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Abstract

Hardware image signal processing (ISP), aiming at convert-
ing RAW inputs to RGB images, consists of a series of pro-
cessing blocks, each with multiple parameters. Traditionally,
ISP parameters are manually tuned in isolation by imaging
experts according to application-specific quality and perfor-
mance metrics, which is time-consuming and biased towards
human perception due to complex interaction with the out-
put image. Since the relationship between any single parame-
ter’s variation and the output performance metric is a com-
plex, non-linear function, optimizing such a large number
of ISP parameters is challenging. To address this challenge,
we propose a novel Sequential ISP parameter optimization
model, called the RL-SeqISP model, which utilizes deep re-
inforcement learning to optimize all ISP parameters for dif-
ferent imaging applications. Concretely, inspired by the se-
quential tuning process of human experts, the proposed model
can progressively enhance image quality by seamlessly inte-
grating information from both the image feature space and
the parameter space. Furthermore, a dynamic parameter op-
timization module is introduced to avoid ISP parameters get-
ting stuck into local optima, which is able to more effectively
guarantee the optimal parameters resulting from the sequen-
tial learning strategy. These merits of the RL-SeqISP model
as well as its high efficiency are substantiated by compre-
hensive experiments on a wide range of downstream tasks,
including two visual analysis tasks (instance segmentation
and object detection), and image quality assessment (IQA),
as compared with representative methods both quantitatively
and qualitatively. In particular, even using only 10% of the
training data, our model outperforms other SOTA methods
by an average of 7% mAP on two visual analysis tasks.

Introduction
Hardware Image Signal Processors (ISPs) are low-level im-
age processing hardwares that convert RAW data to RGB
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Figure 1: The motivation of our method. (a) Human experts
tuning process. The imaging experts iteratively tune the ISP
parameters through empirical perception. (b) The proposed
RL-SeqISP utilizes deep reinforcement learning to progres-
sively optimize ISP parameters under the guidance of feed-
back from various specific downstream applications.

images. Due to their high reliability and high efficiency,
they are widely used in many fields, e.g., camera phones
(Ignatov et al. 2023; Ratnasingam 2019) and video surveil-
lance (Lee et al. 2015; Xu et al. 2018; Baina and Dublet
1995). Generally, a typical hardware ISP pipeline consists
of a set of serialized processing blocks (e.g., denoising block
and sharpening block), each of which contains multiple pa-
rameters, resulting in a large number of parameters, which
affects the quality of the generated RGB image (Bardenet
et al. 2013; Yahiaoui et al. 2019; Yogatama and Mann 2014).
Traditionally, these parameters are tuned by imaging experts
based on human visual perception, which is time-consuming
and labor-intensive (Board 2017). Moreover, due to biases
in human perception, it is challenging for experts to tune
the parameters that favor actual applications. To solve this

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5025



dilemma, automatic ISP tuning becomes a new trend.
To develop automatic ISPs, some methods (Chen et al.

2018; Ignatov, Van Gool, and Timofte 2020; Yu et al. 2021a)
design software ISPs based on Convolutional Neural Net-
work (CNN) (Chen et al. 2018; Yu et al. 2021a) to re-
place the hardware ISPs to directly predict RGB images.
In these methods, the trainable CNN weights can be re-
garded as implicit ISP parameters. Though effective in some
ways, software ISPs are computationally intensive and time-
consuming (Tseng et al. 2019). Besides, they keep fixed im-
plicit ISP parameters for all RAW inputs during the evalu-
ation stage, even though each RAW input should have dif-
ferent ISP parameters to adapt to various image contents. In
contrast, other CNN-based methods (Qin et al. 2022; Tseng
et al. 2019) explicitly predict the specific optimal ISP param-
eters for each input in a high-dimensional space. However,
the performance of these methods is not satisfactory, since
CNNs are data-hungry for training effectively and the avail-
able RAW-RGB datasets are limited.

In fact, human experts tune hardware ISP parameters in
a step-by-step manner, i.e., they first roughly tune the pa-
rameters, and then gradually fine-tune the parameters ac-
cording to visual observation, to obtain visually pleasing or
downstream task-friendly RGB images, as shown in Fig. 1
(a). Inspired by this process, we formulate the hardware ISP
parameter tuning problem as a sequential progressive opti-
mization problem, since the sequential optimization enables
better handling of non-convex problems through fine-tuning,
and may be able to train the network and update ISP param-
eters from smaller datasets in a target-driven manner.

Motivated by the remarkable ability of reinforcement
learning (RL) to solve sequential decision-making problems,
in this paper, we propose an RL-based Sequential ISP pa-
rameter tuning model (i.e., RL-SeqISP model), as illustrated
in Fig. 1 (b). To our knowledge, we are the first to put for-
ward an RL-based method for hardware ISP parameter tun-
ing. Concretely, we formulate a comprehensive state repre-
sentation including current parameters and the correspond-
ing RGB image. Then, RL-SeqISP trains an agent, which
consists of an actor and a critic for estimating the variation
of ISP parameters and measuring the value of the input state
respectively, in an end-to-end manner to optimize hardware
ISP parameters for multiple steps. Furthermore, to prevent
parameters from converging to local optimum during the ISP
parameter tuning process (Shin, Lee, and Kweon 2022), we
further propose a dynamic parameter optimization module
(abbreviated as DPOM), which dynamically updates ISP pa-
rameters by weighing and aggregating current parameters,
agent decisions, and downstream task feedbacks. To evalu-
ate the proposed RL-SeqISP, we conduct extensive experi-
ments on two visual analysis tasks (i.e., image instance seg-
mentation, object detection), and a human visual perception
task (i.e., image quality evaluation, IQA). The experimen-
tal results demonstrate that our method achieves promising
performance using very limited training images.

The main contributions are summarized as follows:

• We formulate the hardware ISP parameter tuning prob-
lem as a sequential and progressive optimization problem

and propose an RL-based Sequential ISP parameter tun-
ing model (i.e., RL-SeqISP model). To our knowledge,
we pioneer RL for hardware ISP parameter tuning.

• To prevent the ISP parameters from converging to
the local optimum, we propose a dynamic parameter
optimization module (i.e., DPOM), which guides pa-
rameter optimization through current parameters and the
feedback performance from downstream tasks.

• The experimental results on three downstream tasks
demonstrate the superiority of the proposed RL-SeqISP
model, even with a small number of training images.

Related Works
ISP Tuning
Implicit ISP Tuning. With the development of deep learn-
ing, some studies (Schwartz, Giryes, and Bronstein 2018;
Chen et al. 2018; Gharbi et al. 2016; Ignatov, Van Gool, and
Timofte 2020; Dong et al. 2022; Yu et al. 2021b) have intro-
duced end-to-end deep neural networks (DNNs) to replace
the traditional hardware ISPs to directly generate RGB im-
ages. Specifically, Chen et al. (Chen et al. 2018) used DNN
to execute the denoising process of low-light images, Igna-
tov et al. (Ignatov, Van Gool, and Timofte 2020) designed
a PyNET to replace ISPs of mobile cameras. However, the
above methods keep fixed implicit parameters (i.e., parame-
ters of the DNNs) for all RAW inputs during the validation
phase, without considering that each image should have spe-
cific parameters based on its feature.
Explicit ISP Tuning. The purpose of explicit ISP tuning
is to directly learn the optimal parameters of ISPs. Some
methods (Tseng et al. 2019; Nishimura et al. 2018; Qin
et al. 2022) have formulated the parameter prediction for ISP
proxies as a black-box optimization problem driven by end-
to-end loss. In particular, Qin et al. (Qin et al. 2022), which
performs best among the above methods, directly infered
all ISP parameters via an attention-based CNN. However,
their generality and effectiveness will be greatly reduced
due to the gap between CNN proxies and hardware ISPs. In
contrast, some Covariance Matrix Adaptation Evolutionary
Strategies-based (CMA-ES-based) methods (Mosleh et al.
2020; Robidoux et al. 2021) aim to optimize ISP parameters
for actual hardware ISPs. However, the ES-based methods
inevitably introduce errors into the parameter optimization
process. Our approach aims to sequentially optimize the pa-
rameters of the actual hardware ISP based on the evaluation
metrics of several applications.

Reinforcement Learning
Reinforcement learning (RL) is a classic machine learning
paradigm (Watkins and Dayan 1992; Lillicrap et al. 2015)
known for its ability to solve sequential problems. Recently,
many researchers have investigated RL in low-level image
quality enhancement (Bajaj et al. 2021; Wang et al. 2020;
Furuta, Inoue, and Yamasaki 2019; Zhang et al. 2021b,a).
More specifically, in the field of image signal processing,
Shin et al. (Shin, Lee, and Kweon 2022) first replaced the
actual ISP with an ISP toolbox, and trained an RL agent to
determine the processing order of each tool. However, the
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Figure 2: The overall pipeline of the proposed RL-SeqISP model, which tackles the hardware ISP parameter tuning problem as a
sequential and progressive parameter optimization problem. (a) At each time step t, taking IR and Pt as input, the environment
generates an RGB image It and a metric score Mt. (b) The Agent observes the state St (including Pt and It) to decide an action
At for parameter optimization. (c) The dynamic parameter optimization module (DPOM) updates Pt to Pt+1 according to the
trade-off among At, Pt and Mt. The above processes iterate T steps to continuously optimize hardware ISP parameters.

parameters of each tool are still fixed for all RAW inputs.
In contrast, we further propose a new paradigm that utilizes
an agent to sequentially predict specific parameters for each
ISP module rather than select ISP modules.

METHODS
Overview
Problem Formulation. Given a RAW image IR from an
image sensor, the goal of ISP parameter prediction is to pre-
dict a set of image-specific ISP parameters P ∈ Rk, where
k denotes the number of parameters. Then, an output RGB
image I can be generated by the hardware ISP FISP (; )
with the parameters P , formulated as I = FISP (I

R;P ). In
this paper, we formulate the ISP parameter prediction prob-
lem as a sequential parameter optimization problem. Specif-
ically, given an environment E , including a hardware ISP
and a performance metric function M(·) for a pre-trained
downstream task, the RL agent interacts with E and exe-
cutes an action to optimize P in multiple steps, expressed
as {St,At,Rt,St+1}T−1

t=0 , where T , t, St, At, Rt and St+1

denote the max optimization steps T , current timestamp t,
current state St = {Pt, It = FISP (I

R;Pt)}, an action At,
a reward value Rt = M(It+1) −M(It), and the next state
St+1 after executing the actionAt. Note that P0 is randomly
initialized. After the T steps of parameter optimization, the
final optimal ISP parameters P ∗ can be obtained.

Overview Pipeline. Fig. 2 depicts the overall framework
of the proposed RL-based Sequential ISP parameter tuning
model (i.e., RL-SeqISP model). When optimizing the ISP
parameters, a RAW image IR and the ISP parameters Pt are
fed to the environment E to obtain a state St and a metric

score M(It), as shown in Fig. 2 (a). Then the agent receives
St to decide an action At for optimizing the ISP parame-
ters Pt, as shown in Fig. 2 (b). Specifically, the agent is ac-
tually an Actor-Critic Network, which consists of two core
networks, i.e., an actor network for predicting an action At

to optimize Pt, and a critic network for predicting the value
Vt to measure the value of the input state St, respectively.
For better prediction, both the actor network and the critic
network are guided by Pt at multiple scales with a dual-
branch parameter-guided feature fusion module (DPFFM).
Furthermore, to prevent ISP parameters from converging to
the local optimum, we further propose a dynamic parameter
optimization module (DPOM), as shown in Fig. 2 (c). Af-
ter the above forward process, once the agent executes At,
Pt and St are updated to Pt+1 and St+1, thus can obtain a
reward value Rt by measuring the quality of At. Following
this process, P0 are iteratively optimized to become the op-
timal parameter P ∗. During the training phase, the agent is
optimized by two different loss functions, respectively.

Agent for ISP Parameter Optimization
The agent, aiming to make decisions based on the current
state space St to optimize ISP parameters, is essentially an
Actor-Critic network. To guide the agent to make better de-
cisions, we further propose a dual-branch parameter-guided
feature fusion module (DPFFM).

Actor-Critic Network. The Actor-Critic network con-
tains two subnetworks: i.e., an actor network and a critic
network. Both networks adopt the same structure, containing
several modules in series: i.e., a convolutional (conv) layer,
several Residual blocks (He et al. 2016), a conv layer, and
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an adaptive average pooling. Specifically, taking the current
state St as input, the actor network aims to predict the vari-
ation of ISP parameters as action At ∈ Rk, formulated as:

At = π(St; θπ), (1)

where π(; θπ) denotes the actor network with network pa-
rameters θπ . Based on At, the agent can optimize Pt via:

Pt+1 = clip(Norm(Pt) +Norm(At),−1, 1), (2)

where clip(·) is a clipping function (Schulman et al. 2017)
that limits each value of ISP parameters to [−1, 1], Norm(·)
denotes a normalization operation. The critic network aims
to predict a value Vt to measure the value of the input state
St, formulated as:

Vt = V (St; θV ), (3)

where V (; θV ) denotes a critic network with network param-
eters θV .

Dual-branch Parameter-guided Feature Fusion Mod-
ule. To make better decisions, the agent should make full use
of the information in St, i.e., visual information of the RGB
image It, and the parameter preference implied by Pt. For
each subnetwork, DPFFM fuses the image feature FIt and
Pt to generate a better feature F̂It , formulated as:

F̂It = FIt©ξ(Pt), (4)

where © and ξ(·) denote the channel-wise concatenation and
the reshaping operation (Tseng et al. 2019) which replicates
Pt to the same spatial dimension as FIt . Furthermore, con-
sidering the different representation capabilities of low-level
and high-level features, we apply multi-layer feature fusion
before each residual block, formulated as:

F̂ l
It = F l

It©ξl(Pt), l ∈ {1, ..., L}, (5)

where l denotes the layer of Residual blocks.

Dynamic Parameter Optimization Module
Equ. 2 introduces a naive way to update the ISP parame-
ters. However, during the ISP parameter optimization pro-
cess, some ISP parameters tend to approach the parameter
boundary (i.e., -1 or 1), due to insufficient exploration of
state space by the agent. Similar effects also exist in RL do-
mains (Silver et al. 2016; Schaul et al. 2015; Osband et al.
2019; Sutton and Barto 2018). More seriously, this effect
will accumulate during the sequential optimization, causing
the optimized ISP parameters to stick to the local optimum.
To alleviate this problem, we propose a dynamic parameter
optimization module (DPOM) that guides parameter opti-
mization by dynamically weighing the current parameters
and the feedback performance from a downstream task.

Feedback performance metric of downstream tasks.
To measure the quality of the RGB images It, a metric func-
tion M(·) needs to be defined. However, since the aesthetic
judgments of an image are influenced by many factors and
vary from person to person, it is inconvenient to directly for-
mulate quality assessment metrics for RGB images. Instead,
we evaluate the quality of It based on its performance in a
downstream task, expressed as:

M(It) = Mdt

(
Fdt(It; θ)

)
, (6)

where Fdt(It; θ) denotes a pre-trained network with frozen
network parameters θ, Mdt(·) denotes an evaluation met-
ric of Fdt. Note that a higher feedback metric score im-
plies a better-quality RGB image. In this paper, we adopt
the following metrics on two visual analysis tasks, i.e., neg-
ative YOLO loss (−Lyolo) for object detection (Redmon
and Farhadi 2018) and mAP for instance segmentation (Qin
et al. 2022). In addition, intuitively from the perspective of
human visual perception, we adopt SSIM for the image
quality assessment task (IQA) (Qin et al. 2022).

Dynamic Parameter Optimization. For dynamic param-
eter optimization, we modify Equ. 2 to:

Pt+1 = clip(Norm(Pt) +Wt ×Norm(At),−1, 1), (7)

where Wt ∈ Rk denotes a set of adaptive weights, deter-
mined by the trade-off between the state of Pt and the feed-
back performance metric score M(It), formulated as:

Wt = α(e1−|Pt|−1) · log
[
β
(
Mtgt(It)−M(It)

)
+1

]
, (8)

where α and β denote two hyperparameters to balance the
weight, 1 − |Pt| represents the distance to the parameter
boundary (i.e., -1 or 1), Mtgt(It) denotes the desired tar-
get score (i.e., 0.99). According to Equ. 8, when a parameter
in Pt approaches the boundary or the feedback metric score
approaches our desired target score, the agent tends to sup-
press update amplitude and keep the original parameter Pt.

Training Actor-Critic Network of Agent
Reward. To train the agent, a reward function needs to be
defined. After the agent executes an action At at time step
t, our goal is to generate better ISP parameters Pt+1 and
RGB image It+1 for higher downstream task performance
M(It+1). Here we define the reward function R(·) as the
gain of M(·) before and after executing At, formulated as:

Rt = M(It+1)−M(It). (9)

After the agent iteratively optimizes the ISP parame-
ters T steps, a set of rewards can be generated, i.e.,
{R0, ...,RT−1}. Then the accumulated reward score Rt for
each step can be defined as:

Rt = Rt+γRt+1+ · · ·+γT−t+1RT−1+γT−tV (ST ; θV ),
(10)

where γ denotes the discount factor.
Optimization of Actor-Critic Network. We follow the

PPO algorithm (Schulman et al. 2017) to train the RL-
SeqISP model, as described in Algorithm 1.

Specifically, to optimize the critic network, we aim to
minimize the expectation of the difference between its pre-
dicted value Vt and the accumulated reward score Rt. We
adopt a loss Lcritic for critic network, formulated as:

Lcritic = Êt[(Rt − V (St; θV ))2]. (11)

To optimize the actor network, we aim to maximize cumula-
tive return expectations. To this end, we adopt a loss function
Lactor for actor network, formulated as:

Lactor = Êt

[
min

(
rt(θπ)Ât, clip (rt(θπ), 1− ϵ, 1 + ϵ) Ât

)]
,

(12)
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Algorithm 1: Training procedure of the RL-SeqISP
Input: Training set
Output: The agent including an actor network

π(; θπ) and a critic network V (; θV ).
Given: hardware ISP FISP (; ), metric function
M(·), an agent including an actor network π(; θπ)
and a critic network V (; θV )

repeat
Randomly input a RAW image IR;
Randomly initialize ISP parameters P0;
dθπ ← 0, dθV ← 0;
for t ∈ {0, 1, ..., T − 1} do

Update state: St = {Pt, It = FISP (I
R;Pt)};

Calculate feedback score:
M(It) = Mdt

(
Fdt(It; θ)

)
;

Forward action:
At = π(St; θπ),Vt = V (St; θV );
Optimize ISP parameters:
Pt+1 = Pt +Wt ×At;
Re-update state:
St+1 = {Pt+1, It+1 = FISP (I

R;Pt+1)};
Calculate Reward score:
Rt = M(It+1)−M(It);

end
RT = 0;
for i ∈ {T − 1, T − 2, ..., 0} do

Ri ← Ri + γRi+1;
Gradient Backpropagation:
∆θπ ← ∇θπLactor(θπ);
Gradient Backpropagation:
∆θV ← ∇θV Lcritic(θV );

end
Update θπ with ∆θπ and θV with ∆θV ;

until Terminal condition is satisfied;

where ϵ denote a hyperparameter (set to 0.2 following
(Schulman et al. 2017)), Ât indicate an advantage function
(i.e., Ât = (Rt − Vt)), and rt(θπ) is an objective function
to constrain on the size of the actor update, respectively. For
detailed descriptions, please refer to (Schulman et al. 2017).

Experiments
Image Signal Processing Pipelines
Taking a Bayer-format RAW image IR as input, after the
RL-SeqISP model outputs the optimal ISP parameters P ∗

for IR, the hardware ISP processes IR into the RGB image
I∗ through six stages under the ISP parameter setting of P ∗,
formulated as I∗ = FISP (I

R, P ∗).

Experiment Settings
Downstream tasks. We conduct experiments on a wide
range of downstream tasks. Our main purpose is to verify
on two visual analysis tasks, i.e., instance segmentation and
object detection. In addition, to better simulate the aesthetic

of RGB images from the human perspective, we use the im-
age quality assessment task (IQA).

Dataset settings. For instance segmentation and object
detection, due to the lack of a large-scale RAW-RGB image
dataset, we employ a simulation method (Kim et al. 2012)
to modify MSCOCO dataset (Lin et al. 2014), which is also
been adopted by other comparable sota methods.

For more implementation details (including network set-
tings, training settings and evaluation details on each task),
please refer to the Supplementary Material.

Comparison with State-of-the-arts
Evaluation on Instance Segmentation Task. For instance
segmentation, we use the modified MSCOCO dataset as
stated above. We randomly select a small subset from the
MSCOCO training set (including 1,000 images) to train our
model. We adopt the Mask-RCNN (He et al. 2017) pre-
trained on the MSCOCO set, and freeze its parameters in the
process of training and evaluation. During training, we adopt
Mean Average Precision (mAP ) as the feedback metric. Fi-
nally, we evaluate the model on the MSCOCO validation set
and report the mAP score. Note that for this task, we adopt
a hardware ISP with 20 ISP parameters.

We compare the RL-SeqISP model with many explicit
ISP tuning methods, i.e., hardware ISP with fixed empirical
parameters provided by experts (i.e., “Default parameters”),
“Expert-tuned”, “Blockwise-tuned” (Nishimura et al. 2018),
“Hardware-tuned” (Mosleh et al. 2020) and “Attention-
aware” (Qin et al. 2022). Note that “Expert-tuned” refers
to the process in which six image processing experts from
mobile phone manufacturers tune ISP parameters for each
RAW image and obtain RGB images using Qualcomm Spec-
tra 580 ISP sensor. Then, they vote to determine the optimal
RGB image and its corresponding ISP parameters. Experi-
mental results are illustrated in column 3 of Tab. 1. Specif-
ically, our “RL-SegISP” exceeds other methods by a large
margin, exceeding 0.11∼0.41 on mAP . It is worth pointing
out that, compared with the latest method “Attention-aware”
(Qin et al. 2022) which requires 10,000 images for train-
ing, our method uses only 1/10 images of (Qin et al. 2022)
to outperform (Qin et al. 2022) by 0.11 with mAP . That
effectively confirms the advantages of sequential parameter
optimization even under fewer training samples. In addition,
compared with “Expert-tuned”, we exceed 0.17 on mAP ,
indicating that sequential parameter optimization guided by
downstream task feedback is more suitable for instance seg-
mentation than from a human subjective perspective.

Evaluation on Object Detection Task. To verify the gen-
eralization of the proposed RL-SeqISP model, we evaluate
our method on the object detection task. For this task, we
use the same modified MSCOCO dataset as the instance seg-
mentation task and a YOLOv3 model (Redmon and Farhadi
2018) pre-trained on the MSCOCO dataset. For training, we
aim to minimize the YOLO loss Lyolo (i.e., maximize neg-
ative YOLO loss “−Lyolo”). For evaluation, we report the
mAP score. Note that for this task, our hardware ISP also
includes 20 ISP parameters.

The experimental results in column 4 of Tab. 1 show a
similar phenomenon to the instance segmentation, i.e., we
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Methods Training
images

Instance
Segmentation

Object
Detection

mAP mAP
Default parameters - 0.22 0.34

Expert-tuned - 0.46 0.56
Blockwise-tuned

(Nishimura et al. 2018) - - 0.20

Hardware-tuned
(Mosleh et al. 2020) - 0.32 0.39

Attention-aware
(Qin et al. 2022) 10,000 0.52 0.61

RL-SepISP (Ours) 1,000 0.63 0.64

Table 1: Quantitative comparison with state-of-the-art meth-
ods on MSCOCO benchmark on two visual analysis down-
stream tasks, i.e., instance segmentation and object detec-
tion, respectively.

consistently outperform other methods by 0.03∼0.44 on
mAP , proving the generalization, robustness, and superior-
ity of the proposed RL-SeqISP in the object detection task.

Evaluation on Image Quality Assessment Task. In or-
der to assess image quality directly from a human perspec-
tive, we further conduct experiments on the IQA task. For
the IQA task, since there are no open-source IQA datasets,
we use a SONY IMX766 CMOS sensor to collect 252 RAW
images, including 61 instances shot in the laboratory and
191 instances shot outdoors. Then, several imaging experts
tune the ISP parameters for each RAW image and use the
Qualcomm Spectra 580 ISP to generate the reference RGB
image, i.e., ground truth (GT), named “Expert-tuned (GT)”.
Note that it takes about 12 hours for an expert to tune the
parameters for each image, which is time-consuming. In ad-
dition, human experts also provide a fixed set of uniform
default ISP parameters for all images based on their experi-
ence, named “Default parameters”. For training and evalu-
ation, we divide the dataset into 177 and 75 images (about
7:3). Before training, we adopt data argumentation to the
training set, such as adding noise, reducing brightness, etc.
In this task, we can directly compute the evaluation metrics
without relying on any network, including Structure Similar-
ity Index Measure (SSIM) and Peak Signal-to-Noise Ratio
(PSNR) (Hore and Ziou 2010). Specifically, we adopt SSIM
as a feedback metric during training, and we report both met-
rics during evaluation. Note that for IQA, there exist 48 ISP
parameters for the hardware ISP.

The results in Tab. 2 show that our RL-SeqISP model ex-
ceeds the “Default parameters” on SSIM and PSNR by
0.051 and 3.324, respectively, proving that our model can
better simulate the sequential tuning process of human ex-
perts to obtain better ISP parameters.

Visualization Analyse
In Fig. 3 (a), we visualize the results of the proposed RL-
SeqISP model and other methods in the instance segmen-
tation. We can find that the RGB images generated by the
RL-SeqISP model can produce segmentation results closer
to “Ground Truth Annotations” than other methods. Specif-
ically, the results generated by “Default parameters” and
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Figure 3: Visualization examples of the results on two vi-
sual analysis downstream tasks, i.e., instance segmentation
(a) and object detection (b). The first two rows provide the
ground truth annotations and the evaluation results of the
original RGB images for the MSCOCO validation set. The
last three lines show the results of RGB images generated
by different explicit ISP tuning methods, i.e., fixed default
parameters, expert-tuned parameters, and ours, respectively.

“Human-tuned” have either misclassification of occluded in-
stances (e.g., “handbag” in the first column) or omission seg-
mentation of small instances (e.g., smaller “car” instances in
the second column), while these instances can be segmented
with high confidence scores in RGB images generated by
the RL-SeqISP model. The main reason is that human ex-
perts tend to subjectively perceive the entire image and are
not sensitive to changes in the detail regions when tuning
ISP parameters, while our RL-SeqISP model can customize
the ISP parameters through the feedback of the downstream
task and the sequential parameter optimization, so as to pay
attention to more detail regions. In addition, it is worth men-
tioning that although there are differences between RGB im-
ages generated by RL-SeqISP and human visual perception,
RL-SeqISP performs better in instance segmentation, which
proves that RL-SeqISP is more suitable for instance segmen-
tation than from a human subjective perspective.

In Fig. 3 (b), we visualize the results of the object detec-
tion. The RGB images generated by “Default parameters”
and “Human-tuned” also have situations of missed or false
detection, with low confidence to correctly detected objects.
Our RL-SeqISP can detect objects well, which proves the
generalization of RL-SeqISP in the object detection.

In Fig. 4, we visualize some RGB images of different
methods on the IQA task. To compare the details more intu-
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Figure 4: Visualization examples on Image Quality Assess-
ment Task. (a), (b) and (c) indicate the expert-tuned images,
images generated by fixed default parameters, and images
generated by our model, respectively.

Methods SSIM PSNR
Expert-tuned (GT) 1.000 -
Default parameters 0.901 31.904
RL-SepISP (Ours) 0.952 35.228

Table 2: Experimental results on IMX766 CMOS sensor
dataset for image quality assessment task.

itively, we zoom in on two small regions for each image. We
observe that the RGB images generated by our RL-SeqISP
model are closer to “Expert-tuned (GT)” images compared
to using fixed default parameters. In particular, the images
under default parameters face distortion issues in edges and
detail textures, which we can avoid well.

Ablation Study
We conduct rich ablation studies on three tasks. Specifically,
we first design a set of ablation experiments to validate two
key components proposed for RL-SeqISP, i.e., Dual-branch
Parameter-guided Feature Fusion Module (DPFFM) and
Dynamic Parameter Optimization Module (DPOM). Then
we analyze the effects of the max optimization step. In addi-
tion, we also visualized some sequential optimization results
during evaluation in the Supplementary Material.

Effects of Different Components. As shown in Tab.
3, we remove DPFFM and DPOM to construct our base-
line, named “Baseline”. Then, we add DPFFM and DPOM
modules to verify their effectiveness. In these experiments,
T is set to 4. Experimental results show that after adding
DPFFM to “Baseline”, our model has achieved significant
improvements in the instance segmentation task and object
detection task, and has made slight progress in the IQA
task, which proves that DPFFM can improve feature qual-
ity through parameter-guided feature fusion and thus im-
prove model performance. Further, when adding DPOM to
the “Baseline”, we are pleasantly surprised to see that the
experimental results are somewhat improved compared to
the ”Baseline” on each task, demonstrating the effectiveness

Methods
Instance

Segmentation
Object

Detection IQA

mAP mAP SSIM PSNR
Baseline 0.49 0.48 0.91 32.82

w/o DPOM 0.52 0.55 0.93 33.70
w/o DPFFM 0.54 0.53 0.93 33.50
RL-SeqISP 0.58 0.64 0.95 35.23

Table 3: Ablation studies for different components (i.e.,
DPFFM and DPOM) on three downstream tasks.

Max Step
Instance

Segmentation
Object

Detection IQA

mAP mAP SSIM PSNR
T=1 0.53 0.54 0.92 32.82
T=2 0.57 0.52 0.91 32.65
T=4 0.58 0.64 0.95 35.23
T=8 0.63 0.53 0.94 34.05

T=16 0.60 0.53 0.94 34.61

Table 4: The impact of Max Optimization Step T on three
downstream tasks.

of DPOM in preventing ISP parameters from convergence
to local optimum. Finally, we add both DPPFM and DPOM
to build a complete RL-SeqISP model, and the results show
that the RL-SeqISP model can achieve optimal results.

Effect of the Max Optimization Step T . As illustrated in
Tab. 4, we explore the effect of the maximum optimization
step T during the training and validation phases. As T grad-
ually increases, the performance of the model gradually im-
proves, proving that sequential parameter optimization does
help to learn better ISP parameters and produce more down-
stream task-friendly RGB images. For object detection, our
model achieves the best results when T is set to 4. For the in-
stance segmentation task, since the dense prediction task re-
quires higher image quality in the detail regions, more steps
of optimization are required to reach the optimal parameters,
such as 8 steps. Besides, for the IQA task, the trend of exper-
imental results is similar to that of the other two downstream
tasks, with the best experimental results obtained when the
maximum step is set to 4. Note that the model performance
degrades when T is set too large for the three downstream
tasks. Therefore, in this paper, T is set to 8, 4 and 4 for in-
stance segmentation, object detection and IQA, respectively.

Conclusions

In this paper, we propose a novel RL-based Sequential ISP
parameter tuning model (i.e., RL-SeqISP) that mimics the
stepwise tuning procedure of human experts. To prevent the
ISP parameters from converging to the local optimum, we
also propose a dynamic parameter optimization module. Ex-
tensive experiments on three downstream tasks show that
our RL-SeqISP model outperforms other explicit ISP tuning
methods, demonstrating the effectiveness and generalization
of the RL-SeqISP model.
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