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Abstract

Previous face Presentation Attack Detection (PAD) methods
aim to improve the effectiveness of cross-domain tasks. How-
ever, in real-world scenarios, the original training data of the
pre-trained model is not available due to data privacy or other
reasons. Under these constraints, general methods for fine-
tuning single-target domain data may lose previously learned
knowledge, leading to the issue of catastrophic forgetting. To
address these issues, we propose a Multi-Domain Incremen-
tal Learning (MDIL) method for PAD, which not only learns
knowledge well from the new domain but also maintains the
performance of previous domains stably. To this end, we pro-
pose an Adaptive Domain-specific Experts (ADE) framework
based on the vision transformer to preserve the discriminabil-
ity of previous domains. Moreover, we present an asymmetric
classifier to keep the output distribution of different classifiers
consistent, thereby improving the generalization ability. Ex-
tensive experiments show that our proposed method achieves
state-of-the-art performance compared to prior methods of in-
cremental learning. Excitingly, under more stringent setting
conditions, our method approximates or even outperforms
DA/DG-based methods.

Introduction
In recent years, face recognition (FR) techniques have been
widely exploited in different application scenarios, such as
smartphone login, financial payment, access control, etc.
While FR systems may suffer from various presentation
attacks (PAs), e.g., printed photos, video replay, and 3D
masks, which seriously threaten the credibility of facial in-
formation and bring great challenges to public security man-
agement. To address these issues, various PAD methods
have been proposed, including the hand-crafted methods
(Freitas Pereira et al. 2012; Patel, Han, and Jain 2016) and
the deep learning methods based on auxiliary supervision
(Atoum et al. 2017; Liu et al. 2019).

Although these methods have achieved promising results
under intra-dataset scenarios, they neglect domain discrep-
ancy across different domains and may encounter perfor-
mance degradation when adapting to new domains. To mit-
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Figure 1: The comparison of different methods. DA-based
methods align the unlabeled target domain with source do-
mains. DG-based methods eliminate dependency on the tar-
get domain and test directly on the unseen target domain.
MDIL-based methods aim to obtain satisfactory results from
previous domain data without revisiting old domain data.

igate this problem of domain shift, recent studies introduce
domain adaptation (DA) (Jia et al. 2021; Wang et al. 2019)
and domain generalization (DG) (Zhou et al. 2021; Chen
et al. 2021) into the field of PAD. As shown in Figure 1, DA-
based methods focus on transferring performance on the un-
labeled target domain, but they may affect the performance
of the source domain. In contrast, DG-based methods aim
to achieve out-of-distribution generalization by using multi-
source domain data for model learning simultaneously.

In general, DA/DG-based methods address the domain
transfer problem. But in most practical scenarios, part or
all of the data in the source domain cannot be accessed
by data privacy. MDIL-based methods solve the problem
of mitigating the catastrophic forgetting of the original do-
main data information when only using the target domain
data for training. As shown in the third column in Fig-
ure 1, MDIL aims to train a single model on sequential non-
stationary domains without revisiting the previous domain
data. In practical PAD application, since an initially trained
model fails to identify novel attack types from unknown do-
mains, a straightforward way to solve this problem is to re-
train the model from scratch on both old and new domain
data. However, model retraining is computationally costly
because it requires storing large amounts of previous domain
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data. Therefore, it is likely that MDIL may be more suitable
for PAD scenarios with a potential domain transfer, as it can
reduce the data storage requirements of model retraining.

However, there are two main challenges with MDIL-PAD.
(1) Domain gap. Due to the diversity of data collection
environments and the ongoing emergence of novel attack
types, domain incremental learning task for PAD simultane-
ously couples the challenges of domain incremental learning
(DIL) and class incremental learning (CIL). Larger domain
gaps lead to more severe forgetting. (2) Domain agnostic.
A common and practical constraint in DIL is that domain
indexes are not provided for inference. So we can not tackle
this problem by training a separate, independent model for
each domain. L2P(Wang et al. 2022b) and S-Prompts(Wang,
Huang, and Hong 2022) discarded the need for task indexes
by designing a query-key mechanism or clustering strategy
to automatically select relevant prompts for each instance.
However, these strategies involve additional computational
overhead. They will be discussed in appendix B.

To this end, we propose a novel multi-domain incremen-
tal framework for PAD that leverages the multi-experts to
instruct the model adaptively. In our method, the Adap-
tive Domain-specific Experts (ADE) blocks maintain the
isolation of domain-specific parameters and the sharing of
domain-invariant parameters, which is beneficial for miti-
gating catastrophic forgetting. Moreover, we first design a
flexible Instance-wise Router (IwR) module for selecting the
relevant expert. During inference, the domain-agnostic in-
stances can obtain the associated domain index based on the
similarity with the domain centers. Then, the appropriate in-
dex guides the instance into the ADE blocks with the cor-
responding expert branch by gating mechanism. Consider-
ing the feature separation of spoof samples among different
domains, we consolidate the multi-classifiers into a unified
asymmetric classifier. This design helps to keep the con-
sistency of the predicted probability distribution (PPD) of
live samples from different classifiers. Furthermore, the pro-
posed method can adapt to the unknown domain and operate
for the dynamically added domains in end-to-end training.

• We propose an adaptive domain-specific experts frame-
work for PAD in an incremental update pattern, which
can maintain satisfactory results in both previous and
new domains. Besides, an innovative IwR is designed to
deal with domain-agnostic instances.

• Considering the sparsity and discreteness of spoof sam-
ples, an asymmetric classifier is designed to solve the
problem of PPD of live samples inconsistent in open ap-
pending domains.

• Extensive experiments are conducted on widely used
benchmark datasets, which demonstrate the effective-
ness of the proposed method and also illustrate that our
method achieves state-of-the-art performance.

Related Work
Face Presentation Attack Detection
Face PAD aims to detect spoof attacks of various types and
improve the security of face recognition systems. With the

development of deep learning, many researchers (Wang et al.
2020b; Zhang et al. 2021) utilize the convolutional neural
network to enhance the extraction ability of face representa-
tion. Considering the lack of sufficient supervision, some ap-
proaches (Liu, Jourabloo, and Liu 2018; Liu et al. 2019) de-
sign different auxiliary supervisions to improve the perfor-
mance of classification, such as depth map (Yu et al. 2021),
reflection map (Kim et al. 2019), and rPPG signals (Hu et al.
2021). These works achieve promising results with intra-
data but neglect the domain gap across different domains.

To achieve better generalized performance in the target
data, DA (Jia et al. 2021; Li et al. 2018; Wang et al. 2019,
2020a) and DG (Chen et al. 2021; Jia et al. 2020; Liu et al.
2021a,b; Shao et al. 2019) are introduced into the PAD
area. SDA (Wang et al. 2021a) designs a domain adaptor
to utilize the unlabeled test domain data at inference. GDA
(Zhou et al. 2022b) stylizes the unlabeled target data to the
source-domain style via image translation for feature align-
ment. In contrast, DG aims to learn a generalized represen-
tation from multi-source domains, independent of the tar-
get domain. SSDG (Jia et al. 2020) leverages asymmetric
triplet loss and adversarial learning to regulate live samples
and distinguish spoof samples from source domains. SSAN
(Wang et al. 2022a) designs style assembly layers to com-
bine indistinguishable content features and domain-specific
style features.

Nevertheless, the above methods can effectively narrow
the gap between the source domain and the target domain,
they only focus on the transfer performance of the target do-
main and neglect the source domain.

Incremental Learning
In the application of multiple domains, the training data
of the original domain are generally inaccessible due
to data privacy, and when learning a new domain, the
model may catastrophically forget what it learned previ-
ously(Kirkpatrick et al. 2017). Incremental Learning (IL)
is introduced to alleviate the problem of the long-studied
pattern. There are mainly three categories: regularization-
based, replay-based, and parameter isolation-based meth-
ods. Regularization-based methods (Zenke, Poole, and Gan-
guli 2017; Aljundi et al. 2018) can consolidate these weights
of previous tasks according to their importance. Replay-
based techniques store previous experience by implicitly
generating replays (Chenshen et al. 2018; Ostapenko et al.
2019) or explicitly displaying original samples (Hou et al.
2019; Wu et al. 2019) to preserve the representation abil-
ity of previous domains. As for parameter isolation meth-
ods (Mallya and Lazebnik 2018; Rebuffi, Bilen, and Vedaldi
2018), allocating specific model parameters to each task
maintains maximal stability by fixing the parameter sub-
sets of previous tasks. LwF (Li and Hoiem 2017) lever-
ages knowledge distillation to maintain the performance of
older tasks after adding new tasks. Inspired by the VPT (Jia
et al. 2022), some prompting methods (Douillard et al. 2022;
Wang, Huang, and Hong 2022) are proposed to alleviate the
performance degradation of previous domains by introduc-
ing a small number of parameters. L2P (Wang et al. 2022b)
utilizes the prompt pool to store encoded knowledge and
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Figure 2: The overall framework of our proposed method. Our network is divided into the first M standard vision transformer
blocks as shared encoder fs and the last (N − M ) ADE blocks as expert decoder fe. The processing steps are as follows: 1)
Images from t-th domain are first embedded to tokens and then processed by the fs for generating gt. 2) The first embedding of
gcls is fed to IwR for learning the domain center ct in the training phase and predicting the gate signal to choose the appropriate
expert branch in ADE blocks at test time. 3) The result is predicted by the proposed asymmetric classifier network fc.

presumes the prompt tokens into the input tokens. In the
terms of PAD, the article (Pérez-Cabo et al. 2020) intro-
duces an IL framework into PAD for the first time, which
follows the few-shot learning paradigm. For novel face spoof
attack types, the method (Rostami et al. 2021) is proposed to
treat them as anomalies and correctly classify them via ex-
perience replay. (Guo et al. 2022) propose the FAS-wrapper,
which employs a regularization-based approach to facilitate
knowledge transfer from pre-trained models for MDL. (Cai
et al. 2023) propose the rehearsal-free method for Domain
Continual Learning of FAS, which deals with catastrophic
forgetting and unseen DG problems simultaneously.

Unlike these works, we design a buffer-free dynamic IL
framework containing the learnable domain-specific infor-
mation to mitigate the catastrophic forgetting of previous do-
mains. Furthermore, we propose a multi-expert framework
for MDIL, which preserves the parameter independence to
learn the corresponding domain knowledge adaptively.

Methodology
In multi-domain incremental learning, T domains are pre-
sented sequentially, defined as D = {(D1, · · · ,DT )}.
Learning follows incremental steps, where each step in-
volves learning an existing model for the current domain.
The t-th input domain is defined as Dt = {(xi

t, y
i
t)}

nt
i=1,

where xi
t ∈ X represents the input sample, yit ∈ Y is the

corresponding label, and nt is the number of samples in Dt.
We aim to train a single PAD model M(X ) = Y , that pre-
dicts y = M(x) for any test sample x. At any learning
step t, data from previous domains {(D1, · · · ,Dt−1)} are
not available for training.

Overview
We propose the Adaptive Domain-specific Experts (ADE)
framework for coping with the performance degradation in

previous domains, As shown in Figure 2, it consists of three
key components: the ADE block with multiple experts, the
Instance-wise Router (IwR), and an asymmetric classifier.

Specifically, we define an image sample from datasets as
x ∈ RH×W×C , where H , W represent the length and width
of the image, respectively, and C is the number of channels.
The image is first reshaped and split into a sequence of 2D
patches xp ∈ RL×S2×C , where S is the side length of each
image patch and L = HW/S2 represents the number of
patches. At the start of training, the sequence of embeddings
xp are first fed into the linear projection to generate the im-
age tokens xp ∈ RL×S2×C → xt ∈ R(L+1)×D, where D is
the embedding dimension, and the extra dimension on L is
the corresponding class token.

Based on ViT (Dosovitskiy et al. 2020), our network con-
sists of total N transformer blocks. We divide it into the first
M blocks as shared encoder fs and the last (N −M ) blocks
as expert decoder fe, while the whole fe are designed by
ADE blocks. Next, the image tokens xt from t-th domain
are sent to the shared encoder fs with parameters Ws1 :

gt = fs(xt;Ws1), (1)

the first embedding in gt ∈ R(L+1)×D is defined as gcls ∈
RD. Then, we propose the IwR module to predict the gate
signal to choose the most appropriate domain-specific expert
branch for ADE blocks when testing the domain-agnostic
instance. And we update ADE blocks fe with parameters
Ws2 ,Wet of the corresponding expert branch, which keeps
the different domains of knowledge independent.

zt = fe(gt, t;Ws2 ,Wet), (2)

where zt ∈ R(L+1)×D is the output feature of the t-th ex-
pert branch. After getting the feature zt, we split the first
embedding of zt as zcls ∈ RD. The final result pt is gener-
ated by the proposed asymmetric classifier network fc with
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Algorithm 1: The Procedure of MDIL-PAD.

Require: Sequential domain dataset Dt = {(xt
i, y

t
i)}nt

i=1.
1: \\Training:
2: for t = 1, · · · , T do
3: Reload Ws1 , Ws2 , θl from t − 1 step. Random initialize

Wet , ct, θst . Freeze Ws1 .
4: for i = 1, · · · ,MaxEpoches do
5: Forward pass xt via Ws1 , Eq. 1
6: Compute domain-specific loss Lgate by Eq. 5
7: Forward pass gt via Ws2 , Wet , Eq. 2
8: Forward pass zcls by θl, θst , Eq. 3
9: Compute classifier loss Lcls by Eq. 6

10: Compute total loss via Lall Eq. 7
11: end for
12: Discard training data Dt.
13: end for
14: \\Inference:
15: Forward pass xt via Ws1 , Eq. 1
16: Forward pass gcls via trained Router fr , Eq. 8
17: Forward pass gt via Ws2 , Wet , Eq. 2
18: Forward pass zcls via θl, Eq. 3

parameters θl, θst :

pt = fc(zcls, t; θl, θst). (3)

Note that when training on different domains, we keep the
shared encoder fs frozen, only fine-tuning the expert de-
coder fe and the asymmetric classifier network fc.

Adaptive Domain-Specific Experts
To mitigate the performance degradation of previous do-
mains, we design the domain-specific experts framework.
This framework can keep the parameter independent among
different domains while sharing the knowledge between
similar domains. Besides, the proposed framework can
adaptively deal with the domain-agnostic sample in the in-
ference stage. In this section, we describe the designed ADE
blocks and the instance-wise router in detail. The whole pro-
cess of the proposed framework is described in Algorithm 1.

ADE Block. Compared to the original ViT blocks, we
dynamically extend the original MLPs to multi domain-
wised experts, which have the same architecture Et(x) =
MLP (x). Specifically, we define the sharing of param-
eters and the t-th expert parameters in the ADE block
as Ws2 ,Wet , respectively. This design decouples the net-
work parameters into a set of domain-invariant and domain-
specific parameters. Thus, they can learn domain-specific
knowledge separately without interference while leverag-
ing domain-invariant knowledge to consolidate the gen-
eralization capability and alleviate catastrophic forgetting.
Equipped with the learnable gating mechanism, the pro-
posed ADE block can adaptively choose the domain-related
expert in inference. The output zt is obtained by Eq. 2.

When learning a new domain Dt+1 in step t+1, we keep
the previously trained parameters Wej (1 ≤ j ≤ t) frozen
and update the sharing of parameters Ws2 and the newly
added domain parameters Wet+1

according to the process:

zt+1 = fe(gt+1, t+ 1;Ws2 ,Wet+1
). (4)

Note that the domain index(gate signal) t is known during
the training phase, while it is unknown at test time.

Instance-Wise Router. As mentioned above, we employ
isolated experts to maintain knowledge independence across
different domains, which brings up a critical question: how
to automatically choose domain-related experts during the
inference phase? To deal with this problem, we design a
learnable gating mechanism, Instance-wise Router (IwR), to
assign each domain-agnostic instance to a domain-related
expert branch.

During the training phase on the current incremental do-
main Dt, we aim to find a domain center that aligns with
the latent feature gcls ∈ RD. We assume that images from
the same domain have a similar distribution on the high-
level feature space projected by a well-pretrained network.
Specifically, we denote the domain center as ct ∈ RD and
the instance-wise router network as fr. As shown in Fig-
ure 2, the corresponding domain center ct is expected to be
close to the feature center of the current domain. Thus, we
achieve this goal by minimizing a cross-entropy loss:

Lgate = − 1

nt

nt∑
i=1

log
esim(gi

cls,ct)/τ

1− esim(gi
cls,ct)/τ

, (5)

where nt is the number of t-th domain images, and τ is a
temperature coefficient. Besides, sim(a, b) = a·b

∥a∥∥b∥ is the
cosine similarity calculation.

Asymmetric Classifier
Considering the design of the classifier for multi-branch
network architecture, one way to avoid catastrophic forget-
ting is to construct multiple separate, independent classi-
fiers {[θl1 , θs1 ], · · · , [θlT , θsT ]}, and each classifier corre-
sponds to a domain-related expert branch. However, out-
puts of the PAD model are commonly expected to be pre-
dicted probability of live pl = fc(zcls, t; θlt ), differenti-
ated by a threshold. However, this approach makes it hard to
ensure consistency of the predicted probability distribution
(PPD) across different classifiers. Thus, the setting of us-
ing the same threshold for multiple classifiers easily causes
poor performance. Another alternative approach is to design
a shared single classifier. Although it gets rid of inconsis-
tencies of PPD, it still suffers from catastrophic forgetting.

Inspired by (Jia et al. 2020), the feature distribution of
the live samples is compact while that of the spoof samples
present is dispersed across domains. It suggests that the do-
main gap is mainly reflected in the spoof samples. Therefore,
we consolidate the multi-classifiers into a unified asymmet-
ric classifier. Specifically, we use a shared class center θl for
live samples across different domains, while the spoof sam-
ples from different domains are regarded as an individual
category. As shown in Figure 3, the asymmetric classifier
{θl, θs1 , · · · , θsT } contains T + 1 categories. The predicted
probability of live pl = fc(zcls; θl) is domain-independent,
and the PPD significantly consistent due to the unified deci-
sion boundaries. For training data with domain index t, the
output can be formulated by Eq. 3.
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Figure 3: The architecture of the asymmetric classifier.

The first category refers to the live face, and the other
categories are face spoof samples of various domains. The
unified classifier fc is optimized by the cross-entropy loss
function:

Lcls = − 1

nt

nt∑
i=1

yitlog(p
i
t) + (1− yit)log(1− pi

t). (6)

The total training loss function contains two parts:

Lall = Lcls + αLgate, (7)

where α is a scaling factor and Lgate set to 1.0 for all experi-
ments. The proposed algorithm is optimized by continuously
fine-tuning new domain data.

Inference Phase
The proposed method can adaptively solve the domain-
agnostic incremental problem. Furthermore, it can be per-
formed for the open appending domains in the end-to-end
network. For a query domain-agnostic instance x, we obtain
the feature gcls ∈ RD from pretrained shared encoder fs.
Then we calculate the feature similarity between gcls and
well-trained domain centers ci in IwR. The domain index
with the highest similarity is selected as the gate signal:

t = argmax
i⊆[1,T ]

fr(gcls; ci). (8)

According to the predicted domain index t, we perform the
corresponding expert branch on embedding to generate the
final output of face prediction.

Experiment
Datasets. We evaluate the effectiveness of our method on
five PAD datasets: OULU-NPU (Boulkenafet et al. 2017) (O
for short), CASIA-MFSD (Zhang et al. 2012) (C for short),
Idiap ReplayAttack (Chingovska, Anjos, and Marcel 2012)
(I for short), MSU-MFSD (Wen, Han, and Jain 2015) (M for
short), and SiW (Liu, Jourabloo, and Liu 2018) (S for short).
These datasets contain face samples from different capture
devices, illumination, background, and spoof attack types,
which results in great distribution discrepancies.

Implementation Details. We train our method using the
Stochastic Gradient Descent (SGD) optimizer with a mo-
mentum of 0.9, an initial learning rate of 0.01, and a batch
size of 48. Input images are resized to 224×224. To compare
fairly, we adopt the same network ViT-B/16 (Dosovitskiy
et al. 2020) across all methods in Table 1. Specifically, we
reimplement LwF (Li and Hoiem 2017) by utilizing the ViT.
For DyTox (Douillard et al. 2022) and S-iPr(Wang, Huang,
and Hong 2022), we use their official implementations by
tuning their block number to 12 since the original paper set
it to 6, and we maintain the same settings for all experiments.

Evaluation Metrics. Following the work of (Jia et al.
2020), we utilize the Half Total Error Rate (HTER) and Area
Under Curve (AUC) to evaluate the performance. To quan-
tify the overall performance, similar to (Kanakis et al. 2020),
we define the average decrease in HTER of each task t with
respect to the multi-domain performance b as ∆m%. For the
model q, the ∆m% is calculated by:

∆m% =
1

T

T∑
t=1

HTERb,t −HTERq,t

1−HTERb,t
. (9)

Lower ∆m% indicates less performance drop in previous
domain.

Comparison to the State-of-the-Art Methods
To validate the effectiveness of our proposed approach, we
compare it with other IL baselines. Joint training (JT) is
trained with all domain datasets and considered an upper-
bound performance. Fine-tuning (FT) is optimized on the
new domain without any explicit effort to mitigate forget-
ting, which is considered a lower-bound performance. Fea-
ture extraction (FE) freezes all backbone parameters and just
trains the fully connected (FC) layer of a new domain.

Results of 4-Domain Incremental Settings. In this sec-
tion, we first construct a model on dataset M in step 1. Then
the same model is optimized by dataset C in step 2. Sub-
sequently, we fine-tune the model on new datasets with the
domain shift I and O in steps 3 and 4 and evaluate the re-
sults from previous domains. As shown in Table 1, we make
the following observations. (1) Compared with other gen-
eral methods, the proposed approach effectively mitigates
the performance degradation of previous domains. Based on
FT, our method obtains significant improvements of 15.40%
and 18.83% on dataset M in step 2 and step 3, respec-
tively. In addition, the newly supplemented domain in dif-
ferent steps also maintains optimal performance. (2) Com-
pared with other IL-based methods, our method achieves the
minimum average drop ∆m% on previous domains under
various steps. And in longer steps like steps 3 and 4, our
method outperforms other methods, showing that our pro-
posed method can retain different domains of knowledge
more persistently by constructing domain-specific experts.

Results of Cross-Attack-Type Incremental Settings. In
this section, we focus on the larger domain gap caused by the
absence of overlapping attack types in sequence domains.
Specifically, we exclude Print/Replay type attacks from SiW
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Methods Step 2 (M→C) Step 3 (M→C→I) Step 4 (M→C→I→O)

M C ∆m% M C I ∆m% M C I O ∆m%

JT 1.71 0.00 - 1.03 1.21 0.00 - 5.15 1.38 1.80 2.16 -
FT 21.92 0.00 10.28 23.24 23.74 0.01 15.09 16.64 33.94 25.56 0.64 16.94

FE 11.85 0.00 5.16 15.06 4.86 0.00 5.96 19.62 11.54 20.77 2.16 11.22
LwF (Li and Hoiem 2017) 20.06 0.02 9.34 24.17 23.56 0.00 15.33 12.13 23.54 27.50 0.54 13.59

DyTox (Douillard et al. 2022) 9.24 1.00 4.33 21.11 3.25 0.70 7.68 19.93 4.40 24.14 12.14 12.90
L2P (Wang et al. 2022b) 8.49 0.15 3.52 16.38 4.13 0.84 6.44 17.36 11.59 15.98 0.92 9.10

S-iPr. (Wang, Huang, and Hong 2022) 3.20 0.00 0.76 6.20 1.13 2.09 2.41 11.35 2.38 2.09 3.01 2.18
Ours 6.52 0.00 2.45 5.41 1.57 0.00 1.60 10.62 2.54 1.44 0.31 1.17

Table 1: Comparison to other IL methods. Arrows indicate the order of learning. We measure both current performance and
relative performance by HTER (%) and ∆m%, respectively. Lower ∆m% indicates better overall performance.

Methods Step 2 (S-P→O-R) Step 2 (O-P→S-R)

S-P O-R ∆m% O-P S-R ∆m%

JT 0.00 0.63 - 1.02 0.12 -
FT 31.17 2.77 16.66 28.20 1.78 14.56

FE 9.92 2.47 5.89 6.74 0.65 3.15
Ours 0.65 0.63 0.33 6.65 0.28 2.92

Table 2: Evaluation of cross-domain and cross-attack-
type settings among SiW-Replay/SiW-Print (S-R/S-P) and
OULU-Replay/OULU-Print (O-R/O-P) datasets.

and form a new dataset as SiW-Replay/SiW-Print. Similarly,
we construct OULU-Replay/OULU-Print dataset. Then we
conduct incremental experiments in cross-domain and cross-
attack-type settings. For example, in the S-P→O-R setting,
the model is trained on SiW-Print in step 1 and on OULU-
Replay in step 2. As shown in Table 2, we can observe that
the proposed method reduces the performance degradation
by 16.33% and 11.64% in terms of S-P→O-R and O-P→S-
R compared with FT, respectively. The results demonstrate
the excellent anti-forgetting ability of our method.

Results of Cross-Domain in Incremental Settings. In
this section, We conduct cross-dataset testing in common
Leave-One-Out (LOO) settings of PAD domains. The com-
parison PAD methods include DA-based and DG-based
methods. In contrast, IL settings have more stringent con-
ditions that the model has to be trained on three datasets
domain by domain, while DA-based and DG-based meth-
ods give the joint training performance, where the model
is trained simultaneously on three datasets. It should be
noted that sequential training will theoretically affect the
ability of the model to learn a generalizable representation
due to catastrophic forgetting. Nevertheless, as shown in
Table 3, our approach outperforms IL-based methods and
can achieve comparable performance with DA-based and
DG-based methods in cross-domain settings, which demon-
strates the effectiveness of alleviating catastrophic forgetting
and preserving generalization capability.

Figure 4: The results of different positions of IwR with dif-
ferent classifiers.

(a)  Multi-Classifiers (b)  Asymmetric Classifier

Figure 5: Visualization of PPD from Multi classifiers (a) and
Asymmetric classifier (b).

Ablation Studies

Ablations of Different Positions of IwR. We insert the
IwR module into the ViT network, which is divided into the
first M blocks and the last N − M blocks, named shared
encoder fs and expert decoder fe, respectively. Here we aim
to evaluate the influence of value M with different classi-
fiers. Figure 4 illustrates the results in step 4. We can observe
that the best performance is achieved by inserting IwR into
the 8th block. The main reason is that the deeper shared en-
coder fs brings more compact features within each domain
for IwR, while deeper expert decoder fe with ADE blocks
provides a stronger potential for learning domain-specific
knowledge separately and domain-invariant knowledge se-
quentially. Therefore, we trade off the performance of each
module and set M to 8 for all experiments.
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Methods O&C&I to M O&M&I to C O&C&M to I I&C&M to O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

DA
SDA (Wang et al. 2021a) 15.40 91.80 24.50 84.40 15.60 90.10 23.10 84.30

VLAD (Wang et al. 2021b) 11.43 96.44 20.79 86.32 12.29 92.95 21.2 86.93
GDA (Zhou et al. 2022b) 9.20 98.0 12.20 93.00 10.00 96.00 14.40 92.60

DG

MADDG (Shao et al. 2019) 17.69 88.06 24.50 84.51 22.19 84.99 27.98 80.02
D2AM (Chen et al. 2021) 12.70 95.66 20.98 85.58 15.43 91.22 15.27 90.87
FGHV (Liu et al. 2022) 9.17 96.92 12.47 93.47 16.29 88.79 13.58 93.55

AMEL (Zhou et al. 2022a) 10.23 96.62 11.88 94.39 18.6 88.79 11.31 93.96
SSDG-R (Jia et al. 2020) 7.38 97.17 10.44 95.94 11.71 96.63 15.61 91.54

SSAN-R (Wang et al. 2022a) 6.67 98.75 10.00 96.67 8.88 96.79 13.72 93.63

IL
LwF (Li and Hoiem 2017) 17.14 98.18 33.94 69.56 20.29 91.24 19.03 88.93
L2P (Wang et al. 2022b) 13.57 93.23 22.28 83.45 11.82 95.25 31.74 76.08

Ours 5.71 98.19 13.22 91.94 11.25 95.44 12.47 94.22

Table 3: Comparison to SOTA PAD methods on four cross-dataset benchmarks in different learning settings: DA, DG, and IL.
Note that IL methods train on three datasets sequentially, while DA and DG methods train on three datasets together.

Expert Branch Multi classifiers Asymmetric classifier

Aaware Agnostic Aware Agnostic

E1 9.68

24.70

6.33

10.62E2 20.21 7.14
E3 24.28 10.82
E4 25.07 8.52

Table 4: Comparison to different classifiers in different set-
tings in step 4. Results are reported in HTER(%).

Ablations of the Different Classifiers. We compare the
performance of different classifiers. Figure 4 shows that
the asymmetric classifier has the smallest performance drop
in various IwR position settings. Single-classifier strategies
suffer from catastrophic forgetting, while multi-classifier
has lower performance due to inconsistencies of PPD.
We further conduct quantitative analysis between multi-
classifiers and asymmetric classifier in Table 4. We train
four datasets incrementally and test samples from the pre-
vious domain M in domain-aware/agnostic forms. Domain-
aware form means that samples are forwarded via desig-
nated expert branch, while the domain-agnostic form means
that samples are gated by the IwR mechanism. For multi-
classifiers, individual expert branches with corresponding
classifiers excel in domain-aware form but face notable per-
formance decline when aggregating outputs due to PPD in-
consistencies. In contrast, the asymmetric classifier keeps
the class center θl shared across different expert branches,
achieving superior performance in domain-agnostic form.

Visualization and Analysis
Visualization of Output Distribution. We conduct a sta-
tistical analysis of predicted scores from different classifiers.
Figure 5 presents the boxplot of distributions based on pre-
dicted scores. We observe that in multi-classifiers method,
the decision boundary of live and spoof samples varies
greatly among different expert branch. A uniform thresh-

Figure 6: The Grad-CAM visualizations of class activation
map. The first row show the maps from FT method and the
second row show from our method.

old cannot achieve optimal results for all classifier outputs.
For asymmetric classifier, the decision boundary is simi-
lar among different expert branch. A uniform threshold can
maintain satisfactory results in different domains.

Visualization of Grad-CAM. As shown in Figure 6,
we utilize the Grad-CAM (Zhou et al. 2016) to illustrate
class activation maps. We randomly select some samples
from dataset C in step 4 and compare the activation map
learned by our method and fine-tuning method. The acti-
vation map from fine-tuning is shown in the first row. It
has a serious problem of catastrophic forgetting (HTER:
1.38%→33.94%), which makes activation not look conspic-
uous for live samples and attention to wrong areas for spoof
samples. In contrast, the second row shows that our method
preserves activations in facial areas for live samples and
highlights spoof cue areas of print attack and replay attack.

Conclusion
In this paper, we propose a novel MDIL framework of
PAD to mitigate catastrophic forgetting in previous domains.
Specifically, we design the ADE blocks equipped with learn-
able IwR to learn domain-specific knowledge separately
without interference. Furthermore, an asymmetric classifier
is designed to address the problem of PPD of live samples
inconsistent in open appending domains. Extensive experi-
ments with detailed analysis demonstrate the effectiveness.
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