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Abstract

Defocus blur, due to spatially-varying sizes and shapes, is
hard to remove. Existing methods either are unable to ef-
fectively handle irregular defocus blur or fail to generalize
well on other datasets. In this work, we propose a divide-and-
conquer approach to tackling this issue, which gives rise to
a novel end-to-end deep learning method, called prior-and-
prediction inverse kernel transformer (P2IKT), for single im-
age defocus deblurring. Since most defocus blur can be ap-
proximated as Gaussian blur or its variants, we construct an
inverse Gaussian kernel module in our method to enhance
its generalization ability. At the same time, an inverse ker-
nel prediction module is introduced in order to flexibly ad-
dress the irregular blur that cannot be approximated by Gaus-
sian blur. We further design a scale recurrent transformer,
which estimates mixing coefficients for adaptively combin-
ing the results from the two modules and runs the scale recur-
rent “coarse-to-fine” procedure for progressive defocus de-
blurring. Extensive experimental results demonstrate that our
P2IKT outperforms previous methods in terms of PSNR on
multiple defocus deblurring datasets.

Introduction
In an image captured by a camera, objects in the focal plane
will appear sharp, otherwise blurry. The further away the ob-
jects are from the focal plane, the more blurry they are. This
phenomenon is the so-called defocus blur (Quan, Wu, and
Ji 2021). In photography, sometimes, defocus blur is an in-
tentional artistic effect. However, in many computer vision
tasks such as face recognition (Hua et al. 2012), biomed-
ical imaging (Lefkimmiatis, Bourquard, and Unser 2011),
and object detection (Dai et al. 2016), defocus blur is unde-
sired as it affects the image quality and results in degrading
performance. In such cases, single image defocus deblur-
ring (SIDD) is crucial in many related high-level vision tasks
(Campisi and Egiazarian 2017).

Two-stage approaches (Cho and Lee 2017; D’Andrès
et al. 2016; Karaali and Jung 2017; Park et al. 2017; Shi,
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Xu, and Jia 2015; Liu et al. 2020) usually approximate the
blur kernel with the prior kernel, either Gaussian (Shi, Xu,
and Jia 2015; Park et al. 2017; Karaali and Jung 2017; Liu
et al. 2020; Quan, Wu, and Ji 2021; Lee et al. 2019) or disc
(D’Andrès et al. 2016; Bando and Nishita 2007) kernels,
to reduce the complexity. Under the approximation, these
methods first estimate a defocus map to derive the blur ker-
nel. During the estimation, they only need to focus on op-
timizing the kernel size. Given the estimated defocus map,
non-blind deconvolutions (Fish et al. 1995) are done to re-
store a sharp image. However, the kernel shapes in a real-
world defocused image could be more complex than a prior
kernel, which will cause an inaccurate defocus map estima-
tion and consequently affect the deblurring quality.

Recently, learning-based approaches using deep neural
networks (DNNs) (Abuolaim and Brown 2020; Son et al.
2021; Lee et al. 2021; Ruan et al. 2022; Quan, Wu, and Ji
2021) were proposed, which significantly improve the per-
formance of the SIDD task compared to traditional two-
stage approaches. Most learning-based approaches, such as
DPDNet (Abuolaim and Brown 2020), IFAN (Lee et al.
2021), KPAC (Son et al. 2021), and DRBNet (Ruan et al.
2022), adopt an end-to-end training scheme which learns
a mapping directly from a blurry image to a sharp image.
However, the mapping learned by the end-to-end scheme is
specific to images within the training dataset. It thus makes
such mapping methods not robust enough to defocused im-
ages outside the training set. DMENet (Lee et al. 2019) and
GKMNet (Quan, Wu, and Ji 2021) integrate the prior kernels
approximation into the learning pipeline to reduce the com-
plexity of the defocus deblurring. However, they still suffer
from issues similar to traditional two-stage approaches, i.e.,
they are unable to effectively handle irregular blur whose
shape cannot be approximated by prior kernels.

In this paper, we propose a novel deep learning ap-
proach, i.e., Prior-and-Prediction Inverse Kernel Trans-
former (P2IKT) consisting of prior and prediction inverse
kernel block (P2IKB) and scale recurrent transformer (SRT),
to tackle the above issues for single image defocus de-
blurring. We consider that defocus blur is either amenable
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to Gaussian kernel approximation or irregular, and fol-
low a divide-and-conquer approach to handle both types
of blur. On the one hand, to effectively manage Gaussian-
approximated blur with spatially-varying sizes, the P2IKB
block uses an Inverse Gaussian kernel module (IGKM) to
perform the wiener deconvolutions (Wiener et al. 1949)
based on approximate multi-size Gaussian blur kernels.
IGKM improves generalization over previous direct map-
ping methods. On the other hand, to flexibly deal with the
irregular blur, the P2IKB block adopts an inverse kernel
prediction module (IKPM), inspired by recent kernel pre-
diction networks (KPNs), to predict the corresponding in-
verse irregular kernel (Mildenhall et al. 2018; Cho, Son,
and Kim 2021; Ren et al. 2020). In contrast to the previ-
ous method based solely on the Gaussian kernel approxi-
mation, it complements IGKM to handle irregular blur. We
then design SRT that maps a blurry image into a coefficient
map for adaptively integrating deconvolutional feature maps
from the IGKM and IKPM. SRT leverages the strong fea-
ture mapping of the latest transformer (Vaswani et al. 2017;
Tsai et al. 2022) to produce accurate coefficient maps and
uses the scale recurrent scheme to combine the results of the
P2IKB block from coarse to fine for progressive defocus de-
blurring.

To verify the effectiveness and generalization ability of
our method, we conduct experiments on multiple defocus
blur benchmarking datasets captured by different cameras,
such as DPDD (Abuolaim and Brown 2020), RealDoF (Lee
et al. 2021), LF-DOF (Ruan et al. 2021), DED (Ma et al.
2021), RTF (D’Andrès et al. 2016), PixelDP (Abuolaim and
Brown 2020), and CUHK (Shi, Xu, and Jia 2014). The quan-
titative and qualitative comparisons with previous methods
on these datasets demonstrate the effectiveness of our pro-
posed method.

Related Works
Defocus Deblurring Most two-stage SIDD approaches
(Cho and Lee 2017; D’Andrès et al. 2016; Karaali and
Jung 2017; Park et al. 2017; Shi, Xu, and Jia 2015; Liu
et al. 2020) focus on the optimization of the first stage,
i.e., defocus map estimation (DME), and have the second
stage addressed by existing non-blind deconvolution meth-
ods (Wiener et al. 1949; Krishnan and Fergus 2009). Various
methods were proposed for DME, leveraging hand-crafted
features (Karaali and Jung 2017; Shi, Xu, and Jia 2015;
D’Andrès et al. 2016), deep features (Lee et al. 2019), or
both (Park et al. 2017). However, these approaches still need
help to handle irregular defocus blur due to the restrictive
blur kernels, such as Gaussian and disc kernels.

Given the success of deep neural networks in computer
vision, learning-based approaches using DNN have been
proposed for SIDD. Abuolaim and Brown (Abuolaim and
Brown 2020) proposed the first end-to-end defocus deblur-
ring model, i.e., DPDNet, which directly maps blurry im-
ages to sharp images. It significantly outperforms the two-
stage approaches but still can’t handle spatially-varying blur.
For further improving deblurring performance, various ap-
proaches such as kernel-sharing parallel atrous convolution
(Son et al. 2021), iterative filter adaptive network (Lee et al.

2021), and dynamic residual network (Ruan et al. 2022),
were put forward. These approaches improve the deblurring
performance by enhancing the capability of handling spa-
tially varying defocus blur to a certain extent. However, the
downside is that the end-to-end mappings they learn only
work for specific datasets. Some other methods, such as
DMENet (Lee et al. 2019) and GKMNet (Quan, Wu, and
Ji 2021), integrate the Gaussian kernel approximation into
the learning process. As a result, it enhances the generaliza-
tion ability, as most defocus blur can be approximated by
the Gaussian kernel or its variants. However, they ignore the
potentially present irregular blur.

Kernel Prediction Network Kernel prediction network
methods have been applied for low-level computer vision
tasks (Cho, Son, and Kim 2021; Mildenhall et al. 2018;
Xia et al. 2020; Fan et al. 2021; Ren et al. 2020). For in-
stance, Cho et al. (Cho, Son, and Kim 2021) proposed a
weighted multi-kernel prediction network that considers the
inter-dependencies of multi-scale kernels for efficient burst
image super-resolution. Ren et al. (Ren et al. 2020) designed
an unconstrained non-blind deconvolution model that pre-
dicts blur kernel and generates latent clean image simulta-
neously for adaptive motion deblurring. However, directly
utilizing such methods may cause problems similar to end-
to-end learning-based ones, i.e., estimated blur kernels may
only work on data generated by specific cameras and thus
affect their robustness on real-world defocused images.

Scale Recurrent Scheme Scale recurrent scheme has
firstly been proposed for image deblurring task in (Tao
et al. 2018), which extracts multi-scale information pro-
gressively and performs a coarse-to-fine dynamic deblur-
ring for improving performance. Quan et al. (Quan, Wu,
and Ji 2021) introduced attention modules (Zhong et al.
2020; Xu et al. 2021) into scale recurrent module (SRM)
(Tao et al. 2018) to construct scale recurrent attention mod-
ule (SRAM), aiming to enhance the feature representation
ability and thus increase the defocus deblurring accuracy.
Recently, the self-attention-based model, i.e., transformer
(Vaswani et al. 2017), has proven its effectiveness in com-
puter vision tasks. It inspires us, in this paper, to explore the
combination of the most-advanced transformer (Tsai et al.
2022) with SRM for defocus deblurring.

Method
We now introduce how to design our Prior and Prediction
Inverse Kernel Transformer (P2IKT) for SIDD and elaborate
on the network structure.

Main Idea
Our P2IKT consists of the prior and prediction inverse kernel
block (P2IKB) and scale recurrent transformer (SRT). Be-
fore proceeding to the first component P2IKB which aims to
simulate inverse kernel deconvolutions, we show how to de-
rive the inverse kernel deconvolution in what follows. Gen-
erally, a blur model is defined as follows:

IB = k ⊗ IS , (1)
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Figure 1: The SIDD framework of our method P2IKT.

where IB , IS , k and ⊗ denote a blurry image, a sharp image,
a blur kernel, and a convolution operation, respectively.

Gaussian kernel approximation has been proven effective
in many defocus blur approximation methods (Shi, Xu, and
Jia 2015; Park et al. 2017; Karaali and Jung 2017; Liu et al.
2020; Quan, Wu, and Ji 2021; Lee et al. 2019). However,
in the real world, the blur kernel k of the defocused im-
age is complex, and some irregular blurs are hard to be esti-
mated by the Gaussian kernel or its variants. To reduce the
complexity, we take a divide-and-conquer approach. We first
consider that k is either a Gaussian-approximated kernel kga
or irregular kernel kir (see Eq. (2)). Then we design the cor-
responding inverse kernel module to handle the defocus blur
produced by kga and kir, respectively.

IB =

{
kga ⊗ IS , k approximated as Gaussian
kir ⊗ IS , otherwise

, (2)

Since defocus blurs are spatially-varying, it is unknown
where the blur with kga or kir is in a defocused image. This
makes piece-wise deblurring infeasible. Instead, we perform
both inverse kernel-based deconvolutions on each defocused
image. Then, we introduce a transformer to generate coef-
ficient maps for combining the deconvolution results from
these two inverse kernel deconvolutions, which implicitly
differentiates between kga and kir and adaptively select and
fuse these two deconvolution results for SIDD.

Inverse Kernel of kga For prior knowledge, we adopt the
most recent approximation method, which uses a linear com-
bination of multi-size Gaussian blur kernels (Quan, Wu, and
Ji 2021) to represent the Gaussian-approximated defocus
blur kga. Based on the above approximation, it is natural to
use a linear combination of corresponding multi-size inverse
Gaussian kernels to process the Gaussian-approximated de-
focus blur. Then, given the multi-size Gaussian kernels
g(σj), we can get the corresponding inverse kernel of g(σj),
based on the wiener deconvolution (Wiener et al. 1949; Gon-
zalez and Woods 2018), and thus we get the final form of Eq.
(3) to restore the defocused image with kga.

IS =
J∑

j=1

αj ⊙
(
f−1(

f̄(g (σj))

f2(g (σj)) + n
)⊗ IB

)
, (3)

where g (σ) is the Gaussian kernel of variance σ2, and αj

represents the coefficient matrix for the j-th inverse Gaus-
sian kernel, f̄(·) denotes the conjugate of f(·), f(·) and
f−1(·) denote the discrete Fourier transform and inverse
discrete Fourier transform, respectively, and n is the input
noise. Since noises in the real world are unknown, they are
empirically set to a constant (Gonzalez and Woods 2018)
(0.01 in our experiments).

Inverse Kernel of kir To address the defocus blur with
irregular kernel kir, we use the kernel prediction network
(KPN) to implicitly predict the inverse kernel k†ir with an
end-to-end learning scheme under the constraint as follows:

IS = f−1(
1

f(kir)
)⊗ IB = k†ir ⊗ IB , (4)

where k†ir denotes the inverse kernel of kir in Eq. (1).

Network Strcuture
Overall Structure We first give the overall structure of
our method and then elaborate on two of its components,
P2IKB and SRT. As shown in Fig. 1, the network struc-
ture is divided into three recurrent deblurring stages on dif-
ferent scales for progressive defocus deblurring with multi-
scale information. The deblurring process is performed from
coarse (low-resolution blurry image IB/4) to fine (high-
resolution blurry image IB/1), where both deblurred results
(i.e., IP/4 and IP/2) and hidden states resulting from the first
and second stages will be passed to P2IKB and SRT in their
next stages. The deblurred result IP/1 in the third stage is
the final output of our model P2IKT.

We take the second stage as an example to illustrate the
deblurring process of each stage, where IB/S represents that
IB is downscaled by scale factor S, and IB/1 equals IB .
First, the deconvolutional feature maps (DFMs) are gener-
ated by feeding IB/2 and upscaled deblurred results IP/4

into the P2IKB block, and coefficient maps (CMs) are gen-
erated by feeding IB/2 and upscaled hidden states from the
last stage into the SRT. Then, DFMs and CMs are combined
via element-wise product and convolution to adaptively re-
store the defocused image IB/2 to the deblurred image IP/2.

Prior and Prediction Inverse Kernel Block As shown in
Fig. 2, our P2IKB block contains two modules, i.e., inverse
Gaussian kernel module (IGKM) and inverse kernel predic-
tion module (IKPM), which are designed based on Eqs. (3)-
(4) to handle kernels kga and kir (see Eq. (2)), respectively.

The IGKM module is constructed as a group convolu-
tional layer that uses a series of predefined inverse Gaus-
sian kernels as the layer weight and is applied to R, G, and
B channels of an input image to get corresponding results.
During the construction, we first follow (Quan, Wu, and Ji
2021) to define J Gaussian kernels with different α (let ks
be the maximum Gaussian kernel size) and then compute the
inverse Gaussian kernels based on the wiener deconvolution
as shown in Eq. (3). The attention maps (AMs) generated by
SRT represent the coefficient matrix αj in Eq. (3).

The IKPM module, as shown in Fig. 2, consists of three
parts: kernel prediction network (KPN), Trancov, and Out-
Conv. The first part KPN adopts three convolution blocks
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Figure 2: The whole network strcuture of the proposed
P2IKB.
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Figure 3: The diagram of our base model, i.e., SRT.

and one Softmax function to map a blurry image to a pre-
dicted kernel Kp of size ks × ks × 3. The third part of Out-
conv is to introduce an auxiliary loss LKPN to simulate Eq.
(4). By optimizing

LKPN = L2(IS/1,OutConv(Kp ⊗ IB/1)), (5)

Kp tends to become the inverse kernel k†ir due to the implicit
end-to-end training scheme. The second part TransConv is
to make the number of channels of the deconvolutional fea-
ture maps generated by Kp ⊗ IB/1 equal to that of the fea-
ture maps generated by the IGKM, which enables the DFMs
from two modules IGKM and IKPM to be treated equally
during the learning process. Finally, the P2IKB block uses
the concatenation operation and then TransConv on the
DFMs resulting from the two modules to generate the fi-
nal DFMs, since it gives rise to better performance in our
experiments with fewer parameters than directly outputting
the DFMs from the two modules. More analysis of the con-
catenation operation and TransConv can be seen in the sup-
plementary material.

Scale Recurrent Transformer. In our method, SRT is
used to generate the coefficient maps to adaptively fuse
DFMs from the P2IKB block for the defocus deblurring.
As these maps can be viewed as attention maps, we lever-
age the most advanced self-attention-based models, i.e.,
transformer-based models (Vaswani et al. 2017; Tsai et al.
2022).

Model DPDD # Params (M)PSNR SSIM LPIPs
Blurry Input 23.89 0.725 0.349 -

JNB 23.69 0.707 0.442 -
EBDB 23.94 0.723 0.402 -

DMENet 23.90 0.720 0.410 26.94
DPDNet-S 24.03 0.735 0.279 35.25

KPAC 25.22 0.774 0.227 1.58
IFAN 25.37 0.789 0.217 10.48

GKMNet 25.36 0.774 0.276 1.41
DRBNet 25.47 0.787 0.246 -

Restormer 25.98 0.811 0.178 26.10
P2IKT (Ours) 26.29 0.807 0.191 3.32

Table 1: The quantitative results between our model and
other state-of-the-art models on the DPDD test set (Abuo-
laim and Brown 2020). Lower value for LPIPs is better.

As shown in Fig. 3, SRT is built as an encoder-decoder
structure, which is convenient for utilizing multi-scale fea-
tures. It first adopts the Resblocks and DownConvs to en-
code the blurry image IB into multi-scale features, and then
embeds the inter-strip and intra-strip attention modules (Tsai
et al. 2022) in the level 2 branch to improve the blur pattern
adaptivity from different orientations for better prediction.
Then, in the level 0 branch, multiple Resblocks are used to
refine the feature maps combined with the encoded and de-
coded features. Finally, a recurrent unit, i.e., APU (Tao et al.
2018; Quan, Wu, and Ji 2021) block, combines the hidden
state from the last stage (lower resolution stage) to predict
the coefficient maps and generate the hidden state used for
the prediction of SRT in the next stage. We follow the IFAN
(Lee et al. 2021) and Restormer (Zamir et al. 2022) that
add more basic blocks in the decoder/reconstruction part for
more refined predictions.

Learning Objective We use the mean square error (L2)
as the main loss, and the frequency-domain loss Lfreq and
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al. 2018) loss LLPIPS as auxiliary losses, to co-train
our model P2IKT, since these auxiliary losses have suc-
cessfully improved performance in image restoration tasks
(Zhao et al. 2016; Jiang et al. 2021; Cho et al. 2021; Lee
et al. 2021). The overall loss function between the network
output IP/1 and the corresponding ground truth IS/1 is given
as follows

L = L2 + λ1Lfreq + λ2LLPIPS + λ3LKPN , (6)

where λ1, λ2, and λ3 are empirically set to 0.2, 0.2, and 0.05,
respectively.

Experiments
Experimental Configuration In all experiments, we set
the maximum number J of Gaussian kernels to 5 and the
maximum kernel size ks of Gaussian kernels to 5 too, as
they are equal in the multi-size Gaussian kernel approxima-
tion (Quan, Wu, and Ji 2021). We use the Adam optimizer
(Kingma and Ba 2014) with batch size 4 to train our model
for 1600 epochs. The stochastic weights averaging scheme

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5148



30.90dB/0.894
Blurry Input

PSNR/SSIM
Reference

30.90dB/0.894
Blurry Input

31.21dB/0.902
GKMNet

31.44dB/0.917
IFAN

31.76dB/0.927
Restormer

32.38dB/0.922
Ours

22.81dB/0.724
Blurry Input

PSNR/SSIM
Reference

22.81dB/0.724
Blurry Input

24.41dB/0.813
GKMNet

24.65dB/0.835
IFAN

24.79dB/0.863
Restormer

25.18dB/0.856
Ours

23.10dB/0.619
Blurry Input

PSNR/SSIM
Reference

23.10dB/0.619
Blurry Input

24.24dB/0.719
GKMNet

24.26dB/0.737
IFAN

24.41dB/0.753
Restormer

24.96dB/0.750
Ours

Figure 4: Qualitative results on DPDD (1th row), RealDoF (2nd row) and LF-DOF (3rd row) datasets by GKMNet (Quan, Wu,
and Ji 2021), IFAN (Lee et al. 2021) , Restormer (Zamir et al. 2022) and our method P2IKT.

(SWA) (Izmailov et al. 2018) is used in the last 100 epochs
to generate the final weight for evaluations. The initial learn-
ing rate is set to 2e-4 and then reduced to 1e-4 at the 1000th
epoch and 2.5e-5 at the 1500th epoch, as the SWA often uses
a small learning rate to generate the final weight. The input
images are randomly cropped to 384 × 384 in the first 1500
epochs and to 512 × 512 in the last 100 epochs. The data
augmentation, including vertical and horizontal flipping and
rotation, is executed during our training. All the experiments
in this work were conducted with a GPU of NVIDIA A100.
Code is available at https://github.com/TPZZZ/P2IKT.

Three commonly used evaluation metrics are used for the
SIDD task (Son et al. 2021; Lee et al. 2021; Quan, Wu, and
Ji 2021; Ruan et al. 2022), including the main metric PSNR
(Peak Signal to Noise Ratio) and other two auxiliary metrics,
SSIM (Structural Similarity Index Measure) (Wang et al.
2004) and LPIPS (Learned Perceptual Image Patch Similar-
ity) (Zhao et al. 2016).

In our experiments, the DPDD training set (Abuolaim and
Brown 2020) is used for training and other DPDD (Abuo-
laim and Brown 2020), RealDoF (Lee et al. 2021), LF-
DOF (Ruan et al. 2021), DED (Ma et al. 2021), and RTF

(D’Andrès et al. 2016) test sets are used for quantitative and
qualitative evaluations. Note that the images in the RealDoF
dataset were downscaled1 to 1120×1680 for evaluation. The
images of the DED and RTF test sets were cropped from
409×613 and 360×360 to 400×608 and 352×352, respec-
tively, as the original image will cause the size problem dur-
ing the evaluations. The DPDD training and test sets were
captured by the same camera, while the other four datasets
are not and used to simulate complex real-world images that
are not from a specific camera. So, the experiments on the
last four datasets were mainly used to evaluate model’s gen-
eralization ability. Furthermore, the CUHK (Shi, Xu, and Jia
2014), and PixelDP (Abuolaim and Brown 2020) datasets
were used to evaluate the generalization ability of models
qualitatively.

Deblurring Performance Comparisons In this experi-
ment, we compare our P2IKT with currently advanced
SIDD methods, including traditional two-stage methods

1It was downscaled to the same image size as the DPDD
dataset. Due to our computational resource limit, the Restormer
cannot be evaluated in the original image of the RealDoF dataset.
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Model RealDoF LF-DOF DED RTF
PSNR SSIM LPIPs PSNR SSIM LPIPs PSNR SSIM LPIPs PSNR SSIM LPIPs

Blurry Input 22.54 0.636 0.498 25.87 0.779 0.316 28.58 0.884 0.164 24.18 0.739 0.364
IFAN 25.01 0.770 0.250 26.11 0.817 0.220 27.85 0.890 0.111 24.92 0.821 0.215

GKMNet 24.58 0.735 0.337 25.96 0.802 0.271 27.93 0.883 0.144 25.10 0.826 0.274
Restormer 25.43 0.801 0.218 26.44 0.824 0.207 26.95 0.884 0.113 24.21 0.822 0.204

P2IKT (Ours) 25.78 0.787 0.235 26.90 0.821 0.220 28.29 0.888 0.123 25.85 0.839 0.207

Table 2: The quantitative results between our model and other state-of-the-art models on the RealDoF (Lee et al. 2021), LF-
DOF (Ruan et al. 2021), DED (Ma et al. 2021) and RTF (D’Andrès et al. 2016) test sets.

(a) Input (b) IFAN (c) GKMNet (d) Restormer (e) Ours

Figure 5: Qualitative results on CUHK (1th row) (Shi, Xu, and Jia 2014) and PixelDP (2nd row) (Abuolaim and Brown 2020)
datasets by IFAN (Lee et al. 2021) , GKMNet (Quan, Wu, and Ji 2021), Restormer (Zamir et al. 2022) and our method P2IKT.

(JNB (Shi, Xu, and Jia 2015), EBDB (Karaali and Jung
2017), DMENet (Lee et al. 2019) ) and end-to-end learn-
ing SIDD methods (DPDNet (Abuolaim and Brown 2020),
KPAC (Son et al. 2021), IFAN (Lee et al. 2021), GKMNet
(Quan, Wu, and Ji 2021), DRBNet (Ruan et al. 2022), and
the most advanced generalized image restoration method,
Restormer (Zamir et al. 2022)). The experimental results of
these methods are quoted from their papers or obtained from
their released pre-trained weights and codes. All the models
were only trained using the single image in the DPDD train-
ing set, while IFAN needs the extra dual-pixel data for its
training (Lee et al. 2021).

Table 1 shows the quantitative results of different SIDD
approaches on the benchmarking dataset of DPDD in terms
of PSNR, SSIM, and LPIPs. As we can see in Table 1,
the traditional two-stage approaches (3rd-5th rows) achieve
a worse deblurring performance than other learning-based
approaches (6th-10th rows), and one of the two-stage ap-
proaches (2nd row, JNB) outputs images that are even more
blurry than input images (1st row) (23.69dB vs. 23.89dB).
Among the learning-based approaches, the models, with
more advanced modules (7th-10th rows for the KPAC,
IFAN, GKMNet, and DRBNet, respectively) that are de-
signed to handle spatially varying defocus blur, significantly
improve the deblurring quality compared to the DPDNet
(6th row). Specifically, KPAC, IFAN, GKMNet, and DRB-
Net outperform DPDNet by more than 1dB in PSNR. Fur-
thermore, compared with previous methods, Restormer and
our P2IKT show the superiority in all the evaluation met-
ics. Compared to Restormer, P2IKT achieves a higher value
(26.29dB vs. 25.98dB) in the main metric PSNR, but worse

SSIM (0.807 vs. 0.811) and LPIPs (0.191 vs. 0.178) values,
with much less model parameters (3.32M vs. 26.10M).

Generalization Ability Analyses To evaluate the general-
ization ability, we further conduct the quantitative compar-
ison between IFAN, GKMNet, Restormer, and our method
on RealDoF, LF-DOF, DED, and RTF test sets, and report
results in Table 2. These methods were trained on the DPDD
training set and then tested on the above four datasets.

As shown in Table 2, regarding comparisons on the Re-
alDoF and LF-DOF test sets, IFAN obtains more accurate
deblurring quality than GKMNet on both test sets. It is
probably because the defocus disparity estimation trained
on extra dual-pixel data helps IFAN to handle some defo-
cus blur patterns. P2IKT and Restormer outperform IFAN
and GKMNet regarding the PSNR value on both datasets.
In particular, P2IKT obtains the highest value in PSNR, and
Restormer obtains the best values in SSIM and LPIPs. On
the DED test set, in terms of PSNR, all the methods fail to
deblur input images, but our method works better than the
other three methods. On the RTF test set, our method per-
forms best in all the metrics, i.e., 25.85dB in PSNR, 0.839
in SSIM, and 0.207 in LPIPs. These experimental results
show that on the datasets with high-resolution images, such
as DPDD (1120×1680), RealDoF (1120×1680), and LF-
DOF (688×1008), our method achieves the comparable per-
formance with Restormer and outperforms other methods.
On the datasets of relatively low-resolution images, such
as DED (400×608) and RTF (352×352), the performance
of Restormer is even worse than IFAN and GKMNet, and
our method outperforms all other methods. These results
demonstrate that P2IKT can generalize to defocused images
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P2IKT DPDD RealDoF LF-DOF # Params (M)IGKM IKPM SRT SRAM
✓ 24.27 0.766 0.229 22.97 0.739 0.290 25.25 0.768 0.244 3.58

✓ ✓ ✓ 25.91 0.791 0.208 25.22 0.766 0.252 26.40 0.809 0.222 3.64
✓ 26.03 0.798 0.199 25.46 0.782 0.240 26.01 0.799 0.220 3.26

✓ ✓ 26.13 0.800 0.200 25.72 0.783 0.238 26.73 0.807 0.220 3.26
✓ ✓ 26.12 0.799 0.203 25.67 0.782 0.249 26.69 0.806 0.227 3.32

✓ ✓ ✓ 26.29 0.807 0.191 25.78 0.787 0.235 26.90 0.821 0.220 3.32

Table 3: Qualitative results of ablation study. The IGKM, IKPM, SRT and SRAM stand for Inverse Gaussian Kernel Module,
Inverse Kernel Prediction Module, Scale Recurrent Transformer, and Scale Recurrent Attention Model, respectively.

on multiple datasets better than other methods.
Figure 4 shows the qualitative comparisons between

IFAN, GKMNet, Restormer, and our method P2IKT on
DPDD, RealDOF, and LF-DOF test sets. As we can see from
Figure 4, our method and Restormer remove the remain-
ing blur that GKMNet and IFAN cannot remove. Further-
more, our method achieves the highest PSNR value, while
Restormer achieves the best SSIM value2. The visual results
in Figure 4 indicate that our method tends to restore more de-
tails and Restormer tends to remove more ringing artifacts.
For example, in the second row of the figure, our method re-
stores the details of “The GIFT” but fails to remove the ring-
ing artifacts around “LLOYD”, while the Restormer does the
opposite.

We also extend the experiments to CUHK (Shi, Xu,
and Jia 2014), and PixelDP (Abuolaim and Brown 2020)
datasets. As the defocused images of these two datasets do
not have corresponding ground truth, we only show the de-
blurred results by different methods for visual inspection
(see Fig. 5). When dealing with the case from the CUHK
dataset, the deblurred results of IFAN contain ringing arti-
facts, and those of GKMNet and Restormer remain blurred,
while our P2IKT produces more clear results without ring-
ing artifacts. For the cases from the PixelDP dataset, GKM-
Net and Restormer cannot restore the details of ”12” (green
box) and ”9” (yellow box) in Fig. 5, IFAN can only roughly
restore digit ”9”, and our method is capable of clearly restor-
ing the details of both digits (as well as ”3” and ”6” in the
clock). These results qualitatively imply the generalization
ability of our P2IKT, and more visualization results can be
found in the supplementary materials.

Ablation study To quantitatively validate the effect of
each component, i.e., P2IKB (IGKM+IKPM) and SRT, in
our model P2IKT, we conduct an ablation study and report
the results on DPDD and RealDof datasets in Table 3. We
first build two baseline models by replacing SRT with a scale
recurrent attention model (SRAM) in IGKM+IKPM+SRT
and SRT. SRAM is a combination of squeeze attention mod-
ule (Xu et al. 2021; Zhong et al. 2020) and scale recurrent
module (Tao et al. 2018), which has been applied in (Quan,
Wu, and Ji 2021) to perform scale attention mechanism for
SIDD. In our experiments, we add a Resblock in each block
of the SRAM to ensure SRAM has similar parameters to

2This is a quantitative comparison between these two methods
on the three datasets.

SRT. Also, as most SIDD methods did, we removed all the
BacthNormalization operations in SRAM to achieve better
performance.

As shown in Table 3, both P2IKB and SRT in our model
can improve the deblurring performance. Adding IGKM or
IKPM alone, the performance did not improve too much.
However, adding the combination of IGKM and IKPM, i.e.,
P2-IKB, boosts the deblurring performance of both SRT and
SRAM backbones significantly on all the datasets. Specif-
ically, IGKM+IKPM+SRT improves the PSNR value from
26.03dB to 26.29dB on the DPDD dataset, from 25.46dB
to 25.78dB on the RealDOF dataset and from 26.01dB to
26.90dB on the LF-DOF dataset compared to SRT, while
IGKM+IKPM+SRAM increases the PSNR value 24.37dB
to 25.91dB on the DPDD dataset, from 22.97dB to 25.22dB
on the RealDoF dataset and 25.25dB to 26.40dB on the
LF-DoF dataset compared to SRAM. It is worth noting
that these improvements only need less than1/40 parameters
(0.05M) compared to SRT and SRAM. In addition, SRT and
IGKM+IKPM+SRT significantly outperform SRAM and
IGKM+IKPM+SRAM on three datasets with fewer models
parameters, respectively.

Conclusion
We proposed a single image defocus deblurring method
based on a novel prior and prediction inverse kernel trans-
former (P2IKT). Inspired by the idea of “divide and con-
quer”, our P2IKT considers the defocus blur to be either
Gaussian-approximated or irregular and then builds an in-
verse Gaussian kernel module (IGKM) for the Gaussian ap-
proximated defocus blur and an Inverse Kernel Prediction
module (IKPM) for irregular defocus blur. It is equipped
with a scale recurrent transformer (SRT) which provides
the scale recurrent mechanism for progressive defocus de-
blurring. Also, SRT generates coefficient maps to combine
the deconvolution results from the two modules adaptively
to achieve better defocus deblurring performance than each
module alone. We experimentally verified the effect of each
component in our model, and the comparisons on seven
datasets with previous methods showed that our method gen-
eralizes well and outperforms existing methods in terms of
PSNR. Despite achieving better performance than previous
methods, our method still needs to deblur the cases in the
DED dataset (see Table. 2). In our future work, we may in-
vestigate the domain adaption technique for further enhanc-
ing the generalization ability.
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