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Abstract

Composed Image Retrieval (CoIR) has recently gained popularity as a task that
considers both text and image queries together, to search for relevant images in a
database. Most CoIR approaches require manually annotated datasets, comprising
image-text-image triplets, where the text describes a modification from the query
image to the target image. However, manual curation of CoIR triplets is expensive
and prevents scalability. In this work, we instead propose a scalable automatic
dataset creation methodology that generates triplets given video-caption pairs,
while also expanding the scope of the task to include composed video retrieval
(CoVR). To this end, we mine paired videos with a similar caption from a large
database, and leverage a large language model to generate the corresponding
modification text. Applying this methodology to the extensive WebVid2M
collection, we automatically construct our WebVid-CoVR dataset, resulting in
1.6 million triplets. Moreover, we introduce a new benchmark for CoVR with a
manually annotated evaluation set, along with baseline results. Our experiments
further demonstrate that training a CoVR model on our dataset effectively transfers
to CoIR, leading to improved state-of-the-art performance in the zero-shot setup
on both the CIRR and FashionIQ benchmarks. Our code, datasets, and models
are publicly available at imagine.enpc.fr/~ventural/covr.

“with fireworks”“at night” “with people”“during show”

Figure 1: Task: Composed Video Retrieval (CoVR) seeks to retrieve videos from a database
by searching with both a query image and a query text. The text typically specifies the desired
modification to the query image. In this example, a traveller might wonder how the photographed
place looks like during a fountain show, by describing several modifications, such as “during show
at night, with people, with fireworks”.

1 Introduction

Consider the scenario where a traveller takes a picture of a landmark or scenic spot and wants to
discover videos that capture the essence of that location, by specifying certain conditions via text.
For example, the query image in Figure 1 (of a fountain in Barcelona), along with the text “during
show” should bring the video showcasing the fountain show. Further refining the text query such
as “during show at night”, would allow the traveller to decide whether to wait for the show until the
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Figure 2: Method overview: We automatically mine similar caption pairs from a large video-caption
database from the Web, and use our modification text generation language model (MTG-LLM) to
describe the difference between the two captions. MTG-LLM is trained on a dataset of 715 triplet
text annotations [8]. The resulting triplet with the two corresponding videos (query q and target video
v) and the modification text (t) is therefore obtained fully automatically, allowing a scalable CoVR
training data generation.

night time. In this work, our goal is composed video retrieval (CoVR), where the user performs such
multi-modal search, by querying an image of a particular visual concept and a modification text, to
find videos that exhibit the similar visual characteristics with the desired modification, in a dynamic
context. CoVR has many use cases, including but not limited to searching online videos for finding
reviews of a specific product, how-to videos of a tool for specific usages, live events in specific
locations, sports matches of specific players. Similar to composed image retrieval (CoIR), CoVR
is also particularly useful when conveying a concept with a visual is easier and/or more accurate
than only using words (e.g., unknown location/object, a specific camera view, a specific color).

Given the increased momentum in vision and language research in the recent years [34, 52],
CoIR has emerged as a new task [66], and since then witnessed improvements of both models
and benchmarks [6, 7, 21, 31, 41, 67]. However, to the best of our knowledge, CoVR was not
studied before. A key challenge in building CoVR models is the difficulty of gathering suitable
training data of video-text-video triplets. We overcome this limitation by developing an automatic
approach to generate triplets from existing video-caption collections. Specifically, we mine video
pairs whose corresponding captions slightly differ in text space. We automatically describe this
difference with a language model, which we train for a modification-text generation task. In
particular, we use manually annotated triplets, each containing: (a) source caption, (b) target caption,
(c) the modification text. We then finetune a large language model (LLM) [63] by inputting (a-b),
and outputting (c). We assume the resulting modification to describe the difference between the
corresponding videos, thus obtaining video-text-video triplets (see Figure 2 for an overview). When
training our CoVR/CoIR models, we can flexibly select one or more frames from the videos, enabling
multiple settings (i.e., retrieving images or videos).

We apply our triplet generation approach to the WebVid2M dataset [4] which contains 2.5M
Web-scraped video-caption pairs. This results in the WebVid-CoVR training dataset with 1.6M
CoVR triplets. By virtue of its automatic generation procedure, WebVid-CoVR is inherently noisy.
To efficiently train on such large-scale and noisy data, we use a contrastive loss [65], adopting the
HN-NCE variant from [51] to upsample the significance of hard negatives. We design a CoVR model
based on the cross-modal BLIP [34] and use query scoring [5] to exploit information from multiple
video frames. Training this model on WebVid-CoVR shows strong transferability to the CoIR task, in
both zero-shot and finetuning settings, achieving state-of-the-art results on the standard CIRR [41] and
FashionIQ [67] benchmarks in the zero-shot setup. Finally, to foster research in CoVR, we repeat our
generation procedure on a distinct subset of the WebVid10M dataset [4] and manually select correctly
generated samples to constitute WebVid-CoVR-Test, a test set of 2,435 CoVR triplets. We find that
our model achieves promising results on WebVid-CoVR-Test compared to standard baselines.

To summarize, our contributions are: (i) We propose a scalable approach to automatically generate
composed visual retrieval training data. We apply this pipeline to the WebVid2M dataset and
generate the WebVid-CoVR training dataset with 1.6M CoVR triplets. (ii) We show that training
a CoVR model on WebVid-CoVR transfers well to the CoIR task, and achieves state-of-the-art
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Table 1: Existing datasets: We compare our proposed WebVid-CoVR training dataset and its
manually annotated test set WebVid-CoVR-Test with existing composed visual retrieval datasets.
� denotes image, Å denotes video datasets. We contribute the largest training dataset for the natural
domain. Note that, while SynthTriplets18M is larger, the transfer performance to real images is
ineffective potentially due to a domain gap (see Table 3).

Dataset Type #Triplets #Visuals #Unique
words

Avg. text
length

Domain

CIRR [41] � 36,554 21,185 7,129 59.51 Natural
FashionIQ [67] � 30,132 7,988 4,425 27.13 Fashion
CIRCO [6] � 1,020 - - - Natural
LaSCo [31] � 389,305 121,479 13,488 30.70 Natural
SynthTriplets18M [21] � 18,000,000 - - - Synthetic
WebVid-CoVR Å 1,648,789 130,775 19,163 23.36 Natural
WebVid-CoVR-Test Å 2,556 2,444 1,935 21.97 Natural

results on the CIRR and FashionIQ benchmarks in the zero-shot setup. (iii) We evaluate our model
on WebVid-CoVR-Test, a new CoVR benchmark that we manually annotate. Our code, datasets,
and models are publicly available at imagine.enpc.fr/~ventural/covr.

2 Related Work

Composed image retrieval (CoIR). CoIR [66] has been an active area of research in recent
years [6, 7, 13, 21, 22, 27, 41, 54, 66, 67]. Most methods designed for this problem use manually
annotated image-text-image triplets for training [7, 13, 41, 67]. Very recent works, such as
Pic2Word [54] and SEARLE [6], explore zero-shot CoIR setups where no manually annotated CoIR
triplet is used. These approaches build on CLIP [52] and train a mapping network using image-only
data for text inversion so that they can be flexibly composed with text descriptions. Our approach
is similar in that it avoids collecting manual triplets; however, we instead perform supervised training
on automatically generated image-text-video triplets given only video-text pairs. We also differ from
above works by focusing on the composed video retrieval (CoVR) task, as opposed to CoIR.

Datasets for composed image retrieval. CIRR [41] and Fashion-IQ [67] are the two most widely
used CoIR benchmarks. Both are manually annotated, hence small scale (about 30K triplets, see
Table 1) due to the high cost implied in collecting CoIR triplets. To scale up, two concurrent works
proposed larger, automatically generated CoIR datasets: LaSCo [31] and SynthTriplets18M [21].
However, these two datasets are currently not publicly available. The LaSCo dataset [31] is generated
using the visual question answering annotations and the pairing between images and counterfactual
images in the VQAv2 dataset [3]. In detail, this dataset provides for each (image, question, answer)
triplet a counterfactual triplet with the same question and different image and answer. In contrast, we
do not rely on such expensive annotation schemes. SynthTriplets18M [21] uses the text-conditioned
image editing framework InstructPix2Pix [8] to automatically generate CoIR data. Their edit text
generation process is similar to ours, but our generation process differs in that we automatically mine
similar videos from a dataset of video-text pairs to construct CoVR triplets instead of generating
visual data. In experiments, we show the superiority of our triplet construction procedure as we
achieve much higher CoIR results (e.g., 38% vs 19% zero-shot R@1 on CIRR while generating fewer
data). Lastly, our WebVid-CoVR dataset is not limited to still images and considers videos, while
standing out as the largest composed retrieval dataset in the natural domain, as depicted in Table 1.

Vision-language pretraining. Many strong multi-modal models have been pretrained on large
datasets of image-caption pairs [2, 12, 25, 30, 33, 35, 37, 44, 52, 55, 59, 75, 79] or video-caption
pairs [1, 32, 36, 47, 48, 61, 68, 69, 76, 77, 78]. In contrast, we generate CoVR training data from
video-caption pairs instead of directly training on them. Our data generation approach is also related
to other generation approaches used for other tasks, e.g., action recognition [49], visual question
answering [71] and visual dialog [39]. However, unlike all these tasks, the CoVR task requires
retrieving visual data.

Video retrieval. Text-to-video retrieval has received great attention over the last few
years [17, 18, 19, 40, 45, 46, 53, 68, 70, 72, 73]. We also make use of multiple video
frames with query scoring similar to [5]. However, different from these methods, we focus on
composed video retrieval, where the query consists of both text and visual data.

3
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3 Automatic Triplet Generation and CoVR Training

The goal of our composed video retrieval (CoVR) task is, given an input image q and a modification
text t, to retrieve a modified video v in a large database of videos1. Our goal is to avoid the manual
annotation of (q, t, v) triplets for training. Hence we automatically generate such triplets from
Web-scraped video-caption pairs, as explained in Section 3.1 and illustrated in Figure 2. The resulting
WebVid-CoVR dataset, together with its manually curated evaluation set, is presented in Section 3.2.
Finally, we present how we train a CoVR model using WebVid-CoVR in Section 3.3.

3.1 Generating composed video retrieval triplets

Given a large (Web-scraped) dataset of video-caption pairs, we wish to automatically generate
video-text-video CoVR triplets (q,t,v) where the text t describes a modification to the visual query
q. However, the dataset of video-caption pairs neither contains annotations of paired videos, nor
modification text that describes their difference. Hence we propose a methodology to automatically
mine paired videos and describe their difference, as described below. Note that for illustration, we
take as an example the WebVid2M dataset [4] with 2.5M video-caption pairs, but this methodology
could potentially be applied to other large datasets of video-text (or image-text) pairs.

Mining paired videos by pairing captions. In order to obtain video pairs that exhibit visual
similarity while differing in certain aspects, we leverage their associated captions. The core idea
is that videos with similar captions are likely to have similar visual content. Specifically, we consider
captions that differ by a single word, excluding punctuation marks. For instance, the caption “Young
woman smiling” is paired with “Old woman smiling” and “Young couple smiling”. In the 2M distinct
captions from WebVid2M, this process allows us to identify a vast pool of 1.2M distinct caption
pairs with 177K distinct captions, resulting in 3.1M paired videos. In the following, we describe
further steps to filter the data into a smaller set.

Filtering caption pairs. We wish to automatically generate the modification text between paired
videos using their (paired) captions. However, caption pairs with the same meaning are likely to result
in meaningless differences. On the contrary, caption pairs that differ too much are likely to result in
large visual differences that cannot be easily described. To address these issues, we filter out caption
pairs that are too similar and too dissimilar. Specifically, we exclude caption pairs with CLIP text em-
bedding similarity ≥ 0.96 (e.g., “Fit and happy young couple playing in the park” and “Fit and happy
young couple play in the park”) and caption pairs with CLIP text embedding similarity ≤ 0.6 (e.g.,

“Zebra on a white background” and “Coins on a white background”). We also exclude pairs where the
captions differ by a digit (which mostly consist of a date in practice), a word not part of the English
dictionary, or by a rare word. Rare words are detected based on the zipfzipf frequency [58]. Finally,
we remove templated captions such as “abstract of”, “concept of”, and “flag of” which are over-
represented in WebVid2M. At the end of this filtering stage, we have 370k distinct caption pairs with
12K distinct captions, resulting in 1.2M paired videos that we will use to generate the modification text.

Generating a modification text from paired captions. In order to generate a modification text
between paired videos, we develop and apply a “modification text generation large language model”
(MTG-LLM) to their corresponding paired captions. We describe the MTG-LLM inference process
below and then explain its training details. The MTG-LLM takes as input two paired captions and
generates a modification text that describes the difference between the two captions (see Figure 2).
In detail, the generation is auto-regressive, i.e., we recursively sample from the token likelihood
distribution conditioned on the previously generated tokens until an end-of-sentence token is reached.
Examples of the input-output, and details about the prompt format, which involves concatenating
the two captions with a delimiter, can be found in Section B.4 of the Appendix. We use top-k
sampling [16] for generating the tokens instead of maximum-likelihood-based methods such as beam
search. Note that we only generate a single modification text per caption pair for computational
efficiency, but the MTG-LLM could be used to generate multiple modification texts per caption pair
which could serve as a data augmentation in future work.

We now describe the training details of the MTG-LLM. We start from a LLM pretrained with
a next token prediction objective on a Web-scale text dataset, namely LLaMA [63]. We then finetune
this LLM for the MTG task on a manually annotated text dataset. In particular, we repurpose the
editing dataset from InstructPix2Pix [8], which provides a modification text and a target caption for

1Note that q could also be a video query, but in our main experiments we focus on an image query, and provide
more results in the supplementary material (Section C.2) with video queries.
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make him look more compassionate

Compassionate young handsome caucasian 
man shows his emotion close-up

Angry young handsome caucasian man 
shows his emotion close-up

Tilt shot of segesta 

greek temple in sicily. italy

Pan shot of segesta 

greek temple in sicily. italy

Change the camera angle

Beautiful fieldLavender field

Turn a field into a beautiful field

Have them dance

Two little boys are running Two little boys are dancing

Figure 3: Examples of generated CoVR triplets in WebVid-CoVR: The middle frame of each video
is shown with its corresponding caption, with the distinct word highlighted in bold. Additionally,
the generated modification text is displayed on top of each pair of videos. The bottom right example
illustrates a noisy generated modification text, as ‘beautiful’ is subjective and both target and query
videos can be considered as beautiful fields.

700 input captions. We augment this dataset with 15 annotations that cover additional cases. More
details about the additional examples can be found in Section B.4 of the Appendix.

Filtering video pairs. We wish to avoid some modification texts being over-represented in the dataset
as it could harm training. Hence, if there are more than 10 video pairs associated with the same
pair of captions (therefore leading to the same modification text), we only select top 10 video pairs.
As the CoVR task typically involves similar query-target video pairs, we choose pairs of videos with
the highest visual similarity, as measured by the CLIP visual embedding similarity computed at the
middle frame of the videos.

3.2 Our resulting WebVid-CoVR dataset

In the following, we describe the training and test partitions of our CoVR data. While our training
set is automatically generated, our test set is manually verified.

WebVid-CoVR: a large-scale CoVR training dataset. By applying the previously described pipeline
to the WebVid2M dataset [4], we generate WebVid-CoVR, a dataset containing 1.6M CoVR triplets,
which is significantly larger than prior datasets (see Table 1). On average, a video lasts 16.8 seconds,
a modification text contains 4.8 words, and one target video is associated with 12.7 triplets. WebVid-
CoVR is highly diverse with 131K distinct videos and 467K distinct modification texts. Examples
of CoVR triplets from the WebVid-CoVR dataset are illustrated in Figure 3. These examples (along
with additional ones included in Section D.3 of the Appendix) demonstrate the diversity present
in WebVid-CoVR, highlighting a wide range of content and variations in the modification texts.
However, it is important to acknowledge that some noise naturally exists in the dataset, as shown in
the bottom right example of Figure 3, where the text does not describe the difference between the two
videos due to both videos describing beautiful fields. We provide further analysis such as removal
of inappropriate content, and dataset statistics of WebVid-CoVR in Section A of the Appendix.

WebVid-CoVR-Test: a new CoVR evaluation benchmark. Due to the noise in WebVid-CoVR,
we manually annotate a small test set, dubbed WebVid-CoVR-Test, for evaluation. For this, we
first repeat the data generation procedure described in Section 3.1, but on a different corpus of
video-caption pairs. Specifically, we consider video-caption pairs from the WebVid10M corpus [4]
that are not included in the WebVid2M dataset, resulting in a pool of 8 million video-caption pairs.
This ensures that other models using WebVid2M for pretraining have not been exposed to any of
the test examples. In the video pairs filtering stage, for each pair of captions, we here only keep
one pair of videos (the one with the highest visual similarity). This results in 163K candidate triplets
that could be used for testing purposes. We randomly sample 7K triplets that we use for validation
and randomly sample 3.2K other triplets that we manually annotate as described below.

We augment the 3.2K triplets by generating two additional modification texts with the MTG-LLM.
The annotator reads the three generated modification texts, looks at three frames from the query and
target videos, and either keeps the best modification text if at least one is valid or discards the sample.
Through this meticulous annotation process, we ensure that the test set comprises high-quality and
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meaningful CoVR triplets. This results in a test set of 2.5K triplets, i.e., about 22% of the examples
are considered as noisy and are discarded.

3.3 Training on WebVid-CoVR

Here, we describe our CoVR model architecture and how we train it on our WebVid-CoVR dataset.

CoVR-BLIP model architecture. Our model architecture builds upon a pretrained image-text
model, BLIP [34]. The BLIP model is pretrained on a large dataset of image-caption pairs
with three vision-language objectives: image-text contrastive learning, image-text matching, and
image-conditioned language modeling. However, BLIP is not pretrained for composed visual retrieval
with both visual and text inputs. Therefore we adapt BLIP to the CoIR/CoVR task as follows.

We use the BLIP image encoder to encode the image query q (which corresponds to the middle
frame of the video in case of WebVid-CoVR). The resulting visual features and the modification
text (t) are then forwarded to the BLIP image-grounded text encoder together, which outputs a
multi-modal embedding f(q,t) ∈ Rd where d is the embedding dimension. To retrieve a target
video vk from a database of videos V , we compute embedding vectors for all gallery videos as
follows. We uniformly sample N frames from the video and compute a weighted mean of the BLIP
image embeddings to obtain thevideo embedding vector h(vk) ∈ Rd. The weights are obtained
by computing the similarity between the corresponding frame and the modification text using the
pretrained BLIP image and text encoders, respectively (similar to [5] in the context of text-to-video
retrieval). Using pretrained and frozen BLIP embeddings allows us to precompute and store all
the weights. Finally, given a multi-modal embedding f(q,t), the retrieved video is the one that
maximizes the embedding similarity, i.e., arg maxvk∈V (h(vk)·f(q,t)T ).
Training. In order to train on WebVid-CoVR, we use a contrastive learning approach [51, 65], as
it has been shown to be effective to learn strong multi-modal representations from large-scale noisy
data [52]. We make several design choices to maximize its efficiency. First, we create a training
batch by sampling distinct target videos; and for each target video, we randomly sample an associated
image-text query pair. Iterating over videos ensures that the same target video appears only once
in a batch and maximizes the number of different target videos that can be used as negatives in
contrastive learning. We show the benefit of this approach in Section 4.4 (Table 7).

Second, following HN-NCE [51], we use as negatives all target videos vj∈B in the batch B and
additionally increase the weight of most similar samples. Formally, given a training batch B of
triplets (qi,ti,vi), we minimize the following loss:

L(B)=−
∑
i∈B

log

(
eSi,i/τ

α·eSi,i/τ+
∑

j ̸=ie
Si,j/τwi,j

)
−
∑
i∈B

log

(
eSi,i/τ

α·eSi,i/τ+
∑

j ̸=ie
Sj,i/τwj,i

)
(1)

where α is set to 1, temperature τ is set to 0.07, Si,j is the cosine similarity between the multi-modal
embedding fi and the target video embedding v̂j , and wi,j is set as in [51] with β=0.5.

4 Experiments

In this section, we first describe the experimental protocol including the datasets, evaluation
metrics, and implementation details (Section 4.1). We then present the results of CoVR on our new
video benchmark (Section 4.2), as well as transfer results of CoIR on standard image benchmarks
(Section 4.3). Finally, we provide ablations on our key components (Section 4.4).

4.1 Experimental setup

Datasets. WebVid-CoVR is our proposed training CoVR dataset, and WebVid-CoVR-Test is our
new CoVR benchmark, both presented in Section 3.2.

CIRR [41] is a manually annotated CoIR dataset that contains open-domain natural images from
NLVR2 [60]. It contains 36.5K queries annotated on 19K different images. CIRR includes two
benchmarks: a standard one with the target search space as the entire validation corpus, and a
fine-grained subset, where the search space is a subgroup of six images similar to the query image
(based on pretrained ResNet15 feature distance). The dataset is divided into training, validation,
and testing splits with 28225/16742, 4181/2265 and 4148/2178 queries/images, respectively.

FashionIQ [67] is another CoIR dataset that contains images of fashion products, divided into
three categories of Shirts, Dresses, and Tops/Tees. The query and target images were automatically

6



Table 2: Benchmarking on the WebVid-CoVR-Test set: We observe that using both the visual and
text input modalities performs better than individual modalities alone, both with/without finetuning
on WebVid-CoVR (shown at the top/bottom of the table, respectively). When using pretraining
models without finetuning, we apply average fusion (Avg) for the embeddings. BLIP performs
slightly better than CLIP on this benchmark. Finetuning on WebVid-CoVR brings significant benefits.
In this case, fusing with the pretrained cross-attention (CA) from BLIP is more effective than training
a randomly-initialized MLP fusion as done in [7]. Moreover, using multiple frames to embed the
target video brings further improvements over using the middle frame. The first row represents the
baseline for random performance.

Input
modalities Fusion Backbone #frames R@1 R@5 R@10 R@50

Random - - - - 00.08 00.23 00.35 01.76

Text - BLIP - 19.68 37.09 45.85 65.14
Not finetuned on Visual - BLIP 15 34.90 59.23 68.04 85.95
WebVid-CoVR Visual + Text Avg CLIP 15 44.37 69.13 77.62 93.00

Visual + Text Avg BLIP 15 45.46 70.46 79.54 93.27

Text - BLIP - 23.67 45.89 55.13 77.03
Visual - BLIP 15 38.89 64.98 74.02 92.06

Finetuned on Visual + Text MLP CLIP 1 50.55 77.11 85.05 96.60
WebVid-CoVR Visual + Text MLP BLIP 1 50.63 74.80 83.37 95.54

Visual + Text CA BLIP 1 51.80 78.29 85.84 97.07
Visual + Text CA BLIP 15 53.13 79.93 86.85 97.69

paired based on title similarities (crawled from the web), and modification texts were then manually
annotated. This dataset consists of 30K queries annotated on 40.5K different images. It is divided
into training and validation splits with 18000/45429 and 6016/15415 queries/images, respectively.

Evaluation metrics. Following standard evaluation protocols [41], we report the video retrieval
recall at rank 1, 5, 10, and 50. Recall at rank k (R@k) quantifies the number of times the correct
video is among the top k results. MeanR denotes the average of R@1, R@5, R@10, and R@50.
Higher recall means better performance.

Implementation details and environmental costs. For our MTG-LLM, we use LLaMA 7B
model [63] that we finetune for one epoch with an initial learning rate of 3e−5 for MTG. For our
CoVR model, we use the BLIP with ViT-L [15] at 384 pixels finetuned for text-image retrieval on
COCO and freeze the ViT for computational efficiency. We train our CoVR model on WebVid-CoVR
for 4 epochs with a batch size of 2048 and an initial learning rate of 1e−5. To finetune on
CIRR/FashionIQ, we train for 6 epochs with a batch size of 2048/1024 and an initial learning rate
of 1e−4. We set hyperparameters based on the validation curve of WebVid-CoVR. Experiments
are conducted on 4 NVIDIA A100-SXM4-80GB GPUs. The experiments conducted in this study
incurred an environmental cost of approximately 49kg of CO2 emissions. More details are included
in Section B of the Appendix.

4.2 Composed video retrieval results

We provide a number of baselines for our new benchmark on WebVid-CoVR-Test. Table 2
summarizes these CoVR results. We first report the random chance performance in the first row.
The rest of the table is split into two. The top block uses existing pretrained text and image encoders
from BLIP [34] or CLIP [52] backbones without any finetuning. Models in the bottom block
are finetuned on WebVid-CoVR. We report results with the composed query, as well as with the
individual modalities. For combining modalities, we experiment with the simple average fusion
baseline (Avg) when using frozen embeddings, and fusion with a randomly-initialized MLP or
BLIP-pretrained cross-attention (CA) layers when finetuning. Note that the MLP fusion baseline
is similar to Combiner [7] that concatenates the image and text embeddings from CLIP (or BLIP
in [31]), and is referred to as late fusion by CASE [31]. For finetuning individual modalities, we train
and test either with text-only query using the modification text, or with the visual-only image query.
Finally, we experiment with using only the middle frame embedding or the weighted average of target
video frame embeddings as explained in Section 3.3 (with the exception that visual-only experiments
use equal weights due to not having access to the modification text for computing the scores).
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Table 3: State-of-the-art comparison on the CIRR test set: Our model benefits from training on
WebVid-CoVR in the zero-shot setting, and in the finetuning setting where it performs competitively.
† denotes results reported by [41]. For methods that pretrain specifically for composed retrieval,
we indicate their pretraining data. CC3M denotes Conceptual Captions 3M [56].

Recall@K Rsubset@K
Mode Method Pretraining Data K=1 K=5 K=10 K=50 K=1 K=2 K=3

Train
(CIRR)

TIRG [66]† - 14.61 48.37 64.08 90.03 22.67 44.97 65.14
TIRG+LastConv [66]† - 11.04 35.68 51.27 83.29 23.82 45.65 64.55
MAAF [14]† - 10.31 33.03 48.30 80.06 21.05 41.81 61.60
MAAF-BERT [14]† - 10.12 33.10 48.01 80.57 22.04 42.41 62.14
MAAF-IT [14]† - 09.90 32.86 48.83 80.27 21.17 42.04 60.91
MAAF-RP [14]† - 10.22 33.32 48.68 81.84 21.41 42.17 61.60
ARTEMIS [13] - 16.96 46.10 61.31 87.73 39.99 62.20 75.67
CIRPLANT [41]† - 19.55 52.55 68.39 92.38 39.20 63.03 79.49
LF-BLIP [7, 31] - 20.89 48.07 61.16 83.71 50.22 73.16 86.82
CompoDiff [21] SynthTriplets18M [21] 22.35 54.36 73.41 91.77 35.84 56.11 76.60
Combiner [7] - 33.59 65.35 77.35 95.21 62.39 81.81 92.02
CASE [31] - 48.00 79.11 87.25 97.57 75.88 90.58 96.00
CASE [31] LaSCo [31] 48.68 79.98 88.51 97.49 76.39 90.12 95.86
CASE [31] LaSCo [31]+COCO [38] 49.35 80.02 88.75 97.47 76.48 90.37 95.71

CoVR-BLIP - 48.84 78.05 86.10 94.19 75.78 88.22 92.80
CoVR-BLIP WebVid-CoVR 49.69 78.60 86.77 94.31 75.01 88.12 93.16

Zero
Shot

Random† - 00.04 00.22 00.44 02.18 16.67 33.33 50.00
CompoDiff [21] SynthTriplets18M [21] 19.37 53.81 72.02 90.85 28.96 49.21 67.03
Pic2Word [54] CC3M [56] 23.90 51.70 65.30 87.80 - - -
CASE [31] LaSCo [31] 30.89 60.75 73.88 92.84 60.17 80.17 90.41
CASE [31] LaSCo [31]+COCO [38] 35.40 65.78 78.53 94.63 64.29 82.66 91.61
CoVR-BLIP - 19.76 41.23 50.89 71.64 63.04 81.01 89.37
CoVR-BLIP WebVid-CoVR 38.48 66.70 77.25 91.47 69.28 83.76 91.11

We make several conclusions. (i) Combining both visual and text modalities yields better
performance than the models with individual modalities. This result highlights that our new CoVR
benchmark requires paying attention to both modalities. (ii) Visual-only outperforms text-only sug-
gesting that the video pairs automatically mined through their caption similarity indeed exhibits visual
similarity, and that the image captures the target video better than the modification text. (iii) Finetun-
ing on WebVid-CoVR obtains substantial improvements over using pretrained and frozen embeddings.
(iv) When finetuning, fusion with BLIP cross-attention (CA) performs better than the MLP fusion.
(v) Results with the BLIP backbone are marginally higher than those with CLIP. (vi) Using N=15
target video frames further boosts the performance over using only the middle frame.

4.3 Transfer learning to composed image retrieval

While our focus is video retrieval, we also experiment with transferring our CoVR models to image
retrieval tasks on standard CoIR benchmarks. We define zero-shot CoIR as not using any manually
annotated CoIR triplet for training. We perform zero-shot CoIR by directly applying our model
trained on our automatically generated WebVid-CoVR dataset to CoIR tasks and also explore
finetuning our model on the training set of the downstream benchmark.

Tables 3 and 4 report results on CIRR and Fashion-IQ datasets, respectively. These results show
that our model highly benefits from training on WebVid-CoVR, especially in the zero-shot setting,
on both datasets. In addition, our model achieves state-of-the-art zero-shot performance on both
CIRR and FashionIQ, and performs competitively in the finetuning setting on both benchmarks.

4.4 Ablation studies

In this section, we ablate the importance of several key aspects of our method by evaluating the
performance of the model trained only on WebVid-CoVR.

Importance of data scale. In Table 5, we evaluate the effect of the number of video-caption pairs
used as a seed for our triplet generation pipeline. We construct subsets of videos such that larger ones
include smaller ones, and only keep triplets that contain the sampled videos for training. We find that
results steadily increase when using more videos, demonstrating that our method largely benefits from
scaling the size of the seed dataset of video-captions. We also observe the importance of the filtering
techniques described in Section 3.1, as the model trained on unfiltered generated data underperforms.
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Table 4: State-of-the-art comparison on the FashionIQ validation set: Our model benefits from
training on WebVid-CoVR in the zero-shot setting, and in the finetuning setting. For methods that
pretrain specifically for composed retrieval, we indicate their pretraining data. ‡ denotes results
reported by [57].

Pretraining Dress Shirt Toptee Average
Mode Method Data R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

Train
(FashionIQ)

JVSM [10] - 10.70 25.90 12.00 27.10 13.00 26.90 11.90 26.60
CIRPLANT [41] - 17.45 40.41 17.53 38.81 61.64 45.38 18.87 41.53
TRACE w/BER [24] - 22.70 44.91 20.80 40.80 24.22 49.80 22.57 46.19
VAL w/GloVe [11] - 22.53 44.00 22.38 44.15 27.53 51.68 24.15 46.61
MAAF [14] - 23.80 48.60 21.30 44.20 27.90 53.60 24.30 48.80
CurlingNet [74]‡ - 26.15 53.24 21.45 44.56 30.12 55.23 25.90 51.01
RTIC-GCN [57]‡ - 29.15 54.04 23.79 47.25 31.61 57.98 28.18 53.09
CoSMo[29] - 25.64 50.30 24.90 49.18 29.21 57.46 26.58 52.31
ARTEMIS[13] - 27.16 52.40 21.78 43.64 29.20 53.83 26.05 50.29
DCNet[27] - 28.95 56.07 23.95 47.30 30.44 58.29 27.78 53.89
SAC w/BERT[23] - 26.52 51.01 28.02 51.86 32.70 61.23 29.08 54.70
FashionVLP[20] - 32.42 60.29 31.89 58.44 38.51 68.79 34.27 62.51
LF-CLIP (Combiner) [7] - 31.63 56.67 36.36 58.00 38.19 62.42 35.39 59.03
LF-BLIP [7, 31] - 25.31 44.05 25.39 43.57 26.54 44.48 25.75 43.98
CASE [31] LaSCo [31] 47.44 69.36 48.48 70.23 50.18 72.24 48.79 70.68
CoVR-BLIP - 43.51 67.94 48.28 66.68 51.53 73.60 47.77 69.41
CoVR-BLIP WebVid-CoVR 44.55 69.03 48.43 67.42 52.60 74.31 48.53 70.25

Zero
Shot

Random - 00.26 01.31 00.16 00.79 00.19 00.95 00.06 00.32
Pic2Word [54] CC3M [56] 20.00 40.20 26.20 43.60 27.90 47.40 24.70 43.70

CoVR-BLIP - 13.48 31.96 16.68 30.67 17.84 35.68 16.00 32.77
CoVR-BLIP WebVid-CoVR 21.95 39.05 30.37 46.12 30.78 48.73 27.70 44.63

Table 5: Data size: We experimentally validate the importance of the number of videos used
for data generation and of filtering the generated data, evaluated by downstream performance on
WebVid-CoVR-Test (test), CIRR (test), and FashionIQ (val). All models are trained for the same
number of iterations on the generated data. Training batches are made up with distinct target videos.

Initial Generated WebVid-CoVR-Test CIRR FashionIQ
#videos #target videos #triplets Filtering R@1 MeanR R@1 MeanR R@10 R@50

0 - - - 15.85 36.80 19.76 45.88 16.00 32.77

200k 4k 11k ✓ 32.90 62.20 35.42 65.25 27.11 46.96
500k 14k 66k ✓ 48.20 76.12 38.84 68.09 28.05 45.91

1M 38k 269k ✓ 50.94 77.89 38.68 68.20 27.78 45.16
2.5M 130k 1.6M ✓ 53.13 79.93 38.48 68.48 27.70 44.63

2.5M 211k 3.6M ✗ 52.93 78.92 37.45 67.41 24.50 40.12

Modification text generation. We use a large language model finetuned for modification text
generation (MTG-LLM) as explained in Section 3.1. We here compare this solution to a simple
rule-based baseline that uses several templates to generate the modification text given the two captions
that differ by one word. Specifically, the modification text is based on the two different words
from the captions. We generate templates that use these words and choose one at random during
training. These templates include variations such as ‘‘Remove txt_diff1” and "Change txt_diff1
for txt_diff2”. A full list of all the templates can be seen in Section B.3 of the Appendix.
Additionally, we investigate the possibility of paraphrasing the rule-based modification texts using
GPT-3.5-turbo from OpenAI [9] as a source of augmentation, by prompting “Paraphrase the
following sentence: {Rule-base modification text}”. In preliminary analysis, we qualitatively
observed that LLaMA [63] and LLaMA 2 [64] alternatives were overly verbose when used for
paraphrasing; however, GPT-3.5 outputs were satisfactory.

In Table 6, we show that our MTG-LLM generates better modification texts than the rule-based base-
line, by evaluating the results of the model trained on the generated data. Paraphrasing the rule-based
examples significantly boosts the performance (from 41 to 52 R@1), while still being worse than our
MTG-LLM, especially on the CIRR benchmark. Note that the paraphrasing comes with the cost of run-
ning an expensive LLM ($43 cost for this experiment for 1 paraphrasing per modification text on the
entire dataset). On the other hand, our MTG-LLM finetuning only requires 715 text examples. Qual-
itative examples comparing MTG-LLM and rule-based are provided in Table A.6 of the Appendix.
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Table 6: Modification text generation: We compare our MTG-LLM (LLaMA 7B parameters)
against both a rule-based MTG baseline and a paraphrased rule-based MTG baseline (using
GPT-3.5-turbo from OpenAI). We observe important gains in the downstream performance of the
model trained on the generated data.

WebVid-CoVR CIRR
Model R@1 R@5 R@10 R@50 R@1 R@5 R@10 R@50

Rule-based 41.39 68.58 77.74 93.74 15.66 38.36 51.69 78.92
Rule-based paraphrased 52.39 78.76 86.38 97.46 33.54 61.78 72.99 88.99
MTG-LLM 53.13 79.93 86.85 97.69 38.48 66.70 77.25 91.47

Table 7: Ablations on training strategies: Constructing batches of distinct target videos (and
not CoVR triplets) and up-sampling hard negatives both benefit the downstream CoVR/CoIR
performance.

WebVid-CoVR-Test CIRR
Iteration HN-NCE [51] R@1 R@5 R@10 R@50 R@1 R@5 R@10 R@50

Triplets ✓ 49.80 78.33 87.09 97.38 35.35 63.40 73.98 89.64
Videos ✗ 49.02 76.06 84.62 96.79 35.57 63.45 74.53 90.72
Videos ✓ 53.13 79.93 86.85 97.69 38.48 66.70 77.25 91.47

Training strategies. In Table 7, we first show the benefit on WebVid-CoVR of training by iterating
on target videos instead of CoVR triplets. This is to avoid having the same target video appearing
multiple times in a training batch, hence increasing the number of correct negatives that are used in
the contrastive loss. Furthermore, up-sampling hard negatives adopting the HN-NCE loss formulation
from [51] also slightly benefits the performance.

5 Conclusions, Limitations, and Societal Impacts

In this work, we studied the new task of CoVR by proposing a simple yet effective methodology
to create automatic training data. Our results on several benchmarks (including our manually
curated video benchmark, as well as existing image benchmarks) suggest that, while noisy, such
an automated and scalable approach can provide effective CoVR model training. One potential
limitation of our method is that our dataset may not depict some visible changes due to the way we
generate triplets (i.e., without looking at images, but only considering caption pairs). Moreover, our
modification text generation model is suboptimal due to only inputting one-word difference caption
pairs (i.e., focusing only on one change, and not considering multi-word differences). For example,
the following modification with multiple changes from the CIRR dataset would not be captured
with our approach: “close up of a similar dog, but it is swimming on its own with a tennis ball in
its mouth”. Future work can incorporate visually grounded modification generation and multiple
modifications between query and target video pairs.

Societal impact. Our model constitutes a generic multi-modal search tool, but is not intended for a
specific application. While there are helpful use cases such as online shopping, traveling, and personal
development (i.e., how-to), there may be potential privacy and harmful risks when training our model
on different datasets with harmful content. These risks include but are not limited to: surveillance
applications such as searching for a specific person in videos and gathering sensitive information, and
looking up violent and graphic videos. For our WebVid-CoVR dataset release, we provide a dataset
on our project page, and refer to Section A for further analysis about removal of inappropriate content.
We note that anyone utilizing our dataset must also adhere to the terms of use stipulated by WebVid [4].
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APPENDIX

This document provides dataset statistics (Section A), implementation details (Section B),
additional experiments (Section C), and qualitative examples (Section D). We also provide the code,
dataset, and an illustrative video on our project page at imagine.enpc.fr/~ventural/covr.
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A Dataset statistics and analysis

In this section, we provide analysis on our WebVid-CoVR. A detailed datasheet can be found at
the project webpage.

Filtering inappropriate content and vulgar language. We take several measures to detect
semi-automatically any inappropriate content, and remove such instances from our dataset. To
achieve this, we use a combination of tools (such as negative sentiment and profanity detectors) and
apply them on modification texts and video captions.

We conduct a sentiment analysis on the modification texts using the TextBlob library [42] to
identify instances of negative sentiment. We find that less than 0.5% of the dataset (about 2K
instances) exhibits negative sentiment. Upon manual review, we identify false positives in this
categorization, including examples such as “make it an evil pumpkin” or “Change him into a
frustrated businessman”. The instances detected as negative sentiment are reviewed and 260 of
them are removed from the dataset. We ensure that the dataset does not include any videos marked
for mature content, by checking the metadata of WebVid [4] provided by [28]. Finally, using the
better-profanity library [62], we identify approximately 2K video captions that are marked for
profanity. Upon manual inspection, we find that there were a large number of videos displaying
computer-generated visuals with those words. We also notice false positives (e.g., misinterpretation
due to context), such as the animal cock being incorrectly identified as profanity. The videos detected
to contain profanity in their captions are reviewed and excluded from the dataset.

Distribution of caption and video embedding similarities. As explained in Section 3.1 of the main
paper, we filter caption pairs with CLIP text embedding similarity ≥ 0.96 and caption pairs with
CLIP text embedding similarity ≤ 0.6, and for each caption pair, we choose the 10 video pairs with
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the highest CLIP visual similarity computed at the middle frame of the videos. We also note that
our cosine similarities are normalized between [0, 1]. Here, we further show the distribution of text
embedding similarity in caption pairs and visual embedding similarity in video pairs in Figure A.1.
The distribution of video similarity scores exhibits two distinct peaks. The first peak corresponds
to a score of approximately 0.7 and includes video pairs that are significantly dissimilar. The second
peak corresponds to a score close to 1.0 and represents video pairs with highly similar visual content.

Number of words in modification texts. Figure A.2 further provides the histogram of the number
of words in the generated modification text. We observe that the majority of texts contain 3-8 words.

Number of triplets per target video. In Section 3.2 of the main paper, we provided several statistics
about our WebVid-CoVR dataset, e.g., on average, a target video is associated with 12.7 triplets.
However, in Figure A.3, when visualizing the distribution of triplets associated with each target video,
we see that the histogram reveals that the majority of target videos are associated to only 1 or 2 triplets.
The histogram exhibits a long tail, i.e., a small subset of target videos have a considerably larger
number of triplets associated. These videos have captions such as “Mountain landscape”, “Water
stream”, and “Water river”, leading to numerous one-word difference captions associated with them.

Video categories. We plot the distribution of video categories in Figure A.4. These categories are
found using the WebVid metadata provided by [28]. We find 50% of WebVid-CoVR videos in this
metadata collection. Note more than one category can be associated with a single video (e.g., Nature
and Animals/Wildlife for a video of a fish in the ocean).

Distribution of part-of-speech (POS) tags. We conducted POS tagging on the modification texts
within the WebVid-CoVR dataset to analyze their distribution. The resulting analysis reveals the
average counts of different parts of speech per modification text, including Nouns, Verbs, Pronouns,
Adjectives, and Adverbs. We plot the distribution in Figure A.4, and see that, on average, a
modification text contains 1.6 nouns and 1.1 verbs, emphasizing the prevalent use of nouns and
verbs in the dataset’s modifications. The most frequently encountered words within each category’s
top 3 are as follows: Noun: symbol, water, forest. Verb: make, turn, change. Pronoun: it, them,
her. Adjective: green, more, black. Adverb: instead, more, then. We also include a visualization
of the verb-noun frequency heatmap in Figure A.6, which provides insights into the distribution of
verb-noun count combinations across modification texts in our dataset. From the heatmap, we observe
that over 60% of the sentences exhibit a pattern of having one verb paired with one or two nouns.

We also conducted an analysis using POS tagging on the video captions. Figure A.7 visually
illustrates the transition of POS tags across the difference words in Caption 1 and Caption 2. We
observe a predominant pattern of noun-to-noun changes in our caption pairs.

Source of noise. As mentioned in Section 3.2 of the main paper, about 22% of the automatic
collection can be considered as noisy, because this was the percentage of discarded triplets when
manually curating the WebVid-CoVR test set. We expect a similar noise ratio in the training set.
To inspect the noise in detail, we manually went over the triplet examples that were marked as
unsuitable (therefore discarded) when annotating the test set. We marked whether the reason for
discarding falls within any of the following categories, and computed the following percentages
(normalized by the number of discarded triplets).

• 35%: The generated modification text does not describe the visual difference. Primarily attributed
to either the quality of the video captions or the output generated by the MTG-LLM.

• 28%: Paired videos are visually too similar.
• 15%: Paired videos are visually too different.
• 13%: At least one of the videos is difficult to understand/low quality.
• 9%: Captions are too similar (e.g., one-word difference does not change the meaning: “On the

chairlift” and “Ride the chairlift”).

While the first category of errors is the largest, it is important to also note that our strict standards for
the test set necessitated the discarding of many triplets that could potentially be useful for training.

B Implementation details

We describe the dataset generation computation time (Section B.1), further training details
(Section B.2), provide the templates we use for our rule-based baseline (Section B.3), and details
about our MTG-LLM finetuning and inference (Section B.4).
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Figure A.1: Text/video similarity of the caption/video pairs: Distribution of text similarity scores
between caption pairs (caption1,caption2) (left) and video similarity scores between video pairs
(video1,video2) (right), using CLIP embeddings and cosine similarity.

Figure A.2: Histogram of the number of words in the generated modification text: Most
modification texts have between 3 and 8 words.

Figure A.3: Distribution of number of triplets per target video: We display the histogram depicting
the number of triplets associated with each target video in the WebVid-CoVR dataset. Most target
videos have 1 or 2 triplets and certain videos exhibit a high number of triplets (zoomed in to the tail
on the right plot), e.g., some target videos are present in over 300 triplets, highlighting the variability
in modification texts.

B.1 Dataset generation computation time

We outline the detailed computation time for each step of the dataset generation. The computation
times below are obtained using a single NVIDIA RTX A6000, but it is important to note that most
of the processes can be parallelized, which would significantly reduce the wallclock time required.
In practice, we used 2 GPUs.

• Text embedding extraction: We extracted text embeddings from 2 million distinct captions out
of a total of 2.4 million video-caption pairs. This process completed in less than 2 hours.
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Figure A.4: Distribution of video categories: We plot the distribution of categories for videos in
WebVid-CoVR, as provided by [28] as WebVid metadata. Note that 50% of our WebVid-CoVR
videos are present in this metadata collection. Looking at the distribution, we observe that around
40% and 20% of WebVid-CoVR are videos of Nature and People, respectively.

Figure A.5: Distribution of parts of speech in modification texts: Distribution of nouns, verbs,
pronouns, adjectives, and adverbs in the modification text using part-of-speech (POS) tagging. On
average, there are more than one noun and one verb per modification text.

• Caption similarity search: To identify captions with one-word differences, we employed the
faiss library [26] to select the 100 closest captions, avoiding the need to compare each caption
against the entire set of 2 million captions. This optimization significantly reduced the search time,
resulting in 2.5 hours.

• Text similarity filtering: Thanks to the precomputed text embeddings, the text similarity filtering
step incurred no additional time overhead. All the text filtering processes were completed in less
than 5 minutes, even on a large pool of 1.2 million captions.

• Video similarity computation: To filter by video similarity, we extracted the middle frame from
approximately 135,000 videos and computed CLIP embeddings. This step takes approximately
3 hours.

• MTG-LLM model finetuning: Finetuning for 715 examples takes less than 10 minutes. Note
that the time required to finetune the MTG-LLM model is independent of the number of CoVR
triplets we generate.

• Modification text generation: This is the most time-consuming stage of the pipeline. It takes
around 24 hours to process the 1.6 million caption pairs.

B.2 Training details

Here, we provide implementation details in addition to Section 4.1 of the main paper. In terms of
the optimization algorithm, we utilize AdamW [43]. For our MTG-LLM, we finetune for one epoch
with a batch size of 128 and a learning of 3e−5 that is warmed up linearly for the first 100 steps
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Figure A.6: Verb-noun heatmap: This heatmap illustrates the percentage of modification texts
containing specific combinations of verbs and nouns. Each cell represents the frequency of a
particular verb-noun combination, and the values are presented as percentages. The color intensity
indicates the relative frequency of occurrence. We observe that over 60% of the sentences exhibit
a pattern of having one verb paired with one or two nouns.

Figure A.7: Transition of POS tags across the difference words between the two captions: The visu-
alization primarily focuses on nouns, adjectives, and verbs, which constitute a significant proportion of
modifications at 87% (comprising 65% nouns, 13% adjectives, and 9% verbs). The remaining words
fall into categories where the POS tagger was unable to classify the word (12%) or adverbs (<1%).

and then kept constant. For our CoVR model, keeping the visual backbone frozen largely improves
the efficiency of the training process: an epoch on the CIRR dataset takes 4 minutes with a frozen
backbone and 25 minutes with a finetuned backbone, while leading to similar performance. During
the training process, we employ several image data augmentations. These transformations include a
random resized crop, where the input image is resized to a resolution of 384×384. Additionally, we
apply a random horizontal flip and random adjustments to contrast, brightness, sharpness, translation,
and rotation. We use a weight decay of 0.05 and an initial learning rate of 1e−5 that is decayed to
0 following a cosine schedule over 10 epochs.

B.3 List of rule-based templates

In the ablation studies (Section 4.4 of the main paper), we introduced a rule-based MTG baseline.
Here, in Table A.1, we show the templates used for the rules. We refer to Section D.2 (Table A.6)
for qualitative comparison with our finetuned MTG-LLM.
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Table A.1: Rule-based templates: For our rule-based MTG baseline, we randomly choose one of
the below templates during training.

Remove txt_diff1
Take out txt_diff1 and add txt_diff2
Change txt_diff1 for txt_diff2
Replace txt_diff1 with txt_diff2
Replace txt_diff1 by txt_diff2
Replace txt_diff1 with txt_diff2
Make the txt_diff1 into txt_diff2
Add txt_diff2
Change it to txt_diff2

B.4 Generating a modification text from paired captions with MTG-LLM

As described in Section 3.1 of the main paper, we use top-k sampling at inference for the MTG-LLM.
Specifically, we use k = 200 and temperature = 0.8. We further give details about the text
input-output format for the MTG-LLM. At training, we form the input prompt by concatenating
captions and target and adding delimiters and stop sequences similar to InstructPix2Pix [8]. In detail,
given a caption pair (caption1,caption2) and a corresponding target Target, we concatenate them
and add a separator in the following way: caption1{separator}caption2\n&&\nTarget, where
separator is \n&&\n.

For instance, the model takes as input:

Clouds i n t h e sky \ n&&\ n A i r p l a n e i n t h e sky \ n \ n### Response :

and is trained to generate the response:

Clouds i n t h e sky \
n&&\ n A i r p l a n e i n t h e sky \ n \ n### Response : Add an a i r p l a n e

At inference, we simply leave the response empty, and let the model autoregressively generate a
modification text.

As mentioned in Section 3.1 of the main paper, we add 15 manually prepared text triplets to the
existing 700 text triplets from [8] used for training. The motivation is to address specific CoVR cases
not present in the original set of triplets, such as “remove clouds and reveal only sky” given input
captions “Clouds timelapse” and “Sky timelapse”. We show these 15 samples in Table A.2.

C Additional experiments

We provide additional experiments, reporting CoVR results obtained by training on data generated
with prompting (i.e., without finetuning) the LLM (Section C.1), results when changing the visual
query from an image to a video (Section C.2), and varying the pretrained BLIP model (Section C.3).

C.1 Prompting versus finetuning the MTG-LLM

Here, we justify why we finetuned Llama as opposed to simply prompting it without any training.
For prompting, we prepend few-shot examples of pairs of captions and desired generated texts,
before adding the two captions in question. In particular, we use the following sentence:

Clouds i n t h e sky&&A i r p l a n e i n t h e sky −> Add an a i r p l a n e \ n
A e r i a l view of f o r e s t

&&A e r i a l view autumn f o r e s t −> Change s e a s o n t o autumn \ n
Clouds t i m e l a p s e

&&Sky t i m e l a p s e −> remove c l o u d s and r e v e a l on ly sky \ n
A e r i a l view of a s a i l b o a t a n c h o r e d

i n t h e m e d i t e r r a n e a n s e a .&& A e r i a l view of two s a i l b o a t
a n c h o r e d i n t h e m e d i t e r r a n e a n s e a . − > Add one s a i l b o a t \ n

Then, we concatenate our two captions for which we wish to generate a modification text. Table A.3
shows that finetuning the MTG-LLM for generating the training data is much more effective than
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Table A.2: Added examples to the MTG-LLM training: We add the below 15 examples to the
set of 700 text triplets from [8].

Caption1 Clouds in the sky
Caption2 Airplane in the sky
Target output Add an airplane

Caption1 Woman with the tablet computer sitting in the city.
Caption2 Woman with tablet computer sitting in the park.
Target output In the park

Caption1 Walking swan
Caption2 White swan
Target output Change color to white

Caption1 Child playing on beach, sea waves view, girl spinning on coastline in summer 4k
Caption2 Child playing on beach, sea waves view, girl running on coastline in summer 4k
Target output Make her spin

Caption1 Aerial view of forest
Caption2 Aerial view autumn forest
Target output Change season to autumn

Caption1 Palm tree in the wind
Caption2 Palm trees in the wind
Target output Add more palm trees

Caption1 Schoolgirl talking on the phone
Caption2 Girl talking on the phone
Target output Make her older

Caption1 Clouds timelapse
Caption2 Sky timelapse
Target output remove clouds and reveal only sky

Caption1 Aerial view of a sailboat anchored in the mediterranean sea, vathi, greece.
Caption2 Aerial view of two sailboat anchored in the mediterranean sea, vathi, greece.
Target output Add one sailboat

Caption1 France flag waving in the wind. realistic flag background. looped animation background.
Caption2 Italian flag waving in the wind. realistic flag background. looped animation background.
Target output Swap the flag for an italian one

Caption1 Woman jogging with her dog in the park
Caption2 Woman playing with her dog in the park.
Target output Stop jogging and make them play

Caption1 Oil Painting Reproductions of by humans william-glackens
Caption2 Oil Painting Reproductions of zombies by william-glackens
Target output Replace the humans with zombies

Caption1 The girl who loved the sea by banafria
Caption2 The girl, wearing a hat, who loved the sea by banafria
Target output Put a hat on her

Caption1 famous painting Paris, a Rainy Day of Gustave Caillebotte
Caption2 famous painting Paris, a Sunny Day of Gustave Caillebotte
Target output Change it to more pleasant weather

Caption1 Bee on purple flower
Caption2 Bee on a flower
Target output Change color of the flower
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Table A.3: Prompting versus finetuning LLM: We compare our finetuned model (MTG-LLM) to
a prompting baseline (see Section C.1) and observe important gains in the downstream performance
of the model trained on the generated data.

WebVid-CoVR-Test CIRR
Model R@1 R@5 R@10 R@50 R@1 R@5 R@10 R@50

Prompting 51.33 76.68 85.13 96.71 34.94 63.04 74.02 89.83
Finetuning 53.13 79.93 86.85 97.69 38.48 66.70 77.25 91.47

Table A.4: Querying with a video: We report results on WebVid-CoVR-Test by using multiple frames
from the query video. Recall that the rest of the paper investigates the setup where the middle video
frame is used as an image query. To keep the computational complexity low, we only use 5 query
video frames (uniformly sampled throughout the video). The number of target video frames remains
unchanged as 15. The performance is similar to the image query setup, with marginal increase.

Visual query R@1 R@5 R@10 R@50

Image (middle frame) 53.17 79.93 86.85 97.69
Video (5 uniform frames) 53.91 79.85 87.09 97.42

Table A.5: Variants of pretrained BLIP backbones: We compare the BLIP model without finetuning
(base), BLIP finetuned on Flickr30k, and BLIP finetuned on COCO (the one used in the rest of the
paper) [34]. For this experiment, we finetune the models on WebVid-CoVR using the cross-attention
layers of BLIP as the fusion method, and 15 frames for the target video as in the last row of Table 2.

Backbone R@1 R@5 R@10 R@50

BLIP Base 50.74 78.91 86.23 97.34
BLIP Flickr30k 52.50 79.46 86.70 97.77
BLIP COCO 53.13 79.93 86.85 97.69

prompting it without finetuning, as measured by CoVR performance on WebVid-CoVR-Test and
CoIR performance on CIRR. This is also consistent with our qualitative observations: we found
that the LLM struggles to perform the modification text generation without finetuning (see Table A.6
in the next section).

C.2 Video query for CoVR

As noted in Section 3 of the main paper, we focus on image queries in this paper. This was because
querying with an image has arguably more applications for realistic search scenarios. Here, we
explore the setup of using a video as the visual query instead of an image query. We can do this
since our dataset consists of video-text-video triplets. To encode a query video, we sample 5
equally-spaced frames and compute visual embeddings for each frame using the BLIP image encoder.
We then average the per-frame embeddings and forward it through the BLIP cross-attention layers
to obtain a multimodal query embedding f(q,t). Note that we keep the target video representation
fixed to 15 frames with weighted embedding averaging as described in Section 3.3 of the main paper.
As seen in Table A.4, using 5 query frames leads to similar performance to using the middle frame.

C.3 Variants of pretrained BLIP backbones

All experiments in this paper are performed with the BLIP model [34] finetuned on COCO [38].
Here, we include experiments when changing this backbone with other pretrained BLIP variants.
Specifically, we use the BLIP model without COCO finetuning (BLIP base), and the BLIP model
finetuned on Flickr30k [50]. For this experiment (as in the last row of Table 2 of the main paper),
we use pretrained cross-attention layers of BLIP as our multimodal combined representation, and
finetune them on WebVid-CoVR with 15-frame target video embeddings. In Table A.5, we observe
that the BLIP model finetuned on COCO has the highest performance.

22



D Qualitative analysis

In this section, we provide examples of caption filtering (Section D.1), qualitative comparison
between different MTG approaches (Section D.2), qualitative examples of our WebVid-CoVR triplets
(Section D.3), samples from our manual test set annotation process (Section D.4), qualitative CoVR
results on WebVid-CoVR-Test (Section D.5) and CoIR results on CIRR (Section D.6).

D.1 Examples of filtered captions

As described in Section 3.1 of the main paper, we employ a filtering process to select paired captions
that facilitate the generation of meaningful training data. In this section, we provide examples of
the filtered captions.

Filtering template captions. Upon analyzing the paired captions, we observed that a significant
portion of the pairs originated from a small set of template captions. Out of 1.2M distinct caption
pairs, approximately 719k (60%) were generated from these template captions. The following
examples showcase some of these template captions:

• Abstract: Abstract color movement tunnel, Abstract color nature background, Abstract color
smoke flowing on white background, Abstract colorful paint ink spread explode, Abstract colorful
pattern background, Abstract colorful red cement wall background or texture. the camera moves up,
Abstract colorful satin background animation, Abstract colorful shiny bokeh background., Abstract
colorful smoke on black background, etc

• Background: Abstract background, Animated backgrounds, Animation, background., Aquarium
background, Artistic background, Aurora background, Balloons background, Basketballs
background, Beach background, Bluebell background, Bright background, Brush background,
Bubbles background, Bubbly background, Celebrate background, Celebratory background, Cg
background, Christmas background, Christmas background, Circles background, Color background,
Colored background, Colorful background, Colorfull background,, etc.

• Concept: Brazil high resolution default concept, Brazil high resolution dollars concept, Busi-
nessman with advertising hologram concept, Businessman with algorithm hologram concept,
Businessman with automation hologram concept, Businessman with bitcoin hologram concept,
Businessman with branding hologram concept, Businessman with public relations hologram concept,
Close up of an eye focusing on a freelance concept on a futuristic screen., Coins fall into piggy bank
painted with flag of ghana. national banking system or savings related conceptual 3d animation,
Communication concept, Communication network concept., Communication team concept, Concept
of connection, Concept of dancing at disco party. having fun with friends., Concept of education,
Concept of geography, Cyber monday concept, etc

• Flag: Flag of america, Flag of andorra, Flag of aruba, Flag of austria, Flag of azerbaijan, Flag
of bahrain, Flag of belarus, Flag of belize, Flag of black, Flag of bolivia, Flag of brazil, Flag of
bulgaria, Flag of cameroon, Flag of canada, etc.

Filtering caption pairs with high or low similarity. To ensure the generation of meaningful
modifications, we further refine the selection of caption pairs by filtering out those with excessively
high or low similarity. Caption pairs with highly similar meanings may result in trivial or unnoticeable
modifications. Conversely, pairs with significant dissimilarity can lead to large visual differences
that are difficult to describe accurately. We show below some of the filtered captions based on the
CLIP text embedding cosine similarity.

• High similarity: 10% of the pairs have CLIP text similarity above 0.96.
– Close-up of a tree with green leaves and sunlight
– Close-up of a tree with green leaves and sunshine
– Businessman speaking on the phone
– Businessman talking on the phone
– Boat on a sea
– Boat on the sea

• Low similarity: 2% of the pairs have CLIP text similarity below 0.60.
– Leaves close-up
– Peacock, close-up
– Moon jellyfish
– Moon night
– Close up of a lynx
– Close up of a milkshake
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Exclusion of digit differences and out-of-vocabulary words. In order to maintain the high
quality and coherence of the generated modification text, we apply additional filtering criteria.
Specifically, we exclude caption pairs where the differences between captions are numerical digits
(often representing dates) or involve out-of-vocabulary words (using the python libraries wordfreq
and enchant) that may hinder the generation process.

• Difference between the captions is a digit: Approximately 2% of the pairs.
– 23.09.2015 navigation on the moscow river
– 07.08.2015 navigation on the moscow river.

– Light leaks element 190
– Light leaks element 215

– Pure silver, shape of granules of pure silver each one is unique 44 (2)
– Pure silver, shape of granules of pure silver each one is unique 95 (2)

• Difference in one of the captions has an out-of-vocabulary word: Approximately 7% of the pairs.
– Businessman writing on hologram desk tech word- bitcoin
– Businessman writing on hologram desk tech word- crm

– Mitomycin-c - male doctor with mobile phone opens and touches hologram active ingrident
of medicine

– Oxazepam - male doctor with mobile phone opens and touches hologram active ingrident of
medicine

– Blue forget-me-nots
– Blue galaxy

D.2 Qualitative comparison of MTG approaches

In Section 4.4 of the main paper and Section C.1, we show that finetuning our MTG-LLM works
better than a rule-based approach and than few-shot prompting of the LLM. In this section, we
provide a qualitative comparison of three different methods for generating modification text: (i)
rule-based, (ii) prompting-based, and (iii) our MTG-LLM finetuning. We present examples of paired
captions and the corresponding modification texts generated by each method in Table A.6.

Rule-based method. The rule-based method relies on predefined rules to generate modification
text. We illustrate an example limitation in the last row of Table A.6, where the difference text is
simply a preposition (i.e., ‘of’ vs ‘above’), and the modification text becomes ‘Remove of’. The
rule-based method performs well when the modifications follow a specific pattern, but it may struggle
with more complex modifications (e.g., ‘tree’ vs ‘trees’ should generate ‘add more trees’ for plurality).

Prompting LLM. The prompting-based method involves using a pretrained language model
without finetuning. However, this method is prone to hallucinations and may generate modification
text that does not accurately represent the intended difference. For example, in the second example,
the prompting LLM suggests removing the term ‘animal’ instead of replacing ‘bird’ with ‘bear’.

MTG-LLM (Our approach). Our MTG-LLM approach utilizes a large language model finetuned
on a manually annotated dataset specifically for modification text generation. It tends to be the most
robust across different cases.

D.3 Training triplet examples

Figures A.8, A.9, and A.10 all show examples of triplets generated using our automatic dataset
creation. These examples demonstrate the effectiveness of our approach in generating coherent mod-
ification texts for paired videos. This capability serves as a form of data augmentation and increasing
the diversity in the training set. In Figure A.11, we show that the dataset is not composed by pairs
only, as there are many captions that have many relations between them. Furthermore, in Figure A.12
we show cases where a single caption is associated with multiple videos. This scenario allows us
to generate multiple triplets by leveraging the diverse visual content captured in different videos.
The triplets shown in the aforemention figures exhibit a wide range of variations, encompassing
different themes such as emotions, food, actions, camera edits, gender changes, and time of the day.
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Table A.6: Comparison between modification text generation approaches: We provide qualitative
examples for a pair of captions, and three methods to generate modification text: (i) rule-based, (ii)
prompting-based, (iii) our MTG-LLM finetuning. Rule-based method is limited, for example in
the case where the difference text is a preposition (last row), whereas the prompting-based method
is prone to hallucinating (e.g., ‘remove iceberg’, ‘change the pose of the runner’). Our approach
tends to be the most robust across cases.

Caption1 Happy girl dancing
Caption2 Beautiful girl dancing
Rule-based Make the Happy into Beautiful
Prompting LLM Change girl
MTG-LLM Make her more beautiful

Caption1 Black bird
Caption2 black bear
Rule-based Add bear
Prompting LLM Remove animal
MTG-LLM Turn it into a bear

Caption1 Autumn landscape in the mountains.
Caption2 Winter landscape in the mountains
Rule-based Remove Autumn
Prompting LLM Change scene to winter.
MTG-LLM Change to winter

Caption1 Flying over the ice
Caption2 Flying over the mountains
Rule-based Take out ice and add mountains
Prompting LLM Remove iceberg
MTG-LLM Move the ice to the mountains

Caption1 Dandelion field
Caption2 Rice field
Rule-based Change dandelion for rice
Prompting LLM Change the season
MTG-LLM Turn it into a rice field.

Caption1 Happy woman
Caption2 Running woman
Rule-based Change it to running
Prompting LLM Remove the girl and change the pose of the runner
MTG-LLM Make her a runner

Caption1 Woman working on cellphone at night
Caption2 Woman working on cellphone at outdoor
Rule-based Replace night with outdoor
Prompting LLM Change the woman and add one cellphone
MTG-LLM Make it an outdoor

Caption1 Barber cuts the hair of the client with clipper.
Caption2 Barber cuts the hair of the client with trimmer
Rule-based Take out clipper and add trimmer
Prompting LLM Add or change the hairdresser’s tool
MTG-LLM Change to a trimmer

Caption1 Aerial shot of a lake.
Caption2 Aerial shot above a lake
Rule-based Remove of
Prompting LLM Add a lake to the sequence
MTG-LLM make it an aerial shot of a lake
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D.4 Manual test set annotation

In this section, we further describe the process of manually annotating the test set for our WebVid-
CoVR-Test CoVR benchmark, previously discussed in Section 3.2 of the main paper. The annotation
process involves presenting the annotator with generated modification texts from three different runs
of MTG-LLM, along with three frames each from the query and target videos. The annotator’s task
is to evaluate the quality of the modification texts and the suitability of the videos for the CoVR task.

A total of 3.1K triplets were shown for annotation. In Figure A.13 and Figure A.14, we present
10 examples that were considered correct during the annotation, along with the chosen modification
texts (marked with a checkmark). These examples demonstrate successful modification texts and
appropriate video content for the CoVR task.

On the other hand, in Figure A.14, we show 8 examples that were discarded during the annotation.
These examples were rejected either because the modification texts were incorrect or because the
videos were deemed unsuitable for the CoVR task due to being either too similar (e.g., bottom left,
both videos are showing the same coffe with almost no modification) or too incoherent (e.g., top
right example “Make the water a river”).

D.5 Qualitative CoVR results on WebVid-CoVR-Test

In Figure A.15, we show qualitative CoVR results on our manually verified WebVid-CoVR-Test set.
We observe that top ranked video frames have high visual and semantic similarity with the queries
even when not corresponding to the ground truth (marked with a green border).

D.6 Qualitative CoIR results on the CIRR benchmark

In Figure A.16, we demonstrate qualitative CoIR results of our models trained only on WebVid-CoVR
(ZS) and the one further finetuned on CIRR training set (Sup.), tested on the CIRR test set. We
observe promising retrieval quality for both models.

26



Celery being diced Bacon being diced

Turn the celery into bacon

Cosmetician accurately covers nails of 
client with transparent nail polish

Cosmetician accurately covers nails of 
client with red nail polish

Make it red

Portrait of smiling curly hair 
woman looking at camera

Portrait of sad curly hair 

woman looking at camera

Make her smile

Duck eating grass. Turkey eating grass

make it a turkey

Figure A.8: Examples of generated triplets: We illustrate triplet samples (one per row) generated
using our automatic dataset creation methodology. Each sample consists of two videos with their
corresponding captions (at the bottom of each video) and the generated modification text using our
MTG-LLM (in purple).

27



High quality video of man wearing 
virtual reality glasses and playing games 

High quality video of woman wearing 
virtual reality glasses and playing games 

make it a woman

Close up of pouring natural yogurt 

into strawberries. slow motion

Close up of pouring pink yogurt 

into strawberries. slow motion

Make the yogurt pink

Barley grains fall into a wooden 
spoon and heap is poured. slow 

Closeup of woman's hand writing on 
paper with pen


change it to a woman

Wheat grains fall into a wooden 
spoon and heap is poured. slow 

use barley

Closeup of man's hand writing on paper 
with pen

Figure A.9: Examples of generated triplets (ctd)

28



African american couple relaxing 
bed young daughters wireless tablet

African american mother relaxing 
bed young daughters wireless tablet

make it a couple

Wide shot skyline 

with big ben / london, uk

make the scene wider

Medium shot skyline 

with big ben / london, uk

Figure A.10: Examples of generated triplets (ctd)

Profile view of young happy 

pregnant businesswoman thinking

Profile view of young happy 

blonde businesswoman thinking

Profile view of young happy 

multi-ethnic businesswoman thinking

Profile view of young happy 

multi-ethnic businesswoman smiling

Figure A.11: Generated triplets from multiple similar captions: We can train with as many
triplets as pairs of captions with one word difference by generating modification texts using our
trained MTG-LLM: she is thinking , Have her look happy , Make the businesswoman pregnant ,

make her blonde , make her multi-ethnic , Make the woman pregnant , etc.
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Aerial illinois chicago july 2017 night 4k inspire 2 

Aerial illinois chicago july 2017 sunrise 4k inspire 2 

make it a sunrise

Young woman use of mobile phone at outdoor

Young woman use of mobile phone at night

darken the scene to night

Figure A.12: Generated triplets with multiple videos: In cases where there are several videos with
the same caption, we can generate multiple triplets by leveraging the multiple videos. It can be seen
as a way of data augmentation.
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have it look like raindrops

add drops

make the spider web drops of water

Discard

Made into a little

Make her a little

change the little sisters to a little girl

Discard

change elephants to hippos

make them hippos

replace elephants with hippos

Discard

at sunrise

make it a sunrise

make it at sunrise

Discard

have them

make it a kiss

make them

Discard

remove the wall and let it be on the road

Have the snail move

On the road

Discard

replace the young man with a young woman

Make the main character a woman

change the woman to a woman

Discard

have the young man

Make him frown rather than smile

Change the blonde man to a frowning blonde man

Discard

change her profession to optometrist

turn the obstetrician into an optometrist

make her an optometrist

Discard

she dives

make it a dive

make her dive into the pool

Discard

Figure A.13: Manual annotation examples (kept): We show samples from WebVid-CoVR-Test
which are automatically mined triplets that are marked as correct during the annotation process. Each
sample consists of two videos and a set of modification text options (in between each video pair).
The chosen modification text is indicated by a checkmark.
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a beautiful

make the mountains

Make them

Discard

River water in summer

make the pollution a river

Make the water a river

Discard

remove the weeping aspect

Make it beautiful

Make it more beautiful

Discard

change the cloud into a shape

make the cloud a shape

make it into the shape of a cloud

Discard

Become a rock

make it a rock

make into rock jetty

Discard

It is snowing

Make it snowing

make it snowing

Discard

turning a coffee bean

the coffee beans

have coffee beans

Discard

replace star with waterfall

turn it into a waterfall.

Make it a waterfall

Discard

Figure A.14: Manual annotation examples (discarded): We show automatically mined triplets
that are discarded during the annotation process. Discarded texts include videos that are too similar
(bottom left), too dissimilar (bottom right), or have bad modification texts (top left).
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change to female

turn it into a sailboat

make him a doctor

change to horse's

make it a woman

make it wet

put the dog in a tropical 
back yard

with friends instead

Figure A.15: Qualitative CoVR results on WebVid-CoVR-Test: We display the input image and
modification text queries on the left, along with the top 3 retrieved videos by our model on the right.
Ground-truth is denoted with a green border.
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the wolf is lying down

Raise the yellow school bus higher 
off the ground in front of white 

building.

Sup.

ZS

Sup.

ZS

One squirrel has  
changed to two and the 
color has changed from 

grey to brown,


Unlike a person standing in a library, 
I want a library with no humans with 

a fireplace.

Sup.

ZS

Sup.

ZS

The man is having crabs in both 
hands instead of one.

Small black puppy in 
mans hand with blurred 

background effect 
instead of dog with hat

Sup.

ZS

Sup.

ZS

Figure A.16: Qualitative CoIR results on CIRR: Given a query image and a modification text,
we show our top retrieved videos of our zero-shot (ZS) model trained with WebVid-CoVR and the
model finetuned on CIRR ground-truth supervision (Sup.).
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