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Abstract
Recent research understands residual networks from a new
perspective of the implicit ensemble model. From this view,
previous methods such as stochastic depth and stimulative
training have further improved the performance of residual
networks by sampling and training of its subnets. However,
they both use the same supervision for all subnets of dif-
ferent capacities and neglect the valuable knowledge gener-
ated by subnets during training. In this paper, we mitigate
the significant knowledge distillation gap caused by using the
same kind of supervision and advocate leveraging the sub-
nets to provide diverse knowledge. Based on this motivation,
we propose a group knowledge based training framework
for boosting the performance of residual networks. Specifi-
cally, we implicitly divide all subnets into hierarchical groups
by subnet-in-subnet sampling, aggregate the knowledge of
different subnets in each group during training, and exploit
upper-level group knowledge to supervise lower-level subnet
group. Meanwhile, we also develop a subnet sampling strat-
egy that naturally samples larger subnets, which are found
to be more helpful than smaller subnets in boosting perfor-
mance for hierarchical groups. Compared with typical sub-
net training and other methods, our method achieves the best
efficiency and performance trade-offs on multiple datasets
and network structures. The code is at https://github.com/tsj-
001/AAAI24-GKT.

Introduction
Residual structures, first introduced in (He et al. 2016), have
become nearly indispensable in mainstream network archi-
tectures. It achieved great success in numerous architec-
tures, such as convolutional networks (Tan and Le 2021;
Ye et al. 2022b,a, 2023a; Mei et al. 2023), recurrent net-
works (Galshetwar, Patil, and Chaudhary 2022), MLP net-
works (Tolstikhin et al. 2021), and transformers (Vaswani
et al. 2017; Huang et al. 2023; Liang et al. 2023). Consid-
ering the extraordinary performance of the residual struc-
ture, it is drawing increasing attention (He, Liu, and Tao
2020; Ding et al. 2022; Barzilai et al. 2022) to study the un-
derlying mechanisms leading to their success. An interest-
ing explanation is that residual networks can be regarded as
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Figure 1: Illustration of unraveled view and group knowl-
edge. Unraveled view shows that residual networks can be
seen as an ensemble of numerous networks of different
lengths. Inspired by this viewpoint, we allocate the subnets
into subnet groups of different sizes, i.e. tiny, medium, and
large subnet groups in the figure. Then we exploit the knowl-
edge of subnet groups during training to boost the perfor-
mance of given residual networks effectively and efficiently.

an implicit ensemble of relatively shallow subnets, namely
unraveled view (Veit, Wilber, and Belongie 2016; Barzi-
lai et al. 2022). It opens up a new perspective to further
improve the performance of residual networks. One of the
common ways is to randomly sample subnets and train them
individually. Stochastic depth (Huang et al. 2016) randomly
drops a subset of layers and trains the remaining layers with
ground truth labels. (Ye et al. 2022c) have observed a phe-
nomenon known as “network loafing”, where the standard
training procedure fails to provide sufficient supervision and
often causes subpar performance. To address the above prob-
lem, (Ye et al. 2022c) propose a stimulative training(ST)
strategy by training randomly sampled subnets with outputs
from the main network. However, these methods train vari-
ous subnets with the same kind of supervision (i.e., stochas-
tic depth always uses the ground-truth, and ST always uses
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the output of the main network), regardless of their unique
capacities. It is straightforward to investigate whether ap-
plying the same kind of supervision for diverse subnets
is suitable. Inspired by (Mirzadeh et al. 2020), we believe
that “suitable supervision” should meet two important cri-
teria: (1) easy to be transferred (with a limited capacity
gap), (2) containing rich and useful knowledge.

To reduce the capacity gap, a common method (Mirzadeh
et al. 2020) is to introduce extra intermediate models as
teacher assistants. To get abundant knowledge, self knowl-
edge distillation can be applied to learn from prior experi-
ence/knowledge, and ensemble knowledge distillation may
further combine the supervisions of various teachers. Under
the novel unraveled view, there are numerous subnets with
various capacities, and the grouped assistant teachers natu-
rally exist. Inspired by the observations above, we divide all
subnets of a residual network into multiple groups by their
capacity and aggregate their abundant knowledge during
training, as shown in Figure 1. Interestingly, in the sociol-
ogy field, transferring suitable knowledge is also important
for improving the productivity of organizations (Baum and
Ingram 1998). Group knowledge (Kane, Argote, and Levine
2005), collected from the same producing group, is consid-
ered easier to transfer to members in the neighboring group.
Similar to the group knowledge in the field of sociology, we
aggregate the knowledge from different subnets in the same
group to build suitable supervision, and vividly call the ag-
gregated knowledge as network group knowledge. Gener-
ally speaking, the knowledge produced by multiple subnet
groups has two excellent properties: (1) it is naturally hier-
archical and easy to be utilized to fill the capacity gap; (2)
it is aggregated by numerous subnets containing abundant
knowledge.

Based on the findings above, we further propose the
group knowledge based training (GKT) framework, for
boosting the performance of residual networks effectively
and efficiently. In detail, during the training procedure, we
first divide all subnets of a residual network into hierar-
chical subnet groups by a sampling strategy called subnet-
in-subnet (SIS) sampling, then aggregate the knowledge of
subnets in the same group by network logits moving aver-
age, and then supervise the subnet with an appropriate level
of group knowledge. Moreover, we find that sampling and
training larger subnets can better boost the performance of
residual networks, thus we design an inheriting exponen-
tial decay rule to focus on the large or medium subnets.
The proposed GKT framework can remarkably boost the
network performance without any extra parameter (e.g., as-
sistant teacher) or heavy computation cost (e.g., forwarding
main net to obtain supervision). The efficacy and efficiency
of GKT is shown in Figure 2. GKT does not require model
topological modifications and only samples a part of a net-
work (subnet) in the training procedure, resulting in less in-
ference cost and training time compared with standard train-
ing (i.e., shown in the baseline of Figure 2). Because most
CNN and transformer models adopt residual architecture
and suffer from network loafing (Ye et al. 2023b), we fur-
ther verify GKT on various CNN and transformer models.

In summary, our contributions are as follows:
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Figure 2: Training time and accuracy on TinyImageNet for
group knowledge based training strategy, and other methods
like standard training and stimulative training (ST).

• From the novel unraveled view of the residual network,
we identify the hierarchical subnet group knowledge for
the first time, which can provide better supervision for
the diverse subnets of the residual network.

• We propose the GKT framework for boosting residual
networks effectively and efficiently. In this framework,
subnet-in-subnet sampling is adopted to implicitly divide
all subnets into hierarchical subnet groups. Subnet logits’
exponential moving average is exploited to aggregate the
knowledge in the same subnet group.

• We experimentally verify sampling and training larger
subnets can benefit residual networks more than smaller
subnets. Thus we design an inheriting exponential de-
cay rule to sample larger subnets for training subnets and
preparing subnet groups.

• Comprehensive empirical comparisons and analysis
show that GKT can reduce the capacity gap and effi-
ciently improve the performance of various residual net-
works, including CNNs and transformers.

Related Works
Unraveled View
To better understand residual networks, (Veit, Wilber, and
Belongie 2016) introduces a novel perspective named un-
raveled view, that interprets residual networks as an ensem-
ble of shallower networks (i.e., subnets). Based on unraveled
view, (Sun, Ding, and Guo 2022) verifies that shallow and
deep subnets correspond to the low-degree and high-degree
polynomials respectively, and shallow subnets play impor-
tant roles when training residual networks. Then, (Barzi-
lai et al. 2022) theoretically proves that the eigenvalues of
the residual convolutional neural tangent kernel (CNTK) are
made of weighted sums of eigenvalues of CNTK of subnets.
Based on the unraveled view, (Huang et al. 2016) directly
trains random subnets to improve the performance of resid-
ual networks. (Ye et al. 2022c) reveals the network loafing
problem that standard training causes serious subnet perfor-
mance degradation, and proposes stimulative training (ST)
to supervise all subnets by the main net.
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Following the research stream of unraveled view, we also
focus our investigation on boosting residual networks by im-
proving their subnets. Different from providing the same
kind of supervision (e.g., ground truth (Huang et al. 2016)
or main net logits (Ye et al. 2022c)) for all subnets, we pay
attention to giving different subnets different supervisions
according to their model capacities. Besides, we discover
that the training of relatively large subnets can benefit the
main net more, and we focus more on supervising the large
or medium subnets instead of all subnets.

Knowledge Distillation
Conventional Knowledge distillation (KD) (Hinton, Vinyals,
and Dean 2015) transfers knowledge from a teacher network
to a student network via logits (Kim, Park, and Kwak 2018;
Shen and Xing 2022) or features (Bai et al. 2020; Jung et al.
2021), aiming at obtaining a compact and accurate student
network. It usually requires additional cost because of train-
ing a larger teacher network. As a comparison, we do not
require larger teachers or additional structures. And our tar-
get is to improve any given residual network effectively and
efficiently by training its subnets well. Most related concepts
among KD are described in detail as follows.
Ensemble Distillation. As the ensemble method (Dietterich
2000) is a useful technique to improve the performance of
deep learning models, it is generally considered that, an
ensemble of multiple teacher models can commonly pro-
vide supervision with higher quality compared with a single
teacher. (Du et al. 2020) studies the conflicts and compe-
titions among teachers and introduces a dynamic weighting
method for better fusing teachers’ knowledge. However, typ-
ical ensemble distillation methods need additional teacher
models to provide supervision for a single student model. It
requires huge computation cost and is not suitable for multi-
ple coupled subnet students. Differently, we do not need ex-
tra teacher models or inference. For multiple unique coupled
subnet students, we specifically provide suitable supervision
by aggregating the hierarchical subnet group knowledge.
Self Distillation. To save the cost introduced by a larger
teacher network, the self distillation (SD) attempts to pro-
vide supervision within the student network itself in train-
ing. (Yun et al. 2020) narrows down the predictive distribu-
tion deviation between different samples of the same label
to provide the regularization supervision. (Deng and Zhang
2021; Kim et al. 2021) utilize the snapshot of the previ-
ous output logits as supervision to learn from prior expe-
rience. (Shen et al. 2022) rearranges the data sampling by
including mini-batch from previous iteration, and uses the
on-the-fly soft targets generated in the previous iteration to
supervise the network. Similarly, we also consider that the
historic information during the training contains abundant
knowledge. However, previous SD methods only utilize the
intermediate features or output logits of a single main net.
Differently, motivated by the unraveled view, we focus on
various subnets with distinct capacities and utilize their ag-
gregated knowledge in different iterations.
Online Distillation. Online knowledge distillation (OKD)
introduces extra multiple branches or models manually dur-
ing the training procedure to extract knowledge. ONE (Zhu,

Gong et al. 2018) introduces additional branches to cre-
ate a native ensemble teacher and transfer the knowledge
from the ensemble teacher to each branch. PCL (Wu and
Gong 2021) builds ensemble teachers by integrating differ-
ent branches and meaning them temporally to supervise each
branch. OKDDip (Chen et al. 2020) proposes to enhance the
diversity of multiple branches with attention-based weights.
Different from OKD(Wu and Gong 2021; Chung et al. 2020)
using the same knowledge-transfer strategies for each fixed
student, we focus on providing tailored knowledge for dy-
namically sampled subnets with a lower capacity gap. More-
over, GKT aggregates intrinsic knowledge without any ex-
tra architecture causing easier implementation for different
architectures and less training cost.
Capacity Gap. There is a counter-intuitive phenomenon
(Cho and Hariharan 2019) called capacity gap, referring to
the fact that a larger and more accurate teacher model does
not necessarily teach the student model better. This phe-
nomenon is attributed to the capacity mismatch, that a tiny
student model has insufficient ability to mimic the behav-
ior of a large teacher with huge capacity. For transferring
knowledge better, numerous works are proposed to bridge
the capacity gap. (Mirzadeh et al. 2020) introduces extra in-
termediate models as teacher assistants. (Li et al. 2022; Guo
2022) propose asymmetric temperature scaling for teacher
and student to make larger teachers teach better. Since there
are subnets with different capacities under the unraveled
view, the capacity gap problem becomes more serious when
transferring knowledge to various subnets. Different from
the above methods, we bridge the capacity gap by aggregat-
ing the hierarchical subnet group knowledge, without addi-
tional models (Mirzadeh et al. 2020) or changes of hyper-
parameters like temperature (Li et al. 2022; Guo 2022).

Group Knowledge Based Training (GKT)
Framework
The overview of group knowledge based training (GKT) is
shown in Figure 3. We divide the total number of training
steps by the given number of subnet groups to get multiple
equal training loops. For each loop, the operations of GKT
consist of three parts: (1) Subnet Group Division; (2) Group
Knowledge Aggregation; (3) Group Knowledge Transfer.

Subnet Group Division: At the beginning of each loop,
we sample a subnet from the main net. Then, we continue to
sample a subnet from the parent subnet, until the end of the
loop. All subnets sampled in the same generation on differ-
ent loops are divided into the same group. After sampling,
we forward the subnet to obtain logits and compute the loss.

Group Knowledge Aggregation: The subnet logits, gen-
erated on the specific step of each loop, are used to update
the subset’s corresponding group knowledge by logit-level
exponential moving average.

Group Knowledge Transfer: At each training step, the
ground truth and neighboring larger group knowledge will
be utilized to supervise the current subnet. The pseudo-code
of GKT is shown in Appendix B1.

During testing, GKT forwards the residual network with-
out modifying the structure or changing the testing pipeline.
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Figure 3: Overview of the group knowledge based training (GKT) framework. To give an example, we suppose there are three
groups. GKT divides all subnets into hierarchical subnet groups by subnet-in-subnet sampling, aggregates the knowledge of
different subnets of different steps in the same subnet group, and uses the aggregated group knowledge to supervise the neigh-
boring subnet group. To avoid continuously sampling the tiniest subnet, multiple sampling loops are applied to successively
sample subnets from the main network again, as expressed in the left part (i.e., loop 1) and the right part (i.e., the next loop 2).

We will introduce these three parts in detail as follows.
Group Division: Subnet-in-Subnet Sampling. To alleviate
the capacity gap when supervising diverse subnets, we pro-
pose to divide subnets into hierarchical groups. An intuitive
division method is to randomly sample subnets and directly
divide them by their parameters or FLOPs. However, these
direct methods introduce many hyper-parameters, such as
partition bounds of each group, and may limit the number of
possible subnets in a group. Therefore, we introduce subnet-
in-subnet (SIS) sampling to naturally divide all subnets into
hierarchical subnet groups. Specifically, SIS sampling strat-
egy samples subnet from the parent subnet and divides the
subnet sampled in the same generation into the same group.
Besides, to avoid being restricted to tiny subnets due to an
unending sampling, the total training steps are equally parti-
tioned into several loops, and at the beginning of each loop,
the sampling process starts from the main net.

Formally, we denote the subnet Ns belonging to the t-th
group and sampled in the r-th loop as N r

s,t. Given a parent
subnet N r

s,t, the next sampled subnet is generated as

N r
s,t+1 = π(N r

s,t), (1)

where π(.) is the sampling operation representing randomly
sampling a subnet from a network based on given sampling
distribution. At the beginning of a loop, we sample a subnet
from the main net, expressed formally as N r

s,1 = π(Nm).
Then, we continue to sample one subnet from the parent
subnet at each step, as shown in Equation 1. The subnets
sampled in the t-th generation step in all loops are regarded
in the t-th group. After M sampling steps, the current train-
ing loop ends, and the sampling comes to the next training
loop. It is noticed that a specific subnet might be sampled
in any loop and divided into any groups. Subnet-in-subnet
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Figure 4: Updating mechanism of subnet group knowledge.
We use the exponential moving average (EMA) of network
logits to update the subnet group knowledge.

sampling utilizes the inheritance relationship of subnets as a
criterion for loose group division, and its surpassing effec-
tiveness is verified in Appendix D2.
Group Knowledge Aggregation: Subnet Logits Exponen-
tial Moving Average. As network logits are the most com-
monly used supervision containing substantial high-level
knowledge, we save and aggregate output logits of different
subnets in the same group as group knowledge. However,
considering that the subnets in the same group distribute
in different temporal frames, it is unbearable to save all of
their historic logits. Inspired by model parameter exponen-
tial moving average (EMA) in self-supervised learning (He
et al. 2020), we adopt subnet logits EMA to aggregate group
knowledge effectively and resource-friendly.

Formally, we denote Kt ∈ RN×k, where N and k are
the data and class number of the dataset, as the t-th group
knowledge. As shown in Figure 4, for mini-batch samples
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x ∈ Rb×c×h×w, we denote KI
t ∈ Rb×k as the corresponding

group knowledge queried from Kt by indices I . Then the
corresponding subnet group knowledge is updated as

KI
t := αp(θNs,t , x) + (1− α)KI

t (2)

where := represents updating and α is the EMA coefficient
to balance the intensity of updating. If it is the first time
to update KI

t , we directly initialize it with p(θNs,t , x). It is
worth noting that because we can store K into the disk in-
stead of GPU memory, subnet logits EMA only introduces
negligible storage and computation cost.
Hierarchical Group Knowledge Transfer. After group
knowledge aggregation, there is a group knowledge pool
containing different levels of group knowledge. To reduce
the capacity gap and obtain abundant knowledge, we trans-
fer the neighboring larger group knowledge to the subnet.
Formally, for a given subnet Ns,t in t-th group, the supervi-
sion is KI

t−1, the loss is Kullback-Leible divergence

LGK = KL(KI
t−1, p(θNs,t , x)). (3)

And the total loss of GKT is the weighted sum of group
knowledge supervision and standard cross-entropy loss

LGKT = CE(p(θNs,t , x), y) + βKL(KI
t−1, p(θNs,t , x)). (4)

β is a loss balanced coefficient. For subnets in the largest
group, they are supervised by their own group knowledge.
Inheriting Exponential Decay Rule. Under the unraveled
view, there are 2L subnets in the given residual network,
where L is the number of residual blocks, which is a huge
sampling space. It’s almost impossible to train every subnet
sufficiently. Thus, (Ye et al. 2022c) proposes to keep the or-
dered residual structure of subnets for sampling space reduc-
tion and easier subnet training. (Huang et al. 2016) follows
the intuition that the earlier blocks extract more important
low-level features and are more reliably present, thus adopt-
ing linear decay sampling to drop the deeper blocks with
higher probability. Furthermore, we experimentally verify
that training relatively large subnet benefits the main net
more, which will be discussed detailedly in Section .

Inspired by these, we propose an inheriting exponential
decay subnet sampling strategy. To ensure larger subnets are
sampled with a higher probability, we propose to change
the sampling distribution of global block-wise linear de-
cay (Huang et al. 2016) to stage-wise exponential decay.
Since we utilize the subnet-in-subnet sampling, our sam-
pling distribution is dynamic w.r.t. the parent subnet, thus
called “inheriting”. Besides, we also keep the ordered resid-
ual structure when sampling. The effectiveness of inheriting
exponential decay sampling is verified in Appendix D4.

Formally, for a parent subnet Ns,t belonging to t-th group,
it is usually made up of several stages, and each stage con-
tains several residual blocks. We suppose Ns,t has D stages
and the block number of each stage is [l1, l2, ...lD]. For each
stage, we utilize a sampling distribution corresponding to
the number of retained ordered residual blocks to control
the sampling process. To reduce hyper-parameters, we give
a total base number q ∈ (0, 1), and the sampling distribu-
tion of d-th stage, i.e. χd, corresponding to block number

[1, 2, ...ld], is computed as

u = qD−d+1 (5)

v = [uld , uld−1, ...u] (6)

χd = [
uld∑
v
,
uld−1∑

v
, ...

u∑
v
] (7)

where u, v are temporary values. Superscript represents the
exponent. From Equation 6 and 7, we can observe that the
probability of sampling larger subnets from any parent net-
work has been remarkably increased.

Experiments
We first verify the effectiveness and efficiency of GKT on
image classification with CNNs and transformers. To further
demonstrate the generality of GKT, we conduct experiments
on downstream tasks. Then, ablation experiments show the
indispensability of each component. Finally, investigation
experiments reveal the mechanism of GKT. The details of
experiment settings are shown in Appendix A.

Image Classification
We demonstrate the effectiveness and efficiency of
GKT on typical residual convolutional networks includ-
ing ResNet-34, ResNet-50 (He et al. 2016), WRN16-8,
WRN28-10 (Zagoruyko and Komodakis 2016) and Mo-
bileNetV3 (Howard et al. 2019), and mainstream datasets in-
cluding CIFAR-100, Tiny ImageNet and ImageNet-1K. Ob-
serving that residual connections popularly exist in visual
transformers, we conduct experiments on transformers in-
cluding ViT (Dosovitskiy et al. 2020), Swin (Liu et al. 2021)
and CaiT (Touvron et al. 2021) to prove the generalization
ability further. To verify the superiority of GKT, we com-
pare the test accuracy with standard training, subnet train-
ing methods, i.e., ST (Ye et al. 2022c) and Stodepth (Huang
et al. 2016), prevailing SD methods, i.e., CS-KD (Yun et al.
2020), PS-KD (Kim et al. 2021), DLB (Shen et al. 2022)
and LWR (Deng and Zhang 2021), and online distillation
method. i.e., ONE (Zhu, Gong et al. 2018).

The results on CIFAR-10/100 and Tiny ImageNet are
shown in Table 1 (on various CNNs) and Table 3 (on various
transformers). For CNNs, GKT universally and remarkably
boosts the performance of different residual networks on dif-
ferent datasets. To be more specific, compared with standard
training, the average Top-1 test accuracy improvements of
GKT on different networks are up to 1.67% on CIFAR-100
and 1.22% on Tiny ImageNet, respectively. Besides, com-
pared with other SD and subnet training methods, GKT con-
sistently achieves a new state-of-the-art performance, which
demonstrates the superiority of GKT over other approaches.
Specifically, the Top-1 test accuracy gains of GKT compared
with the second-best method are up to 1.54% on CIFAR-
100 and 2.02% on Tiny ImageNet respectively. For trans-
formers, it is observed that GKT remarkably improves the
accuracy e.g., +4.57% on Tiny ImageNet. This verifies the
potential of GKT to boost different residual architectures.

We also verify the generalization ability and efficiency
of GKT on ImageNet-1K, i.e. a mainstream large scale
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Dataset Method WRN16-8 WRN28-10 MobileNetV3 ResNet-34 ResNet-50

CIFAR-100

Baseline 79.95 82.17 78.09 77.78 78.14
StoDepth (Huang et al. 2016) 80.64 82.75 78.77 80.62 78.43
ONE (Zhu, Gong et al. 2018) 80.49 83.02 80.85 79.96 80.44
CS-KD (Yun et al. 2020) 80.77 81.25 78.60 79.35 80.34
PS-KD (Kim et al. 2021) 81.17 82.53 79.36 79.30 80.07
LWR (Deng and Zhang 2021) 81.05 82.00 80.23 79.81 80.70
DLB (Shen et al. 2022) 80.87 81.35 78.55 79.26 80.36
ST (Ye et al. 2022c) 80.75 82.84 81.07 78.62 81.06
GKT 81.53 84.38 81.70 81.40 81.73

TinyImageNet

Baseline 59.23 61.72 63.91 63.67 64.28
StoDepth (Huang et al. 2016) 60.29 62.02 64.97 65.75 65.80
ONE (Zhu, Gong et al. 2018) 62.13 64.15 65.39 66.98 66.58
CS-KD (Yun et al. 2020) 60.23 62.24 64.72 66.11 66.74
PS-KD (Kim et al. 2021) 60.93 63.23 66.41 65.77 65.96
LWR (Deng and Zhang 2021) 61.62 63.91 66.43 63.51 65.03
DLB (Shen et al. 2022) 61.48 64.29 65.05 65.86 65.78
ST (Ye et al. 2022c) 60.58 63.27 66.38 66.06 66.43
GKT 62.58 65.49 67.49 68.13 67.96

Table 1: Main experimental results of the proposed GKT and other methods on the CIFAR-100 and TinyImageNet datasets.
The best performance is highlighted in bold, and the second-best performance is highlighted in underline.

Method ResNet-34 ResNet-50 Swin-T Swin-S ViT-S
Top-1

Acc(%)
Cost

(hours)
Top-1

Acc(%)
Cost

(hours)
Top-1

Acc(%)
Cost

(hours)
Top-1

Acc(%)
Cost

(hours)
Top-1

Acc(%)
Cost

(hours)
Baseline 74.70 98.04 76.98 202.16 77.50 301.47 79.36 460.82 75.55 301.91
StoDepth 74.96 94.76 77.43 196.77 79.62 297.74 81.23 452.48 77.03 296.41
ST 75.25 166.98 77.60 345.45 79.87 437.23 81.43 685.28 77.27 447.77
GKT 75.50 95.48 78.10 194.32 80.40 294.38 82.00 451.18 78.51 295.62
GTK (+epoch) 75.83 141.13 78.40 290.36 80.72 442.55 82.26 678.24 78.83 445.78

Table 2: Verification of typical CNNs (ResNet) and Transformers (Swin Transformer and ViT) on the ImageNet-1K dataset.

dataset. As shown in Table 2, both in CNNs and transform-
ers, GKT can achieve significant performance gains over
the baseline of different networks, and perform better than
Stodepth and ST. Meanwhile, the time cost of GKT is al-
most the smallest among these methods. Besides, the per-
formance of different networks can be further boosted when
increasing the training epoch of GKT.

Ablation Experiments
To measure the effect of each component, we remove the
components of GKT one by one on WRN28-10. The results
are shown in Table 5. The first line is the performance of
GKT, which is the best in the table. And it is observed that
with the removal of each component, the performance is in-
ferior step-by-step, which can prove the separate effects of
each component. More experiments comparing our compo-
nents with other naı̈ve methods are shown in Appendix D.

Downstream Tasks
To verify the generalization of GKT, we finetune the Ima-
geNet pretrained ResNet-50 of GKT and baseline on down-
stream tasks with three well-known frameworks includ-
ing Faster R-CNN (Ren et al. 2015), Mask R-CNN (He
et al. 2017), Panoptic FPN (Kirillov et al. 2019) on
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Figure 5: The capacity gap (measured by sharpness
gap (Guo 2022; Rao et al. 2022)) of different supervision
strategies (i.e., obtaining knowledge from Largest Group
(LG), Main Net (Main), and Hierarchical Group (HG)) dur-
ing the training process of (a) ResNet-50, (b) MobileNetV3.

COCO2017 (Lin et al. 2014). The results are shown in Ta-
ble 4, and GKT consistently obtains improvement on ob-
ject detection (e.g., +0.7% Det mAP on Faster R-CNN), in-
stance segmentation (+0.8% Seg mAP on Mask R-CNN),
and panoptic segmentation (+0.62% SQ on Panoptic FPN).
It demonstrates that GKT can facilitate networks to learn
more general representations and benefit different tasks.
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ViT C10 Swin C10 CaiT C10 ViT C100 Swin C100 CaiT C100 ViT TinyImg
Baseline 93.23 94.05 94.71 72.15 76.02 76.52 54.14
StoDepth 93.58 94.46 94.91 73.81 76.87 76.89 57.07

GKT 93.8 95.21 95.24 75.31 77.32 78.79 58.71

Table 3: Verification of various transformers on CIFAR-10/100 (C10/100) and Tiny ImageNet (TinyImg).

ResNet-50 Faster R-CNN(Det) Mask R-CNN(Det&Seg) Panoptic FPN(Panotic Seg)
ImageNet Acc Det mAP@0.5 Det mAP@0.5 Seg mAP@0.5 PQ SQ RQ

Baseline 76.98 59.4 59.6 56.5 41.76 78.21 51.38
GKT 78.10 60.1 60.1 57.3 42.27 78.83 51.62

Table 4: Verification on object detection, instance segmentation and panoptic segmentation with schedule 1× on COCO2017.

SIS Sampling SL-EMA HGKT Top-1 Acc(%)
✓ ✓ ✓ 84.38
✓ ✓ × 83.51
✓ × × 82.40
× × × 82.17

Table 5: Influence of different components including
Subnet-in-Subnet (SIS) Sampling, Subnet Logits EMA (SL-
EMA), Hierarchical Group Knowledge Transfer (HGKT).

Sampling Strategy ST GKT
UR(1∼12) 82.84 81.06
UR(5∼6) 81.51 80.58
UR(7∼8) 82.91 82.32
UR(9∼10) 82.76 82.93
UR(11∼12) 82.58 83.51
EDR(1∼12) 82.9 84.38

Table 6: Influence of different sampling strategies on the fi-
nal performance. To explore the influence of sampling space,
we implement ST and GKT with different sampling rules
and spaces, including uniform rule (UR) on several different
spaces and Exponential Decay Rule (EDR) on the full space.

Investigation Experiments
Investigation 1: Do we need to train every subnet well?
ST reveals the loafing issue and proposes to train each sub-
net equally. However, according to (Barzilai et al. 2022), the
weights of subnets contributing to the main net performance
are not the same. Inspired by this, we explore the influence
of different subnets on the main net. Specifically, we first
divide the sampling space into several mini-spaces by the
layer number of the subnet. Then we conduct ST or GKT
following the uniform rule (UR) (Ye et al. 2022c) on these
mini-spaces and the full space, compared with following the
exponential decay rule (EDR) on the full space. As shown
in Table 6, GKT performs better on larger mini-spaces, and
both GKT and ST perform well on relatively large mini-
spaces. Besides, following EDR, GKT and ST both achieve
the best performance. These prove that we should pay more
attention to training relatively large subnets.
Investigation 2: Does our method reduce the capacity

Group Rank Tiny Medium Large Expectation
Group#1 0.35 0.34 0.31 21.54M
Group#2 0.19 0.29 0.52 25.50M
Group#3 0.06 0.15 0.79 30.43M

Table 7: Properties of different subnet groups obtained by
subnet-in-subnet sampling on WRN28-10 (36.54M). We
show the sampling ratio of tiny (7.4∼17.17M), medium
(17.17∼26.85M), and large(26.85∼36.54M) subnets for dif-
ferent subnet groups and give the parameter expectation.

gap? An important purpose of GKT is to reduce the capacity
gap during subnet training. To verify these, we record the pa-
rameters of subnets in different groups in GKT on WRN28-
10. We equally and linearly divide the parameters range into
three parts including tiny part (7.4∼17.17M), medium part
(17.17∼26.85M) and large part (26.85∼36.54M), and use
the recorded parameters of each group to compute the sam-
pling ratio and parameter expectation. The results are shown
in Table 7. We can observe that GKT is more inclined to
sample larger subnets for larger groups, and the parameter
expectation of different groups is hierarchical. Further, we
quantify the capacity gap by measuring the sharpness gap,
which is a commonly used metric to represent the capacity
gap (Guo 2022; Rao et al. 2022). As shown in Figure 5, com-
pared with directly transferring knowledge from the main
net or largest group, GKT can significantly and consistently
obtain the lowest sharpness gap.

Conclusion
In this work, from the unraveled view of residual networks,
we observe that all the subnets with different capacities are
provided with the same supervision in previous methods,
leading to a serious capacity gap and lack of knowledge. To
solve these issues, we identify the hierarchical subnet group
knowledge inspired by the sociology field, and propose a
novel group knowledge based training (GKT) framework to
boost residual networks effectively and efficiently. Besides,
we find training relatively large subnets benefit the main net
more, which guides our design of the subnet sampling strat-
egy. Comprehensive experiments on multiple tasks and net-
works verify GKT’s generalization and superiority.
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