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Abstract

As advances in large language models (LLMs) and mul-
timodal techniques continue to mature, the development
of general-purpose multimodal large language models
(MLLMs) has surged, offering significant applications in
interpreting natural images. However, the field of pathol-
ogy has largely remained untapped, particularly in gather-
ing high-quality data and designing comprehensive model
frameworks. To bridge the gap in pathology MLLMs, we
present PathAsst, a multimodal generative foundation AI
assistant to revolutionize diagnostic and predictive analyt-
ics in pathology. The development of PathAsst involves
three pivotal steps: data acquisition, CLIP model adaptation,
and the training of PathAsst’s multimodal generative capa-
bilities. Firstly, we collect over 207K high-quality pathol-
ogy image-text pairs from authoritative sources. Leverag-
ing the advanced power of ChatGPT, we generate over
180K instruction-following samples. Furthermore, we de-
vise additional instruction-following data specifically tai-
lored for invoking eight pathology-specific sub-models we
prepared, allowing the PathAsst to effectively collaborate
with these models, enhancing its diagnostic ability. Secondly,
by leveraging the collected data, we construct PathCLIP, a
pathology-dedicated CLIP, to enhance PathAsst’s capabili-
ties in interpreting pathology images. Finally, we integrate
PathCLIP with the Vicuna-13b and utilize pathology-specific
instruction-tuning data to enhance the multimodal generation
capacity of PathAsst and bolster its synergistic interactions
with sub-models. The experimental results of PathAsst show
the potential of harnessing AI-powered generative founda-
tion model to improve pathology diagnosis and treatment pro-
cesses. We open-source our dataset, as well as a comprehen-
sive toolkit for extensive pathology data collection and pre-
processing at https://github.com/superjamessyx/Generative-
Foundation-AI-Assistant-for-Pathology.

Introduction
In recent years, artificial intelligence has made remarkable
strides across various fields (Liu et al. 2022b; Zhuang et al.
2021). This is particularly evident in pathology, which has
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undergone a profound transformation with the introduction
of digital pathology and advanced deep learning techniques.
The increasing availability of digitized histopathology data,
coupled with the exponential growth in the size and com-
plexity of pathology datasets, has necessitated the develop-
ment of more sophisticated tools to enhance the analytical
efficiency of pathologists.

Simultaneously, there has been an upsurge interest in
LLMs, with numerous researchers focusing on their devel-
opment and application. The ultimate goal is to create mod-
els with general artificial intelligence capabilities. Among
the most prominent examples are OpenAI’s ChatGPT and
GPT-4. These models have showcased impressive capabili-
ties in human interaction by training through instruction tun-
ing and human feedback, thereby fueling the community’s
enthusiasm for LLMs.

In the open-source community, LLaMA (Touvron et al.
2023) has emerged as a compelling model that exhibits per-
formance on par with GPT-3 (Brown et al. 2020), provid-
ing promising opportunities for further development. Sub-
sequent models, such as Alpaca (Taori et al. 2023) and Vi-
cuna (Chiang et al. 2023), take advantage of LLaMA and
leverage the instruction tuning techniques, enabling them
even outperform ChatGPT in certain tasks. Researchers have
also explored the realm of multimodal models, creating in-
novative approaches such as LLaVA (Liu et al. 2023a) and
MiniGPT-4 (Zhu et al. 2023). These models demonstrate im-
pressive capabilities in comprehending and interpreting mul-
timodal data, showcasing the advancements in the field.

However, while these advanced MLLMs primarily focus
on natural images, the field of pathology faces a notable gap
due to the scarcity of high-quality data and limited explo-
ration of model frameworks, which results in a deficiency of
pathology-specific MLLMs. In this study, we aim to bridge
this gap by exploring both high-quality pathology data col-
lection and the potential application of MLLMs within the
pathology domain. We outline our contributions as follows:
• We gather diverse pathology image-caption pairs from

authoritative sources. Through a meticulous process of
data cleaning and optimization, we create the PathCap
dataset, comprising 207K high-quality samples.

• We introduce PathCLIP, a pathology-specific CLIP
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model trained on the PathCap. Compared to prior mod-
els, PathCLIP shows superior proficiency in understand-
ing pathology data, achieving state-of-the-art results in
pathology image retrieval and zero-shot classification.

• We integrate PathCLIP and Vicuna-13b to develop
PathAsst, a multimodal generative foundational model
tailored for pathology. Utilizing the PathCap dataset,
we prompt ChatGPT to generate the PathInstruct
dataset, which consists of 180K pathology multimodal
instruction-following samples. These samples are em-
ployed to train PathAsst’s generative capabilities. Addi-
tionally, we prepare eight pathology-specific sub-models,
supplemented with instruction-following data for vari-
ous scenarios that necessitate sub-model invocation. This
equips PathAsst with the ability to discern when to utilize
these models for optimal results.

Related Work
Large Language Model (LLM). In the early stages,
breakthrough models like BERT (Devlin et al. 2018) and
GPT (Radford et al. 2018), were introduced, drawing in-
spiration from the transformer architecture. These models
ignited significant interest in the natural language process-
ing (NLP) domain and signaled the beginning of large-scale
models in this field. Initially, the full potential of genera-
tive models remained largely unexplored. However, in re-
cent years, as the generative model continue to scale up,
more powerful models such as GPT-3 (Brown et al. 2020),
T5 (Raffel et al. 2020), PaLM (Chowdhery et al. 2022),
and OPT (Zhang et al. 2022) are developed. Their emergent
abilities (Wei et al. 2022) lead these larger models to dis-
play markedly superior performance on complex tasks com-
pared to their smaller counterparts. Furthermore, the intro-
duction of instruction tuning techniques (Ouyang et al. 2022;
Wang et al. 2022b,a), specifically in the realm of LLM,
enables the generation of more controllable, practical, and
task-specific results. This revolutionary enhancement signif-
icantly boosts the zero-shot learning abilities of large mod-
els, as exemplified by InstructGPT (Ouyang et al. 2022),
GPT-4 (OpenAI 2023), FLAN-T5 (Chung et al. 2022), and
FLAN-PaLM (Chung et al. 2022).

Multimodal Large Language Model (MLLM). Recent
advancements in large-scale multimodal models can be pri-
marily divided into two branches. The first branch is de-
veloped based on the LangChain (Chase 2022) approach,
where LLM collaborates with various specialized visual
models to generate results. Prominent representatives of
this branch include Visual ChatGPT (Wu et al. 2023) and
MM-REACT (Yang et al. 2023). The second branch is
implemented by integrating the feature outputs from vi-
sual models into the token sequence inputs of the LLM,
enabling multimodal generation. This method is repre-
sented in models such as BLIP-2 (Li et al. 2023), PaLM-
E (Driess et al. 2023) and Flamingo (Alayrac et al. 2022).
Building upon the instruction-tuning techniques inspired
by the LLM community, researchers create multimodal
instruction-following datasets to perform MLLM training.
This approach promptes the development of models such

as LLaVA (Liu et al. 2023a), MiniGPT-4 (Zhu et al. 2023)
and LLaMA-Adapter V2 (Gao et al. 2023). These models
demonstrate impressive performance in solving multimodal
tasks, as well as advanced multimodal chat capabilities.

Multimodal Model for Pathology. While there are nu-
merous applications for multimodal models in natural image
analysis, their use in pathological image analysis has been
relatively limited to date. The majority of methods employ
approaches that combine vision encoder with LSTM (Liu
et al. 2023b; Zhang et al. 2019a,b), yielding fairly sat-
isfactory results. TraP-VQA (Naseem, Khushi, and Kim
2022) is the first attempt to employ vision-language trans-
former in pathology image processing, which is tested on the
PathVQA dataset (He et al. 2020) to generate interpretable
answers. More recently, Huang et al. (Huang et al. 2023)
compile a large-scale dataset of pathology image-text pairs,
sourced from social media platforms such as Twitter. They
utilize contrastive vision-language pretraining to establish a
foundational model for pathology, demonstrating promising
results in pathology zero-shot image-text cross-modal re-
trieval and zero-shot image classification.

Multimodal Datasets. Numerous researchers have been
dedicating their efforts to contribute valuable datasets that
facilitate the advancement of models in the aforementioned
domains. For instance, in the general domain, the commu-
nity has successfully constructed various datasets, such as
CC (Changpinyo et al. 2021) and LAION (Schuhmann et al.
2022). In the biomedical field, researchers have released
datasets like ROCO (Pelka et al. 2018), MedICAT (Subra-
manian et al. 2020), and PMC-OA (Lin et al. 2023). In the
pathology domain, researchers have recently built the Open-
Path (Huang et al. 2023) dataset by crawling Twitter.

Despite significant progress in the field, the domain of
MLLM specifically adapted for pathology remains largely
untapped. Current models, primarily designed for caption
generation, often underperform when compared to special-
ized professional pathology models. Furthermore, regard-
ing pathology MLLM dataset construction, existing datasets
such as ROCO, MedICAT, and PMC-OA are not specif-
ically tailored for this field. The only large-scale dataset,
OpenPath, primarily sources its data from Twitter, where the
image-text correlation is relatively weak, thus posing chal-
lenges for MLLM training. Moreover, the image-text pairs in
OpenPath require access to the Twitter API, which carries a
significant cost. As a result, there is still a substantial lack of
high-quality image-caption datasets in the field of pathology.
To bridge this gap, we develop two comprehensive pathol-
ogy multimodal datasets. Building on these datasets, we uti-
lize the power of instruction tuning to significantly improve
MLLM’s capability in interpreting pathology images.

Pathology Dataset Construction
In this paper, we propose two datasets tailored for pathology:
PathCap and PathInstruct. The PathCap contains 207K
high-quality pathology image-caption pairs. Among them,
197K are collected from PubMed and internal pathology
guidelines books, while an additional 10K annotations are
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Figure 1: Illustration of data processing: pathology image selection, sub-figure & caption separation, and refinement.

User: Please generate a low-
grade squamous intraepithelial
lesion (LSIL) cell with coarse
granular chromatin, binucleated
or multinucleated and irregular
nuclear membrane.

User: Please quantify the
number of cells with strong
complete HER2 membrane
staining on this image.

User: According to the
the Bethesda System,
could you identify the
category of this image?

Response:  Invoke HER2_detection Response: Invoke LBC_classification Response: Invoke LBC_cell_generation

User: Please segment
all cells in the provided
image.

Response: Invoke General_segmentation

Figure 2: Examples of pathology-specific model-invoking instruction-following samples.

provided by expert cytologists specializing in liquid-based
cytology (LBC). The PathInstruct dataset consists of 180K
samples and includes two parts of instruction-following
data. The first part is generated by prompting ChatGPT
based on curated pathology image-text pairs (refer to step
4 in the subsequent data processing introduction). The sec-
ond section includes multimodal instruction-following data
tailored for model invocation, ensuring the effective use of
specialized pathology models based on user intent and im-
age features.

More specifically, data from PubMed are parsed from
XML format papers into image-text pairs. For books, we
first convert them from PDF to HTML and then parse the
content into image-text pairs. Through these efforts, we col-
lect 15M and 2K samples from these respective sources.
Although the amount of data available on PubMed is sub-
stantial, it should be noted that the proportion of the data
related to pathology is limited. Additionally, the clarity of
these pathology images is comparatively inferior. Therefore,
thorough filtering is required to ensure the quality and rele-
vance of image-text pairs. As shown in Figure 1, our data
cleansing process is executed methodically, following four
carefully designed steps:

Step 1: Pathology data selection. The dataset collected,
especially from PubMed, encompasses a wide variety of im-
age sources beyond the scope of pathology. To efficiently
select pathology-related data, we manually annotate 20K
samples, categorizing them as either pathological or non-

pathological. Subsequently, we train a ConvNeXt (Liu et al.
2022a) model to identify pathological data within the re-
maining dataset, resulting in a pathology-specific dataset
comprising 135K pathology-specific images.

Step 2: Sub-figure and sub-caption separation & align-
ment. In many instances, images consist of multiple sub-
figures, necessitating precise separation and alignment with
their corresponding captions. As depicted in the lower half
of Figure 1, we address the sub-figure separation by develop-
ing a YOLOv7 model (Wang, Bochkovskiy, and Liao 2022)
trained on 2K annotated bounding boxes. Regarding cap-
tion separation, conventional rule-based methods often fail
to handle the separation of diverse and intricate captions.
To overcome this limitation, we leverage the power of Chat-
GPT to automatically separate approximately 60K captions
using carefully crafted prompts. Subsequently, we employ
PLIP (Huang et al. 2023) to align sub-image with its cor-
responding sub-caption by assessing the similarity of visual
content and captions. Moreover, we eliminate images with
lower resolution, and remove the less relevant image-text
pairs, further enhancing the overall quality of the dataset.
Ultimately, we acquire 195K high-quality image-text pairs.

Step 3: Caption refinement. As original captions in-
clude irrelevant information such as age and disease descrip-
tions, and are not presented in a descriptive style. We design
prompts to employ ChatGPT in refining the captions, mak-
ing them more suitable for training.

Step 4: Instruction-following data generation. In this
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Figure 3: An illustration of the overall framework of PathAsst. The multimodal MLLM training encompasses the training
processes of both PathCLIP and PathAsst, as well as the construction of a paper embedding database. The tool-augmented
MLLM inference details the process of PathAsst utilizing various tools to enhance the quality of its generated outputs.

step, we select image-text pairs with captions exceeding
12 words. Using these pairs, we produce two types of
instruction-following data: detailed description-based and
conversation-based. The former is created by applying mul-
tiple well-designed instructions that inquire about detailed
information, while the latter involves using ChatGPT to
generate conversational Q&As based on the captions. Ad-
ditionally, we design special model-invoking instruction-
following samples covering a diverse range of scenarios, as
depicted in Figure 2, enabling PathAsst with the capability
to appropriately utilize pathology-specific sub-models.

PathAsst Framework Construction
In this section, we present a comprehensive description of
the construction process of PathAsst. This includes the in-
troduction to the design of the model’s structure, training
methodology, and the tools used for augmented model infer-
ence. A general overview can be found in Figure 3.

Model Design and Training

PathAsst is designed to integrate the strengths of both the
advanced LLM and the CLIP (Radford et al. 2021) vision
encoder to enable enhanced pathological analysis. For the
visual component, we employ our custom-trained PathCLIP,
complemented by a fully connected (FC) layer. Concerning
the LLM component, we utilize Vicuna-13B (Chiang et al.
2023), a model widely recognized as the closest to ChatGPT
in terms of performance. To elaborate, when an input image
is provided, it is first encoded into visual tokens via the Path-
CLIP. Subsequently, the FC layer maps the image embed-
ding space to the corresponding language embedding space.
Finally, both visual and language embeddings are concate-
nated to the inputs of the MLLM. In the following, we intro-
duce the detailed training process of PathCLIP and PathAsst.

Training of PathCLIP. As one of the core components of
PathAsst, the capability of CLIP in interpreting pathological
images largely dictates the performance ceiling of PathAsst.
Therefore, we develop PathCLIP, a specialized variant of
CLIP tailored for pathology. The training process involves
fine-tuning a pre-trained OpenAI CLIP base model (Rad-
ford et al. 2021) using our PathCap dataset in a contrastive
learning approach, following the training procedure from
OpenCLIP repository (Ilharco et al. 2021). To be specific,
for a batch of N image-text pairs, PathCLIP is designed
to maximize the cosine similarity between the embeddings
of the pathology image and its corresponding text within
each batch. Concurrently, it minimizes the cosine similarity
amongst the remaining N2−N non-pair samples. This strat-
egy aligns the pathology vision and language space, thereby
endowing PathCLIP with a more effective interpretation and
analysis of pathology images.

Training of PathAsst. PathAsst is trained using the
PathInstruct dataset through a two-phase training. In the first
phase, both the vision encoder and the LLM are frozen, and
we only train the FC layer that connects to the vision en-
coder. This initial phase aims to preliminarily align the vi-
sion encoder with the LLM. During this phase, we utilize
the detailed description-based part of the PathInstruct. In the
second phase, with an aspiration for PathAsst to generate
higher-quality and more detailed responses, we extract all
the data from books within the PathInstruct dataset, and in-
clude samples from PubMed with single images and cap-
tions exceeding the length of 50 tokens, resulting in a total
training set of 35K samples. Only the PathCLIP is frozen
during this phase’s training.

Specifically, we standardize both forms of instruct-
following data formats, as shown in Table 1. First, we prede-
fine a system message that sets the context for the LLM role.
This is followed by a conversation between the user and the
assistant, where the user provides instructions, and the assis-
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Xsystem-message <STOP> \n
User: <image token>\n {instruction} <STOP> \n
Assistant: {response} <STOP> \n
User: {instruction} <STOP>\n
Assistant: {response} <STOP> \n ......

Table 1: Illustration of instruction-following data format,
where {instruction} represents the user query, {response}
denotes the corresponding answer. The Xsystem-message is
set as: A dialogue between a professional pathology assis-
tant and a human. The assistant provide informative, helpful,
and detailed answers. The <STOP> is represented by ###,
while <image token> stands for the tokens correspond-
ing to the image tokens. During the model training, only
{response} is considered when calculating loss.

tant responds accordingly based on the instructions. To fine-
tune our model, we utilize instruction-tuning via next-word
prediction. Specifically, the model is trained to optimize the
likelihood of generating an accurate response given the in-
put image I and instruction Xinstruct. The loss is calculated
using the negative log-likelihood of the correct next token
in the sequence, with the total loss summed across all time
steps, which can be formulated as:

L(θ) = −
T∑

t=1

log p (xt | I,Xinstruct,Xa,<t;θ) , (1)

Where Xa,<t refers to the prior tokens in the response
sequence, θ denotes the trainable parameters of PathAsst.
Specifically, during the first phase of training, θ corresponds
to the parameters of the FC layer. In the subsequent phase,
it represents both FC layer and LLM parameters. Mean-
while, T signifies the length of the ground-truth response,
and p (xt | I,Xinstruct,Xa,<t;θ) represents the probabil-
ity of generating the t-th token in the response sequence.

Tool Augmented MLLM Inference
To augment PathAsst’s capabilities and offer more precise
responses, we prepare two types of tools that PathAsst can
employ during its inference phase. One leverages pathology-
specific computer vision (CV) sub-models, while the other
focuses on paper retrieval. These tools not only enrich the
context for PathAsst but also enable tasks beyond text gen-
eration, such as image generation and segmentation.

Pathology-specific CV Model Zoo. We integrate eight
specialized pathological models into PathAsst for seamless
invocation: (1) LBC (liquid-based cytology) classification
model: This model is based on ConvNeXt-Tiny (Liu et al.
2022a), specifically designed for liquid-based cervical cytol-
ogy image classification. Through the analysis of abnormal
cell morphologies within the image, it effectively classifies
the image into one of the six categories as defined by The
Bethesda System (TBS). (2) LBC detection model: We uti-
lize YOLOv7 (Wang, Bochkovskiy, and Liao 2022) as the
backbone for developing our detection model, which is em-
ployed to identify abnormal cells within image patches. This

Model CRC WSSS4LUAD LC-lung LC-colon

OpenAI CLIP 22.2 61.6 31.5 75.7
PLIP 53.1 69.5 86.0 87.0

PathCLIP 54.2 81.1 88.7 94.3

Table 2: Comparative evaluation of zero-shot image classifi-
cation performance across different CLIP models.

model is specifically designed to detect the five classes of
non-normal cells as defined in TBS. (3) Hematological cell
detection model: This model, developed based on YOLOv7,
specializes in blood cell classification, which is crucial for
diagnosing various hematological conditions. (4) LBC cell
generation model: This model is developed based on Stable
Diffusion (Rombach et al. 2022), which is capable of gener-
ating specific cells based on user input, such as ‘generate an
image of a cell with nuclei enlarged 2-2.5 times’. (5) HER2
detection model, (6) PD-L1 detection model and (7) Ki67
detection model are developed using DPA-P2PNet (Shui
et al. 2023) for immunohistochemical cell detection and
classification. (8) General segmentation model: Benefiting
from the outstanding general segmentation quality of the
Segment Anything Model (Kirillov et al. 2023), we directly
employ it as our pathology image segmentation model.

Once PathAsst invokes a particular specialized model, it
processes both the user’s query and the output of the in-
voked model to formulate a conclusive response, resulting
in a more precise and effective interaction with the user.

Enhancing Responses through Paper Retrieval. In the
realm of pathology, even the highly recognized GPT-4
struggles with specific queries that necessitate deep do-
main knowledge, especially apparent when addressing ques-
tions involving the most recent research. Taking inspiration
from Langchain’s approach (Chase 2022) for building local
knowledge databases, we gather 5.3M article abstracts from
PubMed. We utilize PubMedBERT (Gu et al. 2021) for ab-
stract embedding extraction and Faiss (Johnson, Douze, and
Jégou 2019) for the efficient storage of these embeddings.
To expedite inference efficiency, a preliminary abstract clus-
tering is conducted. Upon user query, our system allows the
extraction of relevant information from this paper database,
serving as context information to amplify the precision of
LLM’s responses.

Experiments
Evaluation Datasets Construction. We construct and
gather a series of test datasets to evaluate the performance
of the proposed PathCLIP and PathAsst.

For the evaluation of zero-shot classification of Path-
CLIP, we collect: (1) CRC100K dataset (Kather, Halama,
and Marx 2018): This is a collection of 100K image patches
derived from H&E stained histological images of both col-
orectal cancer and normal tissue, categorized into nine tis-
sue classes, including Adipose, Background, Debris, Lym-
phocytes, Mucus, Smooth Muscle, Normal Colon Mucosa,
Cancer-Associated Stroma, and Colorectal Adenocarcinoma
Epithelium. (2) WSSS4LUAD (Han et al. 2022): This
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Figure 4: Comparative assessment of image retrieval performance between CLIP models across collected datasets.

Human: Generate a
patch image that contain
low-grade squamous
intraepithelial lesion (LSIL)
cell with cytoplasm with
irregular excavation

Invoking LBC_cell_generation

Figure 5: Example of PathAsst calls generation model.

dataset comprises patch-level annotations from 87 whole
slide images. In this case, we focus on the tumor and normal
classes, which yields a total of 6,579 tumor and 1,832 nor-
mal images. In order to assess the model on these datasets,
labels are transformed into complete sentences. For instance,
the label ‘tumor’ is rephrased as ‘A H&E image of a tu-
mor.’ (3) LC25000 (Borkowski et al. 2019). This dataset
comprises tissue samples from lung and colon adenocarci-
nomas, divided into two distinct subsets: the LC-lung and
the LC-colon. The LC-lung encompasses 15,000 images and
includes classifications of lung adenocarcinomas, lung squa-
mous cell carcinomas, and benign lung tissues. On the other
hand, the LC-colon subset, containing 10,000 images, is cat-
egorized into colon adenocarcinomas and benign colonic tis-
sues. The F1 score is used as the metric for evaluation.

For the cross-modal retrieval validation of PathCLIP, we
employ the test set from the PubMed section of our col-
lected data, along with data from books. Note that the data
from books are not included during the training phase of the
PathCLIP, hence providing an evaluation in the context of
unseen domains. Given that the length of some captions in
these datasets is relatively long and may exceed the token
length limitation of CLIP, we opt for samples with captions
that are fewer than 77 tokens. The R@k metric is used to
assess the performance of image retrieval, which measures
whether the correct image is presented among the Topk re-
trieved images.

For the validation of PathAsst, we employ the PathVQA
dataset (He et al. 2020), which comprises 32,799 ques-
tions derived from 4,998 pathology images. The type of

PathVQA
Method Closed Open

M2I2 (Li et al. 2022) 88.0 36.3
CLIP-ViT w/ GPT2 (van Sonsbeek et al. 2023) 87.0 40.0

MMQ (Do et al. 2021) 84.0 13.4

LLaVA (Liu et al. 2023a) 81.0 19.2
BLIP-2 Flan-T5 XXL (Li et al. 2023) 80.1 34.1

PathAsst (w/ CLIP) 89.7 37.6
PathAsst (w/ PathCLIP) 90.9 38.4

Table 3: Comparison of various methods on PathVQA.

questions includes open-ended questions typically begin-
ning with what, where, and when, as well as close-ended
questions requiring yes/no responses. We measure model
performance of close-ended questions using accuracy, and
evaluate open-ended questions with F1-score.

Statistical Results. As shown in Table 2 and Figure 4.
Our analysis demonstrates that our PathCLIP significantly
surpasses the baseline OpenAI CLIP model, consistently
outperforming the state-of-the-art (SOTA) pathology model,
PLIP, in tasks such as cross-modal image retrieval and zero-
shot image classification. To be specific, PathCLIP achieves
a remarkable improvement in the R@10 retrieval on the
PubMed dataset, with a 10.71-fold and 11.07-fold increase
compared to the OpenAI CLIP and PLIP models, respec-
tively. In the context of unseen domain data, the retrieval
R@10 on the books is 5.78 times and 2.38 times that of
OpenAI CLIP and PLIP, respectively. Considering the zero-
shot classification tasks, PathCLIP achieves a substantial
improvement in F1-score compared to CLIP, with notable
gains of 32%, 19.5%, 57.2%, and 18.6% on the CRC100K,
WSSS4LUAD, LC-lung, and LC-colon datasets, respec-
tively. Furthermore, even when compared to the previous
SOTA PLIP model, PathCLIP shows an increase of 1.1%,
11.6%, 2.7%, and 7.3% on these datasets, respectively. For
the evaluation on PathVQA, PathAsst significantly outper-
forms the prior MLLM model in both closed-form and open-
ended question types. Specifically, it surpasses LLaVA by
8.7% and 18.4% in these two question types, respectively.
This underscores the importance of training with PathIn-
struct data. Further enhancements of 1.2% and 0.8% are
noted after substituting CLIP with PathCLIP, indicating that
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Please count the number of positive 
tumor cells and give an analysis.

Invoking PD-L1_generation

Based on the result of the PD-L1 cell detection, a 
substantial number of positive tumor cells (334) 
have been identified in the sample, suggesting 
the existence of cancerous tissue. The 
identification of these cells could be valuable in 
assessing the stage and progression of the 
disease, and in shaping treatment choices.

For a comprehensive diagnosis, it would be 
necessary to conduct further examination of the 
tissue sample, which could include a histological 
study and additional biomarker tests. These 
additional tests can help confirm the subtype of 
cancer and inform suitable treatment strategies.

Figure 6: An example of PathAsst invokes the PD-L1 detection model for assistance.

PathAsst

The image is a close-up view of a 
blue substance, possibly ink or a 
dye, dispersed in water. The blue 
particles are evenly distributed 
throughout the water, creating a 
visually striking scene.   The blue 
substance appears to be in the form 
of small spheres or shapes, which 
are spread across the entire image.  
The contrast between the blue 
particles and the water makes the 
scene quite captivating, as the blue 
elements stand out prominently.

Mini-GPT4Llava

The image shows a group of cells, 
which are microscopic in size, 
arranged in a pattern. The cells are 
blue and have a round shape. Some 
of the cells have small black dots 
on them, which could be the nuclei. 
The cells appear to be arranged in 
a grid-like pattern, with some cells 
connected to others. The cells are 
suspended in a clear liquid, which 
could be a solution. The image is 
likely a microscopic view of a 
sample of cells.

Upon examining the provided image patch, I notice 
the following observations:
1. The nucleus of these cells appears enlarged 2.5-3 
times 
2. The nuclear membrane appears irregular  
3. The cells appear to be abnormal, possibly atypical 
squamous cells of undetermined significance (ASC-US)

Based on these observations. I would recommend 
further testing to confirm the presence of abnormal 
cells. An abnormal cervical Pap test result may 
indicate a hich-risk for cervical cancer. It's important 
to follow up with your healthcare provider for further 
evaluation and treatment.  

Provide a comprehensive analysis 
of the findings shown in the image.

Figure 7: An example of PathAsst, LLaVA, and MiniGPT-4’s capability in interpreting pathology images.

the incorporation of PathCLIP enhances PathAsst’s under-
standing of pathology images. Compared with the perfor-
mance of the previous SOTA model, which directly extracts
the statistical number from their reports, PathAsst achieves
considerable improvements in closed-ended questions, al-
though it slightly underperforms the SOTA model in open-
ended questions.

Demonstration Showcase of PathAsst. Here, we show-
case several examples of PathAsst’s robust capabilities in
handling complex pathology tasks. As shown in Figure 5,
PathAsst is capable of recognizing the user’s need to gener-
ate an LBC cell that belongs to the LSIL category with irreg-
ular excavated cytoplasm. It accomplishes this by invoking
the LBC cell generation model. This advanced functionality
empowers users to create a diverse range of LBC cells that
are precisely tailored to their specific needs.

Figure 6 illustrates another example of PathAsst employ-
ing a model invocation, where the user requires to count the
positive cells in the image, which can be challenging through
direct multimodal generation. Therefore, PathAsst chooses
to invoke the PD-L1 cell detection model. It automatically
marks the predicted points on the cells in the image and pro-
vides the statistical results for further analysis with LLM.
In this case, LLM generates a markdown-formatted table to
display the results along with the corresponding analysis.

Furthermore, Figure 7 demonstrates PathAsst’s ability to

interpret pathology images independently. In comparison to
LLaVA and MiniGPT-4, PathAsst places greater emphasis
on cell morphology and features, such as enlarged nucleus
and irregular nuclear membrane. In contrast, LLaVA fails to
recognize the image as pathological, while MiniGPT-4 gen-
erates simplistic descriptions such as ‘cells are blue and have
a round shape’ and ‘cells are suspended in a clear liquid.’

Conclusion
In this study, we construct PathCap and PathInstruct
datasets, comprising 207K pathology image-text pairs and
180K instruction-following samples, by systematically col-
lecting and processing pathology data from various sources.
Leveraging these high-quality datasets, we propose Path-
CLIP and PathAsst. PathCLIP exhibits powerful capabilities
in pathology cross-modal retrieval and zero-shot classifica-
tion. PathAsst, an instruction-tuned foundation model, is a
synergy of the powerful vision encoder PathCLIP and the
Vicuna-13b LLM, equipped with an established toolkit that
includes eight pathology-specific models and a 5.3 million-
sized paper retrieval system. PathAsst not only showcases
impressive capabilities in pathology multimodal dialogue
and interpreting pathology images, but also the ability to
handle more complex pathology tasks by the invocation of
these established pathology tools. We hope that the construc-
tion of model frameworks and datasets can offer insights and
aid in the advancement of pathology foundational models.
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