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Abstract

Despite recent promising performances across a range of vi-
sion tasks, vision Transformers still have an issue of high
computational costs. Recently, vision prompt learning has
provided an economical solution to this problem without fine-
tuning the whole large-scale model. However, the efficiency
and effectiveness of existing models are still far from satis-
factory due to the parameter cost of extensive prompt blocks
and tricky prompt framework designs. In this paper, we pro-
pose a light-weight prompt framework named impLicit vIsion
prOmpt tuNing (LION), which is motivated by deep implicit
models with stable low memory costs for various complex
tasks. In particular, we merely insert two equilibrium implicit
layers in two ends of the pre-trained backbone with parame-
ters frozen. Moreover, according to the lottery hypothesis, we
further prune the parameters to relieve the computation burden
in implicit layers. Various experiments have validated that
our LION obtains promising performances on a wide range
of datasets. Most importantly, LION reduces up to 11.5 %
of training parameter numbers while obtaining higher perfor-
mance than the state-of-the-art VPT, especially under chal-
lenging scenes. Furthermore, we find that our proposed LION
has an excellent generalization performance, making it an easy
way to boost transfer learning in the future.

Introduction
With the development of computer vision, models with more
robust representations and larger sizes have been developed.
Despite this, training these models with many parameters is
becoming increasingly challenging.

One common approach to addressing this issue is pre-
training on a large dataset, such as ImageNet (Deng et al.
2009), for general vision tasks and then fine-tuning the model
on downstream tasks to improve performance. While this
method has been widely used, several drawbacks should be
considered. Firstly, fine-tuning requires a large amount of
computational resources, especially for large models such
as ViT-B (Dosovitskiy et al. 2020) (85.84M parameters) and
Swin-B (Liu et al. 2021b) (86.87M parameters). Secondly,
the model may become overfitted to the small target dataset
and cannot be used for other tasks after fine-tuning. This
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Figure 1: Demonstration of the implicit vision prompt layer.
The left part shows the traditional construction of the prompt
block by stacking MLPs. The right is LION with the implicit
equilibrium layer and robust training for the prompt block.

phenomenon means separate sets of model parameters are
needed for each task, leading to a high storage requirement.

In recent years, prompt-based learning has generated con-
siderable interest in the natural language processing (NLP)
community because of its fantastic performance on various
downstream problems (Liu et al. 2021a; Li and Liang 2021;
Lester, Al-Rfou, and Constant 2021). Prompt tuning aims to
design a trainable lightweight block as a supplementary input,
which can guide or direct the generation of powerful vision
representations to achieve desirable performances, rather than
fine-tuning pre-trained models to adapt to downstream tasks.

To design a prompt framework that combines both a
lightweight architecture and strong representation capability,
we conducted a comprehensive study and analysis of the lim-
itations of current vision prompt tuning methods. First, ex-
isting approaches insert trainable networks as prompt blocks
between each layer of the network (Jia et al. 2022), assuming
that the feature representations from different levels con-
tribute to the network’s generalization performance, espe-
cially for low- and mid-level representations. This, however,
goes against the lightweight design philosophy of prompt
tuning. The architecture design is also complex and heavily
reliant on tuning skills, making applying to various vision
backbone models with different architectures challenging.
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Second, finding the right prompt is a challenging task that
often takes a significant amount of time. Even small changes
in the activation input can significantly impact performance.
This can be attributed to the depth of big model architectures,
making the trainable parameters of shallow network layers
more challenging to train and converge.

Based on the challenges above, we naturally raise a ques-
tion, can we design a single-layer network as the prompt
block with favorable convergence to iterate continuously?
We hope it can achieve the effect of multi-layer network
training and thus significantly reduce the training parameters.
Therefore, we propose the impLicit vIsion prOmpt tuNing
(LION), which is motivated by deep implicit models with
stable low memory costs for various complex tasks. In par-
ticular, we merely insert two equilibrium implicit layers in
two ends of the pre-trained backbone with parameters frozen.
LION enables tuning various vision models, including con-
volutional neural networks (CNNs) and vision transformers.

Specifically, LION constructs a lightweight prompt frame-
work to generate task-specific discriminative prompts for
each downstream input image. LION can generate a com-
pact and robust downstream model that adapts tuning de-
mands across a wide range of vision tasks while only train-
ing lightweight additional parameters per downstream task,
which is implemented by blending the input and the rep-
resentations with the learned prompts. Besides, since the
hyper-parameters, like the learning rate, can severely affect
the robustness of training the vision prompts, we prune the
parameters in these two layers according to the lottery hy-
pothesis. Only the critical parameters are kept in training to
avoid over-fitting. More surprising is that LION essentially
compresses the parameters of the existing vision prompt net-
work, which allows it to be generalized to any subsequent
vision prompt tuning method with trainable parameters.

Our proposed LION can be used to tune CNN-based and
Transformer-based vision models, surpassing fine-tuning for
various recognition tasks of image classification. It can per-
form well under a variety of practical scenarios, includ-
ing generic objects, class imbalance, and few-shot learning.
Learning vision-specific information while maintaining the
pretrained knowledge, our LION delivers an average improve-
ment of up to 1.3% compared with VPT, but with much fewer
trainable parameters. In summary, the main contributions of
our work are three-fold:

• We propose LION, a significantly lightweight yet effective
tuning method that leverages few trainable implicit layers
to adapt the pretrained model to downstream visual tasks.

• We construct a more robust optimization strategy by lot-
tery hypothesis while proving the excellent convergence
of our method through theoretical analysis and validation.

• Experimental results show that LION outperforms pre-
vious vision prompt tuning methods, evidencing its fea-
sibility and usefulness for vision models, especially on
few-shot and long-tail scenarios.

Figure 2: Structures of our LION. We add two implicit layers,
which are only injected in front of the input and behind the
output of the pre-trained backbone respectively, as the vision
prompts to enrich the vision input and representation.

Related Work
Vision Fine-tuning
Recently, more and more works fine-tune the pre-trained
models as the backbone for downstream tasks (Zaken, Gold-
berg, and Ravfogel 2022; Croce and Hein 2022; Wortsman
et al. 2022; Yu et al. 2023), which are trained on large-scale
image datasets for common tasks like image classification.
Fine-tuning is highly flexible: it can be applied to new input
domains or tasks with different output semantics.

Some work has focused on developing fine-tuning methods
that allow for the adaptation of the entire network (Houlsby
et al. 2019; Pfeiffer et al. 2020a,b), rather than just a subset
of layers. Another line of related work has focused on de-
veloping fine-tuning methods that can be used in a transfer
learning setting (Gusak et al. 2022; Sung, Cho, and Bansal
2022; Lin, Madotto, and Fung 2020; Houlsby et al. 2019),
where the pre-trained model is adapted to a new task in a
different domain.

Prompt-based Learning
Prompt-based learning (Liu et al. 2021a) is a technique that
utilizes task-specific descriptions to enhance the understand-
ing of downstream tasks by pre-trained models. This ap-
proach was popularized by the GPT series (Brown et al.
2020; Radford et al. 2018, 2019) in the field of NLP. This has
led to many studies focused on developing effective prompt
strategies for extracting knowledge from pre-trained language
models. Similarly, recent vision-language models (Lester, Al-
Rfou, and Constant 2021; Gao, Fisch, and Chen 2020; Li
and Liang 2021; Schick and Schütze 2020; Yang et al. 2022,
2023; Yu et al. 2023; Wang et al. 2023) have achieved impres-
sive performance on various vision tasks without the need
for fine-tuning. However, these prompt-based tuning meth-
ods are not suitable for pre-trained vision models. Our work
aims to bridge this gap by developing a parameter-efficient
prompt tuning approach specifically for vision models, to
adapt frozen pre-trained vision models to downstream tasks
across a broad distribution.

Deep Implicit Models
There has been a growing interest in using implicit layers
in deep learning. Researchers have explored different ap-
proaches to utilizing numerical analysis methods to replace
the representation mechanism in existing deep networks.



Some notable examples include SparseMAP (Niculae et al.
2018), OptNet (Amos and Kolter 2017), and SATNet (Wang
et al. 2019). These approaches have shown promising results
in improving the efficiency and performance of deep learn-
ing models. One particular type of implicit model that has
gained attention is Deep Equilibrium Models (DEQ) (Bai,
Kolter, and Koltun 2019). DEQ is an implicit model with
infinite depth, yet it is interesting as a single-layer network
because it allows for analytical backpropagation through the
equilibrium point. Regardless of the depth of the network,
training and predicting with DEQ only require constant mem-
ory. Moreover, DEQ has achieved comparable performance
with efficient memory cost, as illustrated in (Xie et al. 2021).
Another advantage of DEQ is its interpretability. The use of
implicit models can make it difficult to interpret the behavior
of the network, but DEQ provides a transparent mechanism
for understanding the network’s inner workings. These ad-
vantages make DEQ a suitable candidate for constructing
lightweight vision prompt layers.

Methodology
Overall Architecture
In vision prompt tuning, the goal is to adapt a pre-trained
vision model to downstream tasks without modifying its
weights and achieve comparable results with the commonly
used fine-tuning method. Mathematically, given a pre-trained
large-scale vision model G with parameters Θ, it can be
decomposed into two parts, the backbone F with frozen
parameters Θf and the head layer H with trainable param-
eters Θh. Thus, the input image xi ∈ RH×W×3 from the
down-stream datasetD = {(xi, yi)}Ni=1. Our method, named
LION, accomplishes the goal with an extremely lightweight
prompt block P with a few trainable parameters Θp, which
utilizes the implicit equilibrium layer for activation. We only
insert two prompt blocks in front of the input and head lay-
ers, respectively. Suppose that the output of the backbone is
zi = F(xi; Θf ), two prompt-based blending representations
can be written as:

x̃i = α1xi + β1P1(xi; Θp1), (1)

z̃i = α2F(x̃i; Θf ) + β2MLP (P2(xi; Θp2)) . (2)
Here, MLP represents the fully-connected layer for rep-
resentation projection. αi and βi represent balance coeffi-
cients determined based on their importance in the attention
mechanism (Mnih et al. 2014). To generate these balance
coefficients, we initialize two adjustable parameters, gαi and
gβi

, subject to the following constraints: αi + βi = 1 and
0 < αi, βi < 1.

αi =
egαi

egαi + egβi
, βi =

egβi

egαi + egβi
(3)

In this way, the task-specific knowledge of the downstream
data is distilled and effectively incorporated into the trainable
parameter set: Θt = Concat(Θp1||Θp2||Θh), activating the
pre-trained model. The prompt-based blending representa-
tion promotes a balance between the original representations
and the learned prompt, resulting in adaptive control. Our
prompt blocks perform a generic architectural modification

that enables the pre-trained vision model to be adapted to a
downstream task with only a few additional parameters Θt.

Intuitively, LION is illustrated in Figure 2. The whole pro-
cess can be listed as follows: i) Blend the downstream input
image with the vision prompt using an adaptive coefficient
by feeding the downstream input image into the equilibrium
layer. ii) Feed the combined image to the frozen pre-trained
model to get the feature representations. iii) Input the down-
stream image into the equilibrium layer to produce vision
prompts, and map the prompts to the representation size to
create a combination. iv) Add a fully-connected layer to the
top layers of the pre-trained model for the final prediction.

Implicit Prompt Design
The Deep Equilibrium (DEQ) Model, as described in (Bai,
Kolter, and Koltun 2019), employs a single layer that finds
the fixed point of an iterative procedure. This layer, capa-
ble of expressing the entire deep network as an equilibrium
computation, is just as powerful as multiple stacked explicit
layers. Our proposed method, LION, leverages this capability
by using a single DEQ layer to adapt a pre-trained vision
model to downstream tasks through implicit layer training.
The downstream inputs are equipped with a single implicit
layer, implemented as a ResNet layer (He et al. 2016), which
is trained to learn task-specific prompts while the pre-trained
model remains frozen. Drawing inspiration from previous
studies (Islam et al. 2021; Lin et al. 2017; Yosinski et al.
2014), we aim to improve the feature representation by uti-
lizing high-frequency and low-frequency information as the
vision prompt. To attain this goal while reducing the parame-
ter storage burden, we propose using two-level prompt blocks,
located prior to the input layer and the head layer. Our design
of this lightweight architecture is supported by demonstra-
tions of its convergence ability in Theoretical Analysis.

Unlike a conventional network where the output is the acti-
vation from the L th layer, the output of an equilibrium layer
is the equilibrium point itself. Therefore, the forward evalua-
tion could be any procedure that solves for this equilibrium
point. Conventional deep neural networks, if they converge
to equilibrium, can be considered a form of fixed-point itera-
tions for the forward process:

z∗ = P(z∗, x; Θp) (4)

Our goal will be to compute the vector-Jacobian product
∂z∗(·)
∂(·)

T
y for some vector y, where (·) here is a stand-in for

any quantity we want to differentiate the fixed point with
respect to (i.e., the input x, or any parameters of the function
P , both of which of course will affect the final fixed point
z∗). Since this vector-Jacobian product is the key aspect to
integrating these DEQ layers within backpropagation, such a
routine allows us to integrate the DEQ layer within standard
automatic differentiation tools.

The derivation of the vector-Jacobian product largely mir-
rors that in previous sections, but we include the full deriva-
tion again here for completeness. Differentiating both sides
of the fixed point solution, we have:

∂z∗(·)
∂(·)

=

(
I − ∂P(z∗, x)

∂(z∗)

)−1
∂P(z∗, x)

∂(·)
(5)



In order to calculate the vector-Jacobian product, we need
the following information:(

∂z∗(·)
∂(·)

)T

y =

(
∂P(z∗, x)

∂(·)

)T (
I − ∂P(z∗, x)

∂(z∗)

)−T

y

(6)
The critical term of interest here is the solution in a linear

system, and we can utilize the proxy o = (I − ∂P(z∗,x)
∂(z∗) )−T y

to solve the fixed point equation and compute the final Jaco-
bian vector product.

Robust Training
We utilize the robust training mechanism for trainable param-
eters Θt motivated by (Frankle and Carbin 2019) to overcome
the instability during prompt tuning. The Lottery Ticket Hy-
pothesis in it posits that only a subset of a model’s parameters
is crucial for achieving good generalization, the rest are likely
to overfit. To address this, we employ a criterion to separate
crucial and non-crucial parameters and optimize them differ-
ently. Crucial parameters are updated with stochastic gradient
descent, while non-crucial parameters are constrained to re-
duce their ability to overfit.

Recent pruning methods (Frankle and Carbin 2019; Yeom
et al. 2021; Xia et al. 2021) suggest that crucial parameters
should have substantial magnitudes, as they play a key role in
network propagation. Furthermore, early optimization shows
that parameters with large gradients tend to contribute to gen-
eralized patterns (Molchanov et al. 2019), which are crucial
for learning from clean samples. Therefore, the parameters’
values and gradients should be considered when determin-
ing their importance. To capture this, we use the product of
their values and gradients as the criterion for determining
criticality. In mathematical terms, the criticality of parameter
θt from Θt = {θit}Mi=1 is represented as:

z(θt) =

∣∣∣∣ ∂L∂θt · θt
∣∣∣∣ , (7)

where L represents the loss function.
The equation shows that when the gradient or value of a

parameter is close to zero, its criticality is low, making it a
non-crucial parameter that is prone to overfit. On the other
hand, when the value of z(θt) is immense, θt is considered a
crucial parameter for learning basic and generalized patterns.
To control the number of crucial parameters, we introduce
a threshold τ , such that crucial parameters are selected and
represented as:

Θc
t = {θt|z(θt) ≥ τ}, (8)

Θn
t = {θt|z(θt) < τ}. (9)

Unlike pruning methods, we do not eliminate the non-
crucial parameters Θn

t . Instead, we adopt a distinct optimiza-
tion strategy. Here, the crucial parameters are updated in the
usual way, while the non-crucial parameters are restricted to
converge to zero for better generalization. Mathematically,
the update rule for θt ∈ Θc

t is represented as:

θt ← θt − η
∂L
∂θt

, (10)

The symbol η denotes the learning rate in the above equa-
tion. For the non-crucial parameters, we shrink them utilizing
strict regularization instead of minimizing the loss. In other
words, the update rule for θt ∈ Θn

t is:

θt ← θt − ηsign(θt). (11)

Optimization
For our training process, we keep the pre-trained parameters
Θf intact and only modify a limited set of parameters Θt.
This selective update of parameters makes our LION modular
and efficient - it allows us to utilize an existing pre-trained
vision model without having to modify or re-train it. Instead,
we add a small number of additional parameters specific to
each task, which can be formulated as:

θ∗t = argmin
θt

1

|D|

N∑
i=1

ℓ (H(z̃i), yi) (12)

With the pre-trained model frozen, we minimize the predic-
tion error using cross-entropy (CE) loss. The ability of our
LION to adapt a pre-trained vision model to a wide range
of tasks while maintaining a high level of accuracy makes it
a desirable solution for deployment in cloud services. The
potential benefits of reduced computational and storage over-
head, as well as the ability to offer real-time adaptation to
new tasks, make our method an ideal choice for cloud service
providers seeking to improve their offerings.

Theoretical Analysis
Theoretical setup. Our proposed LION aims to provide
prompts to the vision input x ∈ Rd and the representation
z ∈ Rh derived by the backbone. The whole network maps
x to the label y ∈ R with the loss l(y, ŷ) like cross-entropy,
etc. We consider the network to be fθ(x) = vTσ(Wx),
where v ∈ Rk, W ∈ Rk×d, and σ is an element-wise ac-
tivation function like ReLU. Assume that the random vari-
ables x, y ∼ P and the population loss can be denoted as
L(θ) = E [l(fθ(x), y)].

Note that we have only two prompt blocks in different
positions and architectures. We show that we can directly
add the vision prompts to the first layer of the pre-trained
model, while it cannot be implemented on the last layer.
We should utilize another MLP block to ensure the opti-
mal solution. Here we assume the σ to be ReLU: σ(xi) =
max(xi, 0). Given that the model is pre-trained with pa-
rameters θ̂ : (v̂pre, Ŵpre) which reach the optimal solu-
tion L(v̂, Ŵ ) = 0. With the single-layer DEQ as the vision
prompts network, we can derive the vision prompts with the
suppose that: xpro = Ax and zpro = Bz for some invertible
matrix A,B, where the corresponding label is unchanged:
ypro = y.
Proposition 1. There exists the vision prompt xpro = Ax
for invertible A and ypro = y that can minimize the popula-
tion loss: minWL(v̂,W ) = 0. However, the vision prompt
zpro = Bz may not be sufficient: there exists such B such
that the population loss is non-zero for any choice of the
parameter v: minvL(v, Ŵ ) > 0.



Proof. Let B̂, v̂ can reach the optimal solutions so that y =

v̂σ(Ŵx) for all x, y. Let W = ŴA−1, we have for all xpro

v̂σ(Wxpro) = v̂σ(ŴA−1Ax) = v̂σ(Ŵx) = y (13)

Therefore, the parameters v̂,W achieves L(v̂,W ) = 0.
Following is a counterexample showing that last-layer

prompts are impossible. Since σ is the element-wise ReLU
function, Ŵz has only positive entries for all z. Let B = −I ,
which is an invertible diagonal matrix full of -1. Then for any
v, we have vσ(Ŵzpro) = vσ(−Ŵx) = 0, so the expected
loss is positive. Therefore, minvL(v, Ŵ ) > 0.

Complexity Analysis
We also compare our complexity with several baselines to
demonstrate our superiority. For example, in the case of the
ViT model, there are N2 visual tokens as the input, each with
a dimension of d. We first examine MLP-based methods, such
as Adapter and Bias, which require 2dd̃ · L additional train-
able parameters in L layers for the projection from dimension
d to d̃. Next, for VPT, it requires nd additional parameters
in each layer due to the insertion of n prompts, which needs
nLd trainable parameters in total. Our LION only add two
prompt blocks with md̃ parameters (m ≪ d). In practice,
our proposed LION has demonstrated significant advantages
over Adapter and VPT, even with only slightly fewer param-
eters during the training stage in the below. This is due to the
unique way in which LION utilizes the input data, which al-
lows it to make more efficient use of the available parameters
and achieve better results. Additionally, LION has a more
flexible architecture that allows it to adapt to different types
of input data, making it more versatile and applicable to a
wide range of tasks.

Experiment
Experimental Setting
Dataset. CIFAR10 (Krizhevsky, Hinton et al. 2009) is a
dataset of 60,000 color images in 10 classes, with 6,000 im-
ages per class. There are 50,000 training images and 10,000
test images. CIFAR100 (Krizhevsky, Hinton et al. 2009) is a
dataset of the same size as CIFAR10, but it has 100 classes
containing 600 images each. There are 500 training im-
ages and 100 testing images per class. ImageNet100 (Deng
et al. 2009) is a subset of the ImageNet dataset contain-
ing 100 classes of natural images. Each class has between
500 and 1000 images for training and 50 to 100 for testing.
Flower (Nilsback and Zisserman 2008) is a dataset of images
of flowers from 5 different species. It contains 4242 images,
with 80-90 images per class. Stanford Dogs (Khosla et al.
2011) is a dataset of images of 120 breeds of dogs, with a
total of 20,580 images. Stanford Cars (Gebru et al. 2017) is
a dataset of cars, with a total of 16,185 images of 196 classes
of cars. The dataset is organized by make, model, and year.
Clothing (Tanaka et al. 2018) is a dataset containing images
of various clothing types.
Baselines. We compare LION to several commonly used pro-
tocols, including: 1) Retraining trains the entire vision model

from scratch; 2) Head Fine-tuning fine-tunes the last layers
of a pre-trained model while freezing the remaining layers
and retraining the head classifier; 3) Fine-tuning adjusts the
weights of a pre-trained model and retrains the head classi-
fier; 4) Adapter (Houlsby et al. 2019) adds a new adapter
structure to the transformer and updates only its parameters;
5) Bias (Zaken, Ravfogel, and Goldberg 2021) updates only
the bias terms of the parameters; 6) VPT (Jia et al. 2022) fine-
tunes the model by incorporating prompts as input tokens.
Implementation Details. We use the model pre-trained on
ImageNet as the initialization for the following tuning for a
fair comparison. Additionally, we extend our method to in-
clude CNN-based (ResNet-50, ResNet-101 (He et al. 2016))
and Transformer-based (ViT (Dosovitskiy et al. 2020), Swin
Transformer (Liu et al. 2022)) backbones. The implementa-
tion of baselines for additional backbones involves leveraging
the core idea presented in the original paper, and adapting
it to suit the specific capabilities of each new backbone ar-
chitecture. In experiments on the datasets above, we utilize
the Adam optimizer with a momentum of 0.9, batch size of
64, and learning rate of 1e-5. The whole experiments are
implemented on the NVIDIA V100 GPU with PyTorch.

Performances
Image Classification. Quantitative results can be seen in
Table 1 and Table 2. It can be observed that the proposed
LION performs the best overall on all six tasks when using
all four models as the backbones. The best performance for
each task is highlighted in bold. For example, on CIFAR100,
LION achieves an accuracy of 54.84 % when using ResNet-
50, and 58.98 % when using ResNet-101, the highest among
all the methods. For the transformer-based (i.e., ViT-B and
Swin-B) methods, LION achieves accuracy improvement of
1.36 %, 0.68 %, 0.51 %, 3.31 %, 0.38 % and 0.19 % over
other tuning methods, respectively on CIFAR10, CIFAR100,
ImageNet100, Flower, Dogs, and Cars datasets. Regarding
the maximum number of trainable parameters, the proposed
method has the lowest value among all the methods, with
only 0.097 M trainable parameters. It is also worth noting
that the performance of the other methods varies depending
on the task and the backbone model used. For example, while
VPT performs well on CIFAR100, it is not as effective on
other tasks. On the other hand, the adapter method performs
relatively well on the Flower and Dogs tasks, but not as well
on the other tasks. In summary, the proposed LION is the
most effective tuning method across all tasks and backbone
models, with the advantage of having the lowest number of
trainable parameters.
Long-tail Class Distribution. We perform experiments on
benchmark datasets that have a long-tail class distribution,
such as CIFAR10-LongTail and CIFAR100-LongTail. The
results of the imbalance ratio 50 and 100 are shown in Table 3.
Our proposed LION algorithm outperforms the best baseline,
VPT, under all the settings. Specifically, we observe a gain of
approximately 4% in validation accuracy, while reducing the
trainable parameters by 88%. This trend holds across other
settings as well. Additionally, when compared with VPT on
long-tailed CIFAR-10 with an imbalanced ratio of 100 under
ViT-B, LION achieves superior validation accuracy using



Backbone Method CIFAR10 CIFAR100 ImageNet100 Flower Dogs Cars Clothing Params

ResNet-50

Retraining 0.8281 0.5178 0.7088 0.8649 0.7942 0.6898 0.7649 23.529
Head-tuning 0.7627 0.4738 0.6167 0.8531 0.7713 0.6257 0.7324 0.277
Fine-tuning 0.8564 0.5271 0.7194 0.8942 0.8126 0.7548 0.7852 23.529
Adapter 0.8375 0.6021 0.7185 0.8702 0.8279 0.6816 0.7633 0.673
Bias 0.8319 0.5965 0.7003 0.8694 0.8316 0.7371 0.7803 0.494
VPT 0.8547 0.6289 0.7257 0.8876 0.8147 0.7459 0.7870 0.812
LION 0.8628 0.5484 0.7372 0.8976 0.8269 0.7642 0.7892 0.097

ResNet-101

Retraining 0.8357 0.5365 0.7275 0.8691 0.8015 0.7014 0.7892 43.713
Head-tuning 0.7689 0.4941 0.6287 0.8654 0.7786 0.6386 0.7641 0.461
Fine-tuning 0.8745 0.5487 0.7469 0.8989 0.8168 0.7715 0.8119 43.713
Adapter 0.8456 0.6233 0.7382 0.8745 0.8325 0.6895 0.7893 0.684
Bias 0.8517 0.6148 0.7249 0.8721 0.8421 0.7598 0.7894 0.517
VPT 0.8723 0.6319 0.7470 0.8898 0.8198 0.7581 0.8092 0.838
LION 0.8830 0.5898 0.7492 0.9024 0.8311 0.7762 0.8165 0.097

Table 1: The performance of LION and existing tuning baselines on six classification tasks using CNN-based pre-trained models.
Params represents the maximum number of parameters that can be trained. The unit of measurement for Params is M.

Backbone Method CIFAR10 CIFAR100 ImageNet100 Flower Dogs Cars Clothing Params

ViT-B

Retraining 0.8761 0.5592 0.7277 0.8735 0.8145 0.7165 0.7959 85.721
Head-tuning 0.7914 0.5124 0.6431 0.8617 0.8019 0.6522 0.7671 0.187
Fine-tuning 0.9035 0.6499 0.7544 0.9003 0.8298 0.7934 0.8356 85.721
Adapter 0.8612 0.6319 0.7411 0.8777 0.8317 0.6934 0.8229 0.372
Bias 0.8898 0.6109 0.7326 0.8709 0.8348 0.7295 0.8210 0.215
VPT 0.9049 0.6689 0.7596 0.9013 0.8367 0.7682 0.8378 0.523
LION 0.9077 0.6541 0.7612 0.9054 0.8361 0.7991 0.8397 0.124

Swin-B

Retraining 0.8896 0.5730 0.7316 0.8794 0.8357 0.7233 0.8112 86.954
Head-tuning 0.7991 0.5265 0.6558 0.8775 0.8150 0.6614 0.7739 0.295
Fine-tuning 0.9166 0.6631 0.7710 0.9056 0.8359 0.8016 0.8398 86.954
Adapter 0.8795 0.6511 0.7498 0.8812 0.8341 0.6952 0.8277 0.331
Bias 0.8971 0.6118 0.7401 0.8749 0.8442 0.7567 0.8261 0.287
VPT 0.9132 0.6816 0.7781 0.9026 0.8393 0.7982 0.8434 0.686
LION 0.9189 0.6705 0.7769 0.9061 0.8455 0.8027 0.8431 0.242

Table 2: The performance of LION and existing tuning baselines on six classification tasks using Transformer-based pre-trained
models. Params represents the maximum number of parameters that can be trained. The unit of measurement for Params is M.

only 4.2x fewer trainable parameters. When evaluated under
Swin-B, LION outperforms VPT on long-tailed CIFAR-10
with imbalanced ratios of 50 and 100, while also reducing
the trainable parameters by 64.7%.

Few-shot Learning. We perform experiments on benchmark
datasets, such as Pets (Parkhi et al. 2012), Food-10 (Bossard,
Guillaumin, and Van Gool 2014), Cars (Gebru et al. 2017),
and Flower (Nilsback and Zisserman 2008) with eight exam-
ples per class, which are widely used for evaluating few-shot
learning algorithms. Our experimental results, shown in Ta-
ble 3, demonstrate that LION achieves state-of-the-art results
on average, while using the fewest trainable parameters. It
is worth noting that although VPT outperforms our method
on some datasets for the image classification task, we still
achieve the best performance on all datasets in this scenario,
which highlights our method’s advantage. These observations
confirm the capability and efficiency of our method in the

low-data regime and further verify the effectiveness of the
lightweight implicit vision prompt design.

Ablation Study
With the ImageNet pre-trained ResNet-50 and Vit-B, we
perform extensive ablation studies to analyze the developed
LION systematically. We introduce three model variants as
follows: (1) LION-P1 removes the equilibrium layer before
the pre-trained backbone to activate low-level features, i.e.,
P1 in the Eq. 1. (2) LION-P2 removes the equilibrium layer
behind the pre-trained backbone to activate high-level fea-
tures, i.e., P2 in the Eq. 2. (3) LION-R removes the robust
training mechanism with the standard optimization for all
the parameters, i.e., optimization in Eq. 8 and Eq. 9. The
results of these model variants are summarized in Table 4.
We have the following observations. First, our LION outper-
forms LION-P1 and LION-P2, which indicates that implicit



Backbone Method CIFAR10-LongTail CIFAR100-LongTail Fine-Grained Few-Shot Params
IR100 IR50 IR100 IR50 Pets Food-101 Cars Flower

ResNet-50

Head-tuning 0.7136 0.7358 0.3569 0.3891 0.6881 0.6013 0.3846 0.7218 0.277
Fine-tuning 0.7638 0.7962 0.4157 0.4468 0.7340 0.6531 0.4184 0.7735 23.529
VPT 0.7721 0.7956 0.4192 0.4510 0.7385 0.6522 0.4189 0.7790 0.812
LION 0.7831 0.8114 0.4328 0.4699 0.7412 0.6584 0.4203 0.7814 0.097

ResNet-101

Head-tuning 0.7268 0.7496 0.3751 0.4036 0.7027 0.6159 0.4008 0.7542 0.461
Fine-tuning 0.7754 0.8083 0.4309 0.4681 0.7593 0.6694 0.4325 0.8058 43.713
VPT 0.7881 0.8068 0.4356 0.4710 0.7603 0.6715 0.4351 0.8134 0.838
LION 0.8021 0.8294 0.4662 0.4982 0.7635 0.6783 0.4470 0.8175 0.097

ViT-B

Head-tuning 0.6849 0.7304 0.3871 0.4315 0.7245 0.6447 0.4139 0.7691 0.187
Fine-tuning 0.7692 0.7834 0.4778 0.5243 0.7719 0.6834 0.4498 0.8217 85.721
VPT 0.7631 0.7806 0.4785 0.5254 0.7731 0.6894 0.4524 0.8412 0.523
LION 0.7829 0.8008 0.5024 0.5517 0.7822 0.6911 0.4588 0.8507 0.124

Swin-B

Head-tuning 0.6947 0.7485 0.4118 0.4568 0.7324 0.6529 0.4309 0.7814 0.295
Fine-tuning 0.7852 0.7995 0.4826 0.5491 0.7786 0.6764 0.4625 0.8386 86.954
VPT 0.7725 0.8011 0.4910 0.5482 0.7797 0.6979 0.4692 0.8497 0.686
LION 0.8006 0.8231 0.5276 0.5708 0.7901 0.6976 0.4773 0.8526 0.242

Table 3: Results of extensive experiments on the long-tailed, and few-shot datasets to validate the ability against class imbalance
and sample scarcity. IR represents the imbalance ratio and the unit of measurement for Params is M.

Method CIFAR10 CIFAR100 INet100

R
es

N
et LION-P1 0.8501 0.5349 0.7146

LION-P2 0.8239 0.5136 0.6989
LION-R 0.8516 0.5356 0.7197
LION 0.8628 0.5484 0.7372

V
iT

-B

LION-P1 0.8876 0.6413 0.7492
LION-P2 0.8527 0.6304 0.7186
LION-R 0.8896 0.6309 0.7437
LION 0.9077 0.6541 0.7612

Table 4: Ablation study on important inner modules under
two different backbones. INet100 represents ImageNet100.

vision prompt blocks work for vision semantic information
activation. Second, LION-P2 obtains much worse than LION,
showing that the high-level activation is vital for the vision
prompt tuning. Third, the robust training mechanism allows
better network optimization, as shown by LION-R’s lower
performance of 2% compared to LION, validating the superi-
ority of robust training for better optimization.

Sensitivity Analysis
In Figure 3, we investigate the sensitivity of two hyper-
parameters: τ in the robust training mechanism, which sepa-
rates the crucial and non-crucial parameters in Eq. 8 and Eq.
9. Moreover, we also investigate the number of the layer in
DEQ by stacking the single layer attracted by its striking per-
formances. We first vary τ in {0.2, 0.4, 0.6, 0.8} with other
parameters fixed. As τ rises, the performance first increases
and then decreases a little. The potential reason is that too
large τ could filter the essential parameters for optimization.
We can observe that the performance of ours is not sensitive
to τ in the range of [0.4, 0.6], and we can set it to any value in

Figure 3: Sensitivity analysis on two hyper-parameters.

that interval. Further, we changed the number of layers from
1 to 4 with other parameters fixed. Obviously, our method
can achieve a slight performance gain with the layer ranging
from 1 to 4 but at the cost of several times the computation
time. Therefore, τ and the layer number are set to 0.4 and 1
as default, respectively.

Conclusion
In conclusion, we propose an efficient vision tuning method
named LION that addresses the heavy computational costs.
By drawing inspiration from deep implicit models with stable
memory costs, LION only requires two equilibrium implicit
layers in two ends of the pre-trained main backbone with
parameters frozen. Additionally, pruning the parameters in
these two layers according to the lottery hypothesis reduces
training parameters. LION can obtain higher performance
with a smaller parameter size than the state-of-the-art baseline
VPT, especially under challenging scenes. Our experiments
demonstrate that LION has a good generalization perfor-
mance, making it an easy way to boost applications in the
future. Overall, LION provides an economical solution for
vision tasks and is promising for a wide range of datasets.
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