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Abstract
Adversarial attacks on 3D point clouds often exhibit unsatis-
factory imperceptibility, which primarily stems from the dis-
regard for manifold-aware distortion, i.e., distortion of the un-
derlying 2-manifold surfaces. In this paper, we develop novel
manifold constraints to reduce such distortion, aiming to en-
hance the imperceptibility of adversarial attacks on 3D point
clouds. Specifically, we construct a bijective manifold map-
ping between point clouds and a simple parameter shape us-
ing an invertible auto-encoder. Consequently, manifold-aware
distortion during attacks can be captured within the parameter
space. By enforcing manifold constraints that preserve local
properties of the parameter shape, manifold-aware distortion
is effectively mitigated, ultimately leading to enhanced im-
perceptibility. Extensive experiments demonstrate that inte-
grating manifold constraints into conventional adversarial at-
tack solutions yields superior imperceptibility, outperforming
the state-of-the-art methods.

Introduction
With the advancement of deep learning techniques (Tang
et al. 2022b) and the accessibility of affordable depth-
sensing devices, 3D point cloud perception utilizing deep
neural networks (DNNs) has emerged as the go-to solu-
tion (Guo et al. 2020). However, numerous recent studies
have revealed that DNN classifiers are vulnerable to ad-
versarial attacks (Xiang, Qi, and Li 2019; Liu, Yu, and Su
2019), i.e., imperceptible perturbations on the input point
clouds can lead to erroneous predictions, hindering their
deployment in real-world scenarios. Consequently, investi-
gating adversarial attacks on DNN classifiers for 3D point
clouds is a crucial step, as it lays the groundwork for the as-
sessment and enhancement of their adversarial robustness.

Typical methodologies to ensure the imperceptibility of
adversarial attacks on 3D point clouds employ metrics such
as the l2-norm, Chamfer distance, and Hausdorff distance to
constrain the perturbation. More recent studies have sought
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Figure 1: Illustration of adversarial attacks: (a) origi-
nal point cloud; (b, c) adversarial point clouds gener-
ated under Euclidean and manifold constraints respectively,
and their corresponding parameter shapes obtained using
our parameterization-like operation; (d) optional parameter
shapes. Note that the SOFA point clouds in (b, c) are misclas-
sified by PointNet as BATHTUB after the IFGM attack.

to further reduce the distortion by limiting the change of cur-
vature (Wen et al. 2022), guiding the perturbation along the
normal direction (Liu and Hu 2023; Tang et al. 2022c) and
along the tangential direction (Huang et al. 2022), etc. De-
spite these advances, the generated adversarial point clouds
do not yet achieve the desired level of imperceptibility, often
exhibiting noticeable outliers or deformations in shape.

While the aforementioned solutions successfully limit
the distortion of 3D point clouds from a Euclidean per-
spective, they overlook the common assumption that these
point clouds are generally sampled from 2-manifold sur-
faces (Spanier 1989). As a result, they have yet to apply any
constraints in this aspect, leading to manifold-aware distor-
tion. We argue that the persistent manifold-aware distortion
is the primary cause of unsatisfactory imperceptibility.

In this paper, we propose novel manifold constraints
aimed at minimizing the manifold-aware distortion during
attacks. Specifically, we employ an invertible auto-encoder
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to create a bijective mapping that transforms original point
clouds into simple-shaped parameter shapes, see Fig. 1. This
process simplifies the capture of manifold-aware distortion.
Next, we quantify the distortion based on changes in the lo-
cal properties of the parameter shapes, i.e., distances and an-
gles, and employ these measures as the manifold constraints.
These constraints can serve as an add-on that can be seam-
lessly integrated into existing adversarial attack solutions,
e.g., IFGM (Dong et al. 2020), to restrict modifications to the
underlying 2-manifold surfaces of 3D point clouds, thereby
enhancing the imperceptibility. We validate the effectiveness
of our manifold constraints on various adversarial attack so-
lutions in attacking common DNN classifiers for 3D point
clouds. Extensive experimental results show that the gen-
erated adversarial point clouds are significantly more imper-
ceptible after applying the manifold constraints, outperform-
ing those generated by state-of-the-art methods.

Overall, our contribution is summarized as follows:

• We are the first to attribute the inadequate imperceptibil-
ity of adversarial attacks on 3D point clouds to the ne-
glect of the manifold-aware distortion.

• We develop novel manifold constraints that restrict the
distortion of the parameter shape, which is bijectively
mapped to the original point clouds, during attacks.

• We show by experiments that adversarial attacks un-
der manifold constraints achieve superior performance in
terms of imperceptibility.

Related Work
Adversarial Attacks on 3D Point Clouds. Adversarial
attacks, aimed at generating samples that can mislead tar-
get networks (Zhu et al. 2023a,b; Tang et al. 2023a; Li
et al. 2023), originated in 2D image classification and have
been successfully extended to 3D point clouds. Within the
realm of 3D, these attacks are categorized into three types:
addition-based, introducing independent points to induce er-
rors (Xiang, Qi, and Li 2019); deletion-based, involving the
removal of critical points to affect classification (Zheng et al.
2019; Yang et al. 2019; Wicker and Kwiatkowska 2019;
Zhang et al. 2021); and perturbation-based, which involves
altering existing points to facilitate attacks (Xiang, Qi, and
Li 2019; Zhao et al. 2020; Kim et al. 2021). This paper
specifically focuses on perturbation-based methods.

Xiang, Qi, and Li (2019) and Liu, Yu, and Su (2019)
pioneered perturbation-based 3D adversarial attacks by
extending C&W attack (Carlini and Wagner 2017) and
FGSM (Goodfellow, Shlens, and Szegedy 2015). Zhao et al.
(2020) introduced an isometric transformation attack using
simple rotations instead of altering individual points. Kim
et al. (2021) aimed to perturb only a minimal subset rather
than all points. Generative solutions extend beyond point-
coordinate perturbations, with approaches such as noise in-
jection into latent features (Lee et al. 2020) or the use of gen-
erative adversarial networks (GANs) (Zhou et al. 2020). To
facilitate imperceptibility, most adversarial attack solutions
apply intentional constraints to restrict the perturbation.
Constraints for Imperceptible Adversarial Attacks. The
most commonly used constraints to ensure the impercepti-

bility of adversarial attacks on point clouds include restric-
tions on the l2-norm, Chamfer distance, and Hausdorff dis-
tance between the original and adversarial point clouds (Xi-
ang, Qi, and Li 2019; Liu, Yu, and Su 2019; Zhou et al.
2020). Beyond these standard constraints, GeoA3 (Wen et al.
2022) maintains local curvatures after the attack. Liu and Hu
(2023) constrained the perturbation direction of each point
to its normal vector, and Huang et al. (2022) directed the
perturbation along the tangent plane. These constraints were
adaptively relaxed by Tang et al. (2023b) to be near the nor-
mal or tangential direction. Our approach also emphasizes
the use of constraints to render perturbations imperceptible;
however, unlike the aforementioned methods that apply geo-
metric constraints in Euclidean space, we adopt a novel man-
ifold perspective to address the issue.
Deep 3D Point Cloud Classification. Deep learning tech-
niques for 3D point cloud classification have evolved signif-
icantly (Bronstein et al. 2017; Tang et al. 2022a; Tang, Song,
and Chen 2016; Chen et al. 2022), moving from initial voxel
grid methods (Maturana and Scherer 2015) to advanced di-
rect processing of points (Qi et al. 2017; Wu, Qi, and Fuxin
2019). We aim to attack these classifiers imperceptibly.
Manifold Concept. The concept of a manifold in math-
ematics denotes a topological space resembling Euclidean
space near each point (Lee and Lee 2012). In Tang et al.
(2023c)’s strategy, manifold mapping via injective mapping
is utilized for distortion in attacks. Our method, in contrast,
employs bijective mapping to limit distortion, thereby im-
proving the imperceptibility of our attacks.

Problem Formulation
Preliminary on Adversarial Attacks. Given a point cloud
P ∈ Rn×3 sampled from the object surface S and its label
y ∈ Z, adversarial attack aims to mislead a 3D deep classi-
fication model F by feeding an adversarial point cloud P

′

via applying an intentionally designed perturbation σ on P ,
such that the model makes an error prediction. Formally, the
perturbation σ can be obtained by solving the below equa-
tion, e.g., via gradient descent,

min
σ

Lmis(F , P + σ, y) + λ1D(P, P + σ), (1)

where Lmis(·, ·, ·) is the loss to promote misclassification,
e.g., the negation of cross-entropy loss, D(·, ·) is the con-
straints on distortion to facilitate imperceptibility, and λ1 is
a weighting parameter. Here, our focus is primarily on untar-
geted attacks, and targeted attacks can be readily facilitated.

Some widely-adopted options of D(·, ·) include the l2-
norm, Chamfer distance, Hausdorff distance, curvature, and
perturbation direction. Since without any constraints from a
manifold perspective, the underlying 2-manifold surface S
can still experience significant distortion.
Our Solution against Manifold-aware Distortion. Since
S is typically too complex to measure distortion, we opt for
another simpler shape as a bridge. Suppose there exists a
bijective mapping M between a simple shape U , which is
also 2-manifold, and the surface S (Hormann, Polthier, and
Sheffer 2008):

M : U ←→ S, (2)
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Figure 2: Illustration of imperceptible adversarial attacks under manifold constraints: (a) deep bijective manifold mapping
between input point cloud and parameter shape; (b) backward mapping to transform perturbation into the parameter space for
capturing manifold-aware distortion; (c) enforcement of two manifold constraints to minimize the distortion.

we thus could measure the distortion of U instead,

Dm(U ,U
′
) = Dm(M−1(S),M−1(S

′
)), (3)

where S ′
is the perturbed version of S after attack, M−1

is the inverted mapping ofM, and U ′
is the perturbed ver-

sion of U . Since the mapping process closely resembles the
concept of parameterization (Hormann, Polthier, and Sheffer
2008), we refer to U as the parameter shape.

By introducing Eqn. (3) as the manifold constraints into
Eqn. (1), we obtain the updated objective,

min
σ

Lmis(F , P + σ, y) + λ1D(P, P + σ) + λ2Dm(U ,U
′
),

(4)
where λ2 is a weighting parameter. Since S ′

is additionally
constrained in the parameter space, the newly generated ad-
versarial point cloud P

′
is expected to have improved im-

perceptibility.

Method
In this section, we will describe how to represent the bijec-
tive manifold mapping for 3D point clouds using DNNs, and
then outline the manifold constraints under the mapping,
along with its usage for imperceptible adversarial attacks.
Please refer to Fig. 2 for demonstration.

Deep Bijective Manifold Mapping
We employ an invertible auto-encoder to realize the repre-
sentation ofM. Specifically, given a point cloud P as input,
the encoder E outputs the deep mapping representation θP ,

θP = E(P ), (5)
and then the invertible decoder D reconstructs P by manip-
ulating the parameter shape U guided by θP ,

(θP , U)D−1 D
⇀↽(θU , P ), (6)

where U is a discretized version of U , i.e., the point clouds
that constitute U , and θU is a deep representation that is re-
lated to U . In particular, D is implemented using invertible

neural networks (Behrmann et al. 2019; Gomez et al. 2017)
to enable bijective mapping between U and P , see Fig. 2.
Forward Mapping. The decoderD, which consists F0, G0,
F1, G1, maps (θP , U) to (θU , P ) via,

Y1 = θP + F0(U), Y2 = U +G0(Y1),

θU = Y1 + F1(Y2), P = Y2 +G1(θU ).

Backward Mapping. The inverted decoder D−1 maps
(θU , P ) to (θP , U) via,

Y2 = P −G1(θU ), Y1 = θU − F1(Y2),

U = Y2 −G0(Y1), θP = Y1 − F0(U).

By learning the above bijective manifold mapping, we
can effectively capture the manifold-aware distortion on the
parameter shapes by transforming the Euclidean distortion
present in the original point clouds.

Imperceptible Adversarial Attacks under Manifold
Constraints
To avoid large manifold-aware distortion of the generated
adversarial point cloud P

′
, we transform P

′
in the Euclidean

space to U
′

in the parameter space by backward mapping,

U
′
= P

′
−G1(θU )−G0(θU − F1(P

′
−G1(θU ))), (7)

and then apply our manifold constraints between U
′

and U .
Manifold Constraints. To constrain the distortion of the
parameter shape U , we enforce the perturbation to maintain
local properties. Specifically, given a local shape with Ui as
the center, i.e., the i-th point of U , and Ui’s k-nearest neigh-
bors {Ui1 , . . . , Uik}, we consider the constraints in two as-
pects, i.e., distance and angle.

First, we expect the relative distance between each point
pair to be maintained after the attack,

dist(Ui, U
′
i ) =

1

k

∑
j∈{i1,...,ik}

∣∣∣∥Ui − Uj∥2 − ∥U
′
i − U

′
j∥2
∣∣∣ ,

(8)
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where U
′

i is the corresponding point of Ui after applying
perturbation, and ∥ · ∥2 indicates the l2-norm.

Second, we expect the direction between each point pair
to be maintained after the attack,

angle(Ui, U
′
i ) =

1

k

∑
j∈{i1,...,ik}

(
1−

(Ui − Uj) · (U
′
i − U

′
j )

(∥Ui − Uj∥2∥U ′
i − U

′
j∥2)

)
.

(9)
Finally, the manifold constraints between U and U

′
are de-

fined as the weighted sum of the two losses,

Dm(U,U
′
) =

1

n

∑
i∈{1,...,n}

dist(Ui, U
′
i )+βangle(Ui, U

′
i ), (10)

where β is a weighting parameter.
Usage for Imperceptible Adversarial Attacks. The final
objective for imperceptible adversarial attacks can be formu-
lated by replacing Dm(U ,U ′

) in Eqn. (4) with Dm(U,U
′
),

min
σ

Lmis(F , P +σ, y)+λ1D(P, P +σ)+λ2Dm(U,U
′
). (11)

Therefore, imperceptible adversarial perturbation σ can be
obtained by solving the above equation.

Note that, our manifold constraints can be seamlessly
integrated into many common adversarial attack solutions,
e.g., IFGM, to obtain enhanced imperceptibility. Moreover,
our method allows different options for the parameter shape
U , e.g., a square plate, a circular plate, a sphere, and a cube.

Experiments
Experimental Setup
Implementation. We implement the invertible auto-
encoder using PyTorch (Paszke et al. 2019). The encoder
is identical to that in (Yang et al. 2018), while the decoder is
four-component invertible networks, each with two layers of
MLPs. The mapping representation θP is a codeword of size
1× 512, and the parameter shapes are represented with dis-
crete points sampled in a relatively uniform manner. In par-
ticular, the square plate-based parameter shape is a 45×45
point grid in the range of [−1.0, 1.0], and the sphere-based
parameter shape consists of 2048 points uniformly sampled
on a unit sphere centered at (0.0, 0.0, 0.0) with a radius of
1.0. For calculating the two manifold constraints, we select
10-nearest neighbors for each point. For hyperparameters,
we set λ1 = 1.0, λ2 = 0.1, and β = 1.0. We pre-train the in-
vertible auto-encoder under the Chamfer distance constraint
for a total of 2000 epochs. All experiments are conducted on
a workstation with one NVIDIA RTX 3090 GPU.
Datasets. We utilize two public datasets for evaluation:
ModelNet40 (Wu et al. 2015) and ShapeNet Part (Chang
et al. 2015). Particularly, we randomly sample 2,048 points
from each point cloud.
Our Attack Solutions. We incorporate our manifold con-
straints into two classic attack methods, i.e., IFGM (Dong
et al. 2020) and C&W (Xiang, Qi, and Li 2019), with
two representative parameter shapes, i.e., square plate and
sphere. This results in four unique configurations: IFGM-P,
IFGM-S, C&W-P, and C&W-S.

Baseline Attack Methods. We choose 10 baseline solu-
tions: Drop-600 (Zheng et al. 2019), which drops the 600
most critical points; FGM, PGD, and IFGM (Dong et al.
2020), which are perturbation-based methods utilizing gra-
dient; C&W (Xiang, Qi, and Li 2019) and AdvPC (Hamdi
et al. 2020), which are perturbation-based method employ-
ing optimization techniques; LG-GAN (Zhou et al. 2020),
a generative-based approach; GeoA3 (Wen et al. 2022), SI-
Adv (Huang et al. 2022) and ITA (Liu and Hu 2023), whose
focus is also imperceptibility. Regarding the selection of
non-manifold constraint D(·, ·), we adhere to the method-
ologies described in their original papers.
Victim Models. We choose three common DNN classifiers
to attack, i.e., PointNet (Qi et al. 2017), DGCNN (Wang
et al. 2019) and PointConv (Wu, Qi, and Fuxin 2019). We
train these models according to their original papers.
Evaluation Setting and Metrics. We evaluate adversarial
attack methods on various imperceptibility metrics, e.g., per-
turbation size measured using Chamfer distance (CD) and
Hausdorff distance (HD), under the maximal adversarialness
setting (Liu and Hu 2023), where each method is configured
to achieve its highest achievable attack success rate (ASR)
within 100 iterations. We also adopt the novel manifold-
aware distortion metric to measure the perturbation on the
parameter shape using l2-norm (l2), CD, and HD. Note that
all l2 and HD values in this paper are scaled by 10−4, while
CD values are scaled by 10−3, for clarity.

Performance on Adversarial Attacks
ASR and Imperceptibility. We provide the ASR and im-
perceptibility results of various adversarial attack methods
tested on ModelNet40 and ShapeNet Part in Tab. 1. It is ev-
ident that most adversarial attack solutions can achieve high
ASR, with iterative-based ones notably reaching 100%. In
terms of imperceptibility, the majority of methods exhibit
low CD and HD values. By imposing manifold constraints,
both IFGM and C&W demonstrate even lower values. As for
the manifold constraints, applying a sphere-based parameter
shape yields greater improvements compared to applying a
square plate-based one. In particular, IFGM-S stands out,
achieving the most superior imperceptibility performance.

We also visualize adversarial point clouds generated by
various adversarial attack methods aimed at fooling Point-
Net in Fig. 3. It can be observed that the adversarial point
clouds generated by all baseline methods exhibit noticeable
outliers. By integrating manifold constraints, both IFGM-S
and C&W-S show a significant reduction in outliers, with
IFGM-S demonstrating the best performance.
Manifold-aware Distortion. Given that the distortion from
the Euclidean perspective has already been minimized, the
distinctions among various methods are less significant.
Therefore, we backward-map adversarial point clouds gen-
erated by different adversarial attack approaches to the pa-
rameter shape using the pretrained manifold mapping, and
then quantitatively analyze the manifold-aware distortion.
The results in Tab. 2 reveal that our methods consistently
surpass the state-of-the-art methods by a considerable mar-
gin, irrespective of whether a square plate or a sphere is
employed as the parameter shape. Remarkably, IFGM-S
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Figure 3: Visualization of original point clouds and the corresponding adversarial point clouds generated by different attack
methods for attacking PointNet. The predicted categories before and after attack from top to bottom are: CONE → RANGE
HOOD; CHAIR→ TOILET; TOILET→ CHAIR; CAP→ LAMP; SKATEBOARD→ TABLE.

ModelNet40 ShapeNet Part

Attack PointNet DGCNN PointConv PointNet DGCNN PointConv
ASR CD HD ASR CD HD ASR CD HD ASR CD HD ASR CD HD ASR CD HD

Drop-600 0.85 37.98 81.52 0.44 51.63 96.73 0.29 38.7978.61 0.45 49.83 104.20 0.23 69.61 121.50 0.30 45.88 95.78
FGM 0.75 1.37 31.19 0.27 2.17 13.37 0.25 1.94 19.73 0.33 8.09 40.14 0.12 6.06 38.16 0.16 10.31 43.90
PGD 1.00 18.47 30.18 1.00 18.63 20.16 1.00 18.5012.87 1.00 17.27 43.36 0.85 18.80 62.67 1.00 17.76 44.22

AdvPC 1.00 12.60 34.45 1.00 11.77 18.62 1.00 9.88 12.65 1.00 19.25 54.25 1.00 29.18 64.92 1.00 15.42 40.41
IFGM 1.00 0.96 22.62 1.00 0.68 4.67 1.00 0.54 12.19 1.00 5.87 41.10 0.86 8.20 57.32 1.00 4.93 38.50
C&W 1.00 3.48 6.22 1.00 8.28 4.51 1.00 5.83 7.68 1.00 4.22 15.70 1.00 15.29 22.40 1.00 10.71 17.01

LG-GAN 1.00 10.87 51.19 1.00 9.94 72.51 1.00 8.23 41.73 0.98 54.76 112.21 0.75 83.02 150.01 0.61 67.82115.61
GeoA3 1.00 4.50 4.20 1.00 8.91 5.11 1.00 10.09 4.88 1.00 14.99 22.42 1.00 35.65 45.05 1.00 27.97 21.33
SI-Adv 1.00 1.61 20.46 1.00 1.08 5.46 1.00 0.98 11.57 0.96 9.93 43.32 0.95 8.73 41.81 0.95 7.74 38.71

ITA 1.00 1.08 2.45 1.00 1.89 8.42 1.00 2.39 1.97 1.00 3.71 17.06 1.00 11.29 19.51 1.00 9.78 12.47
C&W-P 1.00 1.30 2.25 1.00 5.83 2.81 1.00 3.75 2.51 1.00 5.59 8.32 1.00 13.10 16.64 1.00 8.37 7.96
C&W-S 1.00 1.33 2.05 1.00 6.17 2.84 1.00 2.75 1.86 1.00 2.97 8.21 1.00 12.24 16.06 1.00 8.19 7.14
IFGM-P 1.00 0.40 1.98 1.00 0.62 1.01 1.00 0.42 0.63 1.00 0.93 12.30 1.00 6.45 14.29 1.00 1.72 6.41
IFGM-S 1.00 0.37 1.68 1.00 0.57 0.83 1.00 0.39 0.49 1.00 0.95 12.21 1.00 6.44 14.27 1.00 3.20 4.46

Table 1: Comparison on the perturbation sizes required by different methods to reach their highest achievable ASR. The evalu-
ation is conducted across different DNN classifiers on ModelNet40 and ShapeNet Part.

achieves the most superior performance across all cases.
Additionally, we provide a visualization of the manifold-
aware distortion brought by IFGM and IFGM-S in Fig. 4.
Clearly, by introducing manifold constraints, the adversar-
ial point clouds generated by IFGM-S undergo significantly
less manifold-aware distortion, validating its usefulness.

Analysis on Bijective Manifold Mapping
Visualization of Learned Bijective Mapping. To demon-
strate the feasibility of our invertible auto-encoder-based

manifold mapping, we visualize the original point clouds
and four distinct parameter shapes (sphere, cube, square
plate, and circular plate), along with their bijectively mapped
equivalents in Fig. 5. It is evident that the bijective man-
ifold mappings are successfully learned. In particular, most
of these mappings preserve local continuity, especially when
3D spheres and cubes are used as the parameter shapes.
These findings substantiate our methodology for construct-
ing the bijective manifold mapping, thereby facilitating the
enforcement of manifold constraints.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5131



Figure 4: Visualization of adversarial point clouds and the corresponding bijective mapped parameter spheres with and without
using manifold constraints (MC) for IFGM. The victim classifier is PointNet.

Figure 5: Bijective manifold mapping results: (a) original point clouds; learned manifold mapping pairs with four different
parameter shapes including (b) sphere, (c) cube, (d) square plate, and (e) circular plate. We use a color gradient to illustrate the
correspondence in the mapping.

Figure 6: Comparison on the category-wise reconstruction error for the bijective manifold mapping learned using four different
parameter shapes on the ShapeNet Part dataset.

Effects of Different Parameter Shapes. We conduct a
quantitative evaluation of the manifold mapping with respect
to different parameter shapes on ShapeNet Part. Specifi-
cally, we reconstruct the original point clouds by inverting
the mapping for four different types of parameter shapes.
Then, we compute the average CD value between the re-
constructed and the original point clouds. The category-wise
statistics are visualized in Fig. 6. Upon observation, it is no-
ticeable that the manifold mapping with a 3D closed param-
eter shape, such as a sphere or a cube, typically outperforms
the one utilizing 2D shapes, like a square plate or a circu-
lar plate. This disparity becomes particularly pronounced for
objects with elongated components, such as EARPHONE and
MUG. Intriguingly, the performances exhibit a similar trend
between the two 3D shapes, i.e., the sphere and the cube, and
likewise between the two 2D shapes, i.e., the square plate
and the circular plate.

Ablation Studies and Other Analysis
Importance of Invertibility. We further investigate the sig-
nificance of invertibility in our approach. Without invert-
ibility, we can only perturb the parameter shape, indirectly

influencing the point clouds, while simultaneously enforc-
ing manifold constraints on the parameter shape. The results
presented in Tab. 3 reveal that, although the ASR is com-
parable between methods with and without invertibility, our
invertible methods yield smaller perturbation sizes on the
point clouds. This finding underscores the importance of in-
vertibility in our approach.

Effects of Different Manifold Constraints. We further in-
vestigate the impact of employing different terms of mani-
fold constraints on adversarial attacks. First, we consider a
case where the l2-norm constraint is applied to the param-
eter shape. The results presented in Tab. 4 reveal that the
ASR only reaches 76% on ShapeNet Part and 81% on Mod-
elNet40, even after 100 iterations. This suggests the overly
restrictive nature of the l2-norm constraint. Additionally, we
demonstrate the adversarial attack performance when only a
single term of the proposed two manifold constraints, either
distance or angle, is utilized. The results reveal that using ei-
ther constraint can still achieve 100% ASR. However, there
is a notable drop in imperceptibility performance, thereby
confirming the essentiality of both distance and angle com-
ponents in the manifold constraints.
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Square Plate Sphere

Attack PointNet DGCNN PointConv PointNet DGCNN PointConv
l2 CD HD l2 CD HD l2 CD HD l2 CD HD l2 CD HD l2 CD HD

FGM 3.17 0.61 10.67 3.66 1.74 5.25 3.51 1.34 7.50 3.26 1.15 17.80 3.89 2.60 11.66 3.64 2.02 11.98
PGD 18.05 30.64 20.88 18.13 30.79 20.64 18.06 30.70 20.23 17.50 15.17 14.16 17.58 15.18 14.01 17.53 15.20 13.81

AdvPC 5.04 4.50 8.09 12.50 19.43 16.65 10.50 15.80 13.14 4.88 2.41 5.89 11.72 10.47 10.73 10.12 8.82 8.91
IFGM 1.57 0.53 4.89 1.91 0.86 4.78 1.59 0.66 3.49 1.28 0.35 2.90 1.82 0.64 2.67 1.51 0.50 1.98
C&W 2.91 1.91 4.13 8.45 12.59 7.60 6.06 7.69 4.85 2.81 1.15 2.96 7.96 7.00 5.03 5.89 4.90 3.44
GeoA3 3.39 2.29 4.18 9.12 13.98 8.18 7.19 8.24 7.13 3.13 2.32 3.98 8.43 7.23 6.25 6.19 5.34 4.76
SI-Adv 1.94 0.51 9.96 2.50 1.28 5.17 2.46 1.14 7.08 1.82 0.30 5.87 2.37 0.96 3.05 2.35 0.81 3.82

ITA 2.32 0.87 2.86 3.33 1.67 2.99 3.34 1.84 2.55 2.43 1.27 3.83 3.46 2.46 4.55 3.48 2.82 3.55
C&W-P/S 2.54 2.00 3.40 6.51 9.00 7.10 3.41 3.00 2.80 2.40 1.16 2.70 5.73 5.07 4.73 4.28 3.25 3.20
IFGM-P/S 1.12 0.30 2.70 1.22 0.39 1.80 0.97 0.30 0.90 1.05 0.23 2.07 1.09 0.29 1.36 0.86 0.23 0.75

Table 2: Comparison on the manifold-aware distortion required by various methods to reach their highest achievable ASR. The
evaluation is conducted on ModelNet40, using square plate (-P) or sphere (-S) as the parameter shape.

Figure 7: Visualization of (a-b) the transferability of different methods from PointNet to DGCNN on ShapeNet Part and Model-
Net40, and (c-d) the undefendability of different methods under the statistical outlier removal (SOR) defense (Zhou et al. 2019)
on ShapeNet Part and ModelNet40. The suffix “-AE” indicates the use of an auto-encoder (AE).

ShapeNet Part ModelNet40
ASR CD HD ASR CD HD

IFGM-S (w/o Inv.) 0.82 2.67 34.46 0.87 0.78 3.46
IFGM-S (w/ Inv.) 1.00 0.95 12.21 1.00 0.37 1.68
C&W-S (w/o Inv.) 0.99 6.15 16.98 1.00 2.97 4.11
C&W-S (w/ Inv.) 1.00 2.97 8.21 1.00 1.33 2.05

Table 3: Comparison on the ASR and perturbation size
brought by different methods under manifold constraints w/
and w/o using invertibility (Inv.) when attacking PointNet.

ShapeNet Part ModelNet40
ASR CD HD ASR CD HD

l2 0.76 0.67 23.87 0.81 0.32 5.79
EMD 1.00 1.45 19.38 1.00 0.49 3.78
angle 1.00 1.54 23.56 1.00 0.77 4.47

distance 1.00 1.59 22.02 1.00 0.73 4.51
angle & distance 1.00 0.95 12.21 1.00 0.37 1.68

Table 4: Comparison on the ASR and perturbation size
brought by IFGM-S for attacking PointNet under different
items of manifold constraints.

We also explore using earth mover’s distance (EMD) to
constrain the parameter shape. The results in Tab. 4 show
the CD and HD values under EMD are lower than under any
single component of our manifold constraints. However, the
performance is worse than that achieved with our complete

constraints, considering both distance and angle, highlight-
ing the importance of this combined approach.
Analysis on Transferability and Undefendability. In
an effort to explore further improvements in transferabil-
ity and undefendability for our method, we incorporate an
auto-encoder (AE) as a filter, a strategy inspired by Ad-
vPC (Hamdi et al. 2020). This approach helps the point
cloud to retain its adversarial characteristics after filtering,
and lessens the dependence on specific classification mod-
els. As illustrated in Fig. 7, the application of AE in con-
junction with our IFGM-S and C&W-S methods notably en-
hances transferability and undefendability. Although a slight
increase in perturbation size is observed, as measured by
HD, it still falls below that of the original methods that
do not utilize manifold constraints. Interestingly, our AE-
enhanced solutions, namely IFGM-S-AE and C&W-S-AE,
provide improved performance in transferability and unde-
fendability over AdvPC (Hamdi et al. 2020), but with signif-
icantly reduced distortion costs.

Conclusion
This paper has proposed novel manifold constraints to en-
hance the imperceptibility of adversarial attacks on 3D point
clouds. The rationale involves capturing and constraining
the manifold-aware distortion, by transforming it to the pa-
rameter space. Extensive experiments validate the severity
of manifold-aware distortion in adversarial attacks and the
efficacy of constraining it in enhancing imperceptibility.
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