yellow dotted box. (b): Image cropping results with different aspect ratios.

can produce more aesthetically pleasing cropped views.
They not only retain the main foreground of the photos but
also can effectively preserve or remove some areas of the
background to a greater extent for composition, and it is
closer to the best annotated ground-truth; (ii) Our method
can maintain image content integrity. As shown in the last
row in Fig 5(a), although other methods successfully crop
the main person and achieve a relatively good view, they
lose some useful attributes of the image (i.e., A2-RL (Li
et al. 2018), VEN/VPN (Wei et al. 2018) and GAICv2 (Zeng
et al. 2020) cut out the important theme text of the news;
HCIC (Zhang et al. 2022) even only keeps the main person),
which may deliver incomplete information to readers.
Applications. In real-life applications, cropping is usually
constrained. As shown in Fig 5(b), our model can find good
views under different constraints, which demonstrates the
ability of our model and meets the demand for UGC crop-
ping, including cover image cropping, thumbnailing and
icon generation, etc.
User Study. To evaluate the qualities of views within spe-
cific aspect ratios, we compare the proposed method with

other approaches (e.g., Mars (Li, Zhang, and Huang 2020)
and GAICv2 (Zeng et al. 2020)) that can also handle
specific ratio cropping through the subjective user study.
We randomly collect 100 images and 200 images from
GAICv2 (Zeng et al. 2020) and UGCrop5K datasets. Then
15 volunteers are invited to select their favourite crop view
from the results. Note that the experts are unaware of the
views produced from which algorithms for fair comparisons.
Table 4 shows that our method can achieve the highest per-
centage and outperform the other methods.

Conclusion
In this paper, we introduce a spatial-semantic collaborative
cropping network for user generated content and conduct a
large densely labeled UGCrop5k dataset for follow-up re-
search in the cropping domain. By exploring the seman-
tic appearance and spatial topology information of differ-
ent visual patches, we address the cropping task from a
comprehensive perspective. Extensive experiments on dif-
ferent datasets show that our method outperforms the exist-
ing cropping approaches qualitatively and quantitatively.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4994



Acknowledgments
This work was supported by National Natural Science Foun-
dation of China (NSFC) 62272172, Guangdong Basic and
Applied Basic Research Foundation 2023A1515012920.
This work is supported in part by a Tencent Research Grant
and National Natural Science Foundation of China (No.
62176002).

References
Ba, J. L.; Kiros, J. R.; and Hinton, G. E. 2016. Layer nor-
malization. arXiv preprint arXiv:1607.06450.
Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov,
A.; and Zagoruyko, S. 2020. End-to-end object detection
with transformers. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part I 16, 213–229. Springer.
Chen, H.; Wang, B.; Pan, T.; Zhou, L.; and Zeng, H. 2018.
CropNet: Real-time thumbnailing. In Proceedings of the
26th ACM international conference on Multimedia, 81–89.
Chen, J.; Bai, G.; Liang, S.; and Li, Z. 2016. Automatic im-
age cropping: A computational complexity study. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, 507–515.
Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; and Li, Y. 2020.
Simple and deep graph convolutional networks. In Interna-
tional conference on machine learning, 1725–1735. PMLR.
Chen, Y.-L.; Huang, T.-W.; Chang, K.-H.; Tsai, Y.-C.; Chen,
H.-T.; and Chen, B.-Y. 2017a. Quantitative Analysis of Au-
tomatic Image Cropping Algorithms:A Dataset and Com-
parative Study. In IEEE WACV 2017.
Chen, Y.-L.; Klopp, J.; Sun, M.; Chien, S.-Y.; and Ma, K.-L.
2017b. Learning to compose with professional photographs
on the web. In Proceedings of the 25th ACM international
conference on Multimedia, 37–45.
Cheng, Y.; Lin, Q.; and Allebach, J. P. 2022. Re-Compose
the Image by Evaluating the Crop on More Than Just a
Score. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, 1–9.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. ICLR.
Esmaeili, S. A.; Singh, B.; and Davis, L. S. 2017. Fast-at:
Fast automatic thumbnail generation using deep neural net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 4622–4630.
Fang, C.; Lin, Z.; Mech, R.; and Shen, X. 2014. Auto-
matic image cropping using visual composition, boundary
simplicity and content preservation models. In Proceedings
of the 22nd ACM international conference on Multimedia,
1105–1108.

Gao, J.; Zhang, T.; and Xu, C. 2019. Graph convolutional
tracking. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 4649–4659.
Goferman, S.; Zelnik-Manor, L.; and Tal, A. 2011. Context-
aware saliency detection. IEEE transactions on pattern
analysis and machine intelligence, 34(10): 1915–1926.
Goyal, A.; and Bengio, Y. 2022. Inductive biases for deep
learning of higher-level cognition. Proceedings of the Royal
Society A, 478(2266): 20210068.
He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask
r-cnn. In Proceedings of the IEEE international conference
on computer vision, 2961–2969.
Hong, C.; Du, S.; Xian, K.; Lu, H.; Cao, Z.; and Zhong, W.
2021. Composing photos like a photographer. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7057–7066.
Hosu, V.; Hahn, F.; Jenadeleh, M.; Lin, H.; Men, H.;
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