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Abstract

In practical black-box attack scenarios, most of the exist-
ing transfer-based attacks employ pretrained models (e.g.
ResNet50) as the substitute models. Unfortunately, these sub-
stitute models are not always appropriate for transfer-based
attacks. Firstly, these models are usually trained on a large-
scale annotated dataset, which is extremely expensive and
time-consuming to construct. Secondly, the primary goal of
these models is to perform a specific task, such as image clas-
sification, which is not developed for adversarial attacks. To
tackle the above issues, i.e., high cost and over-fitting on task-
specific models, we propose an Affordable and Generalizable
Substitute (AGS) training framework tailored for transfer-
based adversarial attack. Specifically, we train the substitute
model from scratch by our proposed adversary-centric con-
strastive learning. This proposed learning mechanism intro-
duces another sample with slight adversarial perturbations
as an additional positive view of the input image, and then
encourages the adversarial view and two benign views to
interact comprehensively with each other. To further boost
the generalizability of the substitute model, we propose ad-
versarial invariant learning to maintain the representations
of the adversarial example invariants under augmentations
with various strengths. Our AGS model can be trained solely
with unlabeled and out-of domain data and avoid overfitting
to any task-specific models, because of its inherently self-
supervised nature. Extensive experiments demonstrate that
our AGS achieves comparable or superior performance com-
pared to substitute models pretrained on the complete Ima-
geNet training set, when executing attacks across a diverse
range of target models, including ViTs, robustly trained mod-
els, object detection and segmentation models. Our source
codes are available at https://github.com/lwmming/AGS.

Introduction
In recent years, a wide range of computer vision tasks (He
et al. 2016b; Ren et al. 2015) have been revolutionized by
Deep Neural Networks (DNNs). Despite the impressive ca-
pabilities of DNNs, they are exceedingly vulnerable to ad-
versarial examples, i.e., the imperceptible perturbation in-
jected on the input can easily alter the model’s decision. This
phenomenon raises security concerns in current deployed
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Figure 1: Conceptual functioning pipelines of different sub-
stitute training schemes, whose backgrounds are best viewed
in distinctive colors.

DNN-based applications, such as face recognition applica-
tion (Vakhshiteh, Ramachandra, and Nickabadi 2020), au-
tonomous driving (Kumar et al. 2021), etc. Consequently,
research on adversarial example is necessary and imperious.

Actually, the key property that allows the adversarial
examples to be practically applied is the transferability
(Szegedy et al. 2014), referring to adversarial examples gen-
erated on one model can successfully deceive other mod-
els even with different architectures. Nowadays, a grow-
ing number of methods (Dong et al. 2018; Xie et al. 2019;
Huang et al. 2019; Lin et al. 2020; Wu et al. 2020; Wang
et al. 2021a; Zhang et al. 2022a; Yang et al. 2022; Zhang
et al. 2022b; Huang and Kong 2022) have been proposed
to boost the transferability of adversarial examples. As
shown in Fig. 1(a), the substitute models employed in these
methods are typically pretrained on a large-scale annotated
dataset, e.g., ImageNet (Russakovsky et al. 2015). Unfor-
tunately, constructing such datasets costs significant human
efforts and time, which is often prohibitive to afford. Mean-
while, the employed substitute models are usually optimized
for specific tasks. For instance, ResNet50 (He et al. 2016a),
a commonly used substitute model, is optimized with the
cross-entropy loss to primarily fulfill image classification
tasks. Consequently, the adversarial examples crafted on
ResNet50 tend to overfit to the task-specific models.

The aforementioned issues tend to limit the practical ap-
plicability of the transfer-based black-box attacks. Recently,
several literatures (Li, Guo, and Chen 2020; Ban and Dong
2022; Sun et al. 2022; Li et al. 2023; Malik et al. 2022) have
sought to overcome these limitations by harnessing self-
supervised models (Chen et al. 2020; Chen and He 2021)
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as substitute models. Notably, Li et al. (Li, Guo, and Chen
2020) pioneer to train an auto-encoder model as the substi-
tute model. Then, this work is further improved by (Malik
et al. 2022), where an auto-encoder framework is trained
with a min-max objective. Subsequently, contrastive learn-
ing has been utilized for training the substitute model (Ban
and Dong 2022; Sun et al. 2022; Li et al. 2023). However, as
shown in Fig. 1(b), most of these methods straightforwardly
adopt contrastive learning without specifically considering
interactions between benign and adversarial examples, re-
sulting in unsatisfactory adversarial transferability.

In this paper, to tackle the limitations and issues above,
we present the affordable and generalizable substitute train-
ing framework (AGS) for transfer-based adversarial attack.
In general, AGS explicitly establishes connection between
contrastive learning and adversarial transferability. Specifi-
cally, as shown in Fig. 1(c), on the basis of classical con-
trastive learning, we introduce another sample with slight
adversarial perturbations as an additional type of positive
view of the input image. This strategy enriches both the set
of positive and negative views, and fosters comprehensive
interactions between the adversarial and benign examples.
Consequently, both the instance discrimination between the
clean and adversarial examples and adversarial robustness
of the substitute model are enhanced, i.e., adversarial ex-
amples with better transferability can be generated. Besides,
inspired by the proven efficacy of invariant learning in en-
hancing model generalization across various downstream
tasks (Foster, Pukdee, and Rainforth 2021), we further im-
prove AGS with an elaborated adversarial invariant learn-
ing regularization. This regularization aims to further boost
the generalizability of the trained substitute model, to allow
the crafted adversarial examples to effectively mislead mod-
els across diverse tasks. In general, our AGS is trained only
with the unlabeled and out-of-domain data, which can easily
be collected and makes our substitute model training afford-
able. Meanwhile, guided by the self-supervised signals, our
AGS avoids overfitting to any task-specific models.

Our main contributions are briefly summarized as fol-
lows: 1) We propose an affordable and generalizable sub-
stitute training framework that enables the effectiveness
of transfer-based attacks solely with unlabeled and out-of-
domain data; 2) We develop two optimization schemes,
adversarial-centric contrastive learning and adversarial in-
variant learning tailored for substitute training; 3) Compre-
hensive attack experiments on the target models with differ-
ent architectures from various vision tasks demonstrate that
our AGS achieves excellent adversarial transferability.

Related Work
Transfer-based attack typically fools the black-box target
models, i.e., the details of the target model is unknown, via
adversarial examples, which are crafted with a local sub-
stitute model. According to the application scenarios and
the amount of resources the attacker can access, existing
transfer-based attack methods can be briefly classified into
three categories, i.e., cross-architecture, cross-domain and
cross-paradigm transfer-based methods.

Cross-Architecture Transfer-based Attack. Cross-
architecture transfer-based attack methods assume that the
substitute and target models are trained in the same data
domain. Under this setting, gradient-based methods (Dong
et al. 2018; Lin et al. 2020; Wang and He 2021) achieve high
transferability by advanced optimization algorithm, such as
momentum and variance tuning, which leads to stronger yet
more stable gradients. Meanwhile, intermediate level attacks
(Huang et al. 2019; Inkawhich et al. 2020; Wu et al. 2020;
Wang et al. 2021b, 2022; Zhang et al. 2022a) improve ad-
versarial transferability by perturbing the features from in-
termediate layers. In addition, the adversarial transferability
can also benefit from the input augmentation strategies (Xie
et al. 2019; Lin et al. 2020; Wang et al. 2021a; Byun et al.
2022). Lastly, some methods also boost adversarial transfer-
ability by refining the substitute model, such as (Wu et al.
2019; Gubri et al. 2022). More recently, some methods (Qin
et al. 2022; Gubri et al. 2022; Wu et al. 2018) study the ad-
versarial transferability from the perspective of flatness in
the input space and weight space.

Cross-Domain Transfer-based Attack. For the cross-
domain attacks, the training data for the substitute model and
target models is from different domains, which is more prac-
tical than the cross-architecture setting. Some typical meth-
ods include CDA (Naseer et al. 2019), TTP (Naseer et al.
2021), LTP (Salzmann et al. 2021), BIA (Zhang et al. 2022b)
and GAMA (Aich et al. 2022).

Cross-Paradigm Transfer-based Attack. For the cross-
paradigm attacks, on the basis of cross-domain, further re-
quire that the training data of substitute models is unla-
beled. Therefore, the knowledge of these three types of at-
tacks gradually decreases, and the attack task gradually be-
comes more practical yet challenging. To tackle this set-
ting, recently, a number of studies explore to generate the
adversarial examples based on the models trained by self-
supervised learning. Since the substitute and target models
are trained by different learning paradigms, we name this
setting as the cross-paradigm transfer-based attack. Among
this type of methods, Li et al. (Li, Guo, and Chen 2020) train
multiple classical auto-encoder models as substitute models.
However, their most competitive scheme, ‘Prototypical’, is
not purely label-free, i.e., it still needs partial annotations.
Although Ban et al. (Ban and Dong 2022), Sun et al. (Sun
et al. 2022) and Li et al. (Li et al. 2023) explore to incor-
porate classical contrastive learning into substitute training,
they have not considered the interaction of the benign and
adversarial examples, which leads to unsatisfactory adver-
sarial transferability. Malik et al. (Malik et al. 2022) use
min-max objective to train effective substitute models. How-
ever, its framework is based on auto-encoder, which gener-
ally performs weaker than contrastive learning in terms of
self-supervised representation. In this paper, to tackle cross-
paradigm setting, we aim to develop more advanced self-
supervised based substitute training methods for better ad-
versarial transferability.

Methodology
Our goal is to train a dedicated substitute model tailored
for transferable adversarial attacks. Intuitively, this substi-
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Figure 2: Illustration of our proposed AGS (For projection vectors, the ones from different instances are marked in distinctive
colors. The ones in the same color with different brightness denote the projection vectors with different strengths of augmenta-
tions. In ACCL, the size of the affinity matrix of projection vectors is expanded from 2N×2N to 3N×3N, due to the participation
of the adversarial view. In AIL, the representations of the adversarial examples under augmentations with various strengths ex-
amples are encouraged to be invariant).

tute model is desired to possess two merits: 1) Affordability,
indicating that its training corpus is easily attainable with-
out the need for extensive annotations; 2) Generalizability,
signifying that adversarial examples crafted using this sub-
stitute model can seamlessly transfer and deceive different
unknown architectures across diverse vision tasks.

Preliminaries

Given N unlabeled images X = {x1,x2, ...,xN} drawn
from data distribution X , we aim to learn a substitute model
fθ parameterized by θ. To achieve the goal mentioned
above, the baseline scheme for substitute training is classical
contrastive learning, in which the agreement between posi-
tive views is maximized and the discrepancy between the
negative views is enlarged. Taking image xi as an example,
we firstly apply two transformations t1 ∼ T and t2 ∼ T
to it, where T denotes the set of transformations for the be-
nign examples, and obtain two positive views t1(xi), t2(xi).
Then, we feed them into fθ with the projection head gφ pa-
rameterized by φ, and obtain the corresponding projection
vectors, i.e., zji = gφ ◦ fθ(tj(xi)), j ∈ {1, 2}. Then, classi-
cal contrastive learning can be formulated as

`CL(u,u
+) =

− log
exp(cos(u,u+)/τ)

exp(cos(u,u+)/τ) +
∑
v∈N (u) exp(cos(u, v)/τ)

,

(1)
where u denotes the projection vector of the anchor point,
u+ represents the projection vector of u’s positive sample,
N (u) stands for the vector set of u’s negative samples, and
τ is a temperature parameter. When adapted to substitute
model training, u and u+ are instantiated with z1i and z2i ,

then the learning objective can be briefly written as

LCL(φ ◦ θ;X) :=
1

2N

N∑
i=1

(`CL(z
1
i , z

2
i ) + `CL(z

2
i , z

1
i )).

(2)

Overall Framework
In this paper, we propose a new substitute training frame-
work, named AGS, as illustrated in Fig. 2. Each instance in
input batch for AGS is augmented to obtain three views, i.e.,
two ordinary views obtained by normal augmentations w.r.t.
the benign example and one adversarial view obtained by
weak augmentation w.r.t the adversarial example. Then, they
are sequentially processed by the substitute model and the
projection head to extract the projection vectors. Then, two
proposed optimization schemes are carried out. Firstly, the
substitute model is trained by adversary-centric contrastive
learning (ACCL), where three types of views from the same
instance are pulled together and that from different instances
are pushed away. Particularly, the adversarial examples for
training are generated via maximizing ACCL in the inner
loop. Meanwhile, the substitute model is optimized by the
elaborated adversarial invariant learning (AIL), where the
representations of the adversarial views under augmenta-
tions with various strengths are desired to be invariant. Fi-
nally, adversarial examples are crafted by perturbing the
intermediate features of the trained substitute model in the
cross-paradigm manner.

Adversary-Centric Contrastive Learning
Although classical contrastive learning has exhibited
promising performance in the realm of self-supervised learn-
ing, its optimality for substitute training remains question-
able. Given that substitute training aims to enhance adver-
sarial transferability, classical contrastive learning lacks a
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dedicated design to fulfill this objective. Our basic idea is
to incorporate some adversarial components into contrastive
learning process to explicitly establish a connection between
contrastive learning and adversarial transferability. Inspired
by recent studies (Springer, Mitchell, and Kenyon 2021; Ma-
lik et al. 2022), we incorporate samples with slight adversar-
ial perturbations, which are crafted with a small adversar-
ial budget, into classical contrastive learning, to enhance its
alignment with adversarial transferability.

Actually, slight adversarial examples could naturally
serve as an additional type of positive view of input images.
In formal, with respect to xi, the adversarial example x∗

i is
crafted as xi + δi. Its projection vector zai can be obtained
by: zai = gφ ◦ fθ(xi + δi). Subsequently, we simultane-
ously pull zai , z1i and z2i together, while push zai far away
from its negative view set N (zai ), as

`CL(z
a
i , z

+
i ) =

− log
exp(

cos(za
i ,z

+
i )

τ )

exp(
cos(za

i ,z
+
i )

τ ) +
∑

z
−
i ∈N (za

i )

exp(
cos(za

i ,z
−
i )

τ )
. (3)

By considering all the positive pairs, we can obtain

`ACCL(z
1
i , z

a
i , z

2
i ) =

1

|P(zai )|
∑

z
+
i ∈P(z

a
i )

`CL(z
a
i , z

+
i ),

(4)
where the positive view set P(zai ) = {zai , z1i , z2i } − {zai }
with cardinality of 2, the negative view set N (zai ) =
{..., zak , z1k, z2k, ...}(k 6= i) with cardinality of (3N − 3).
Note that both P(·) andN (·) are enriched compared to their
counterparts in classical contrastive learning, i.e., |P(·)| :
1 → 2; |N (·)| : (2N − 2) → (3N − 3). This enrichment
has two benefits. Firstly, the larger negative set will lead to
increasing instance discrimination (He et al. 2020; Khosla
et al. 2020); Secondly, Eq. (4) encourages substitute model
to pull the projection vector of adversarial example, zai , and
two clean samples, z1i and z2i , together, which enhances the
adversarial robustness. Furthermore, to foster comprehen-
sive interactions between the adversarial and clean samples,
we consider the all cases where each positive view in P(zai )
has the opportunity to be the central term and optimize the
substitute model by minimizing the following objective

LACCL(φ ◦ θ;X) :=
1

3N

N∑
i=1

{
`ACCL(z

1
i , z

a
i , z

2
i )

+ `ACCL(z
a
i , z

1
i , z

2
i ) + `ACCL(z

1
i , z

2
i , z

a
i )
}
.

(5)

In Eq. (5), when it is compared to Eq. (2), the inclusion of
the samples with slight adversarial perturbations contributes
to the enhancement of both the instance discrimination and
adversarial robustness in the substitute model.

Concurrently, we generate the slight adversarial perturba-
tion δi w.r.t. xi for substitute training via

δi = argmax
‖δ‖2≤εtrain

LACCL(φ ◦ θ;xi), (6)

where ‖ · ‖2 denotes `2-norm of a vector, εtrain represents
the adversarial budget used in the substitute training stage.

Figure 3: Effectiveness of the proposed AIL. The training
data of the substitute model consists of 4k samples randomly
drawn from the COCO (40k) dataset.

Adversarial Invariant Learning

In the absence of annotated data, invariant learning (Had-
sell, Chopra, and LeCun 2006), which aims to maintain the
invariance of the representations against various input trans-
formations, has been confirmed to be effective in enhancing
the model generalization in many downstream tasks (Jaiswal
et al. 2020; Foster, Pukdee, and Rainforth 2021). This in-
spires us to explore whether maintaining the transformation
invariance of adversarial examples can promote substitute
training. We start with exploring the effects of performing
input transformations to the samples with slight adversarial
perturbations in substitute training.

Firstly, we apply input transformations with various
strengths to the samples with slight adversarial perturba-
tions to train the substitute model by minimizing Eq. (5) (the
strategies for controlling the quantization strengths of the in-
put transformations are consistent with that in (Jang et al.
2022)). The impacts of different transformation strengths on
substitute training are presented in Fig. 3. According to the
green curve in Fig. 3, the transformed adversarial samples
can indeed improve substitute training compared to the base-
line, i.e., no transformations are applied to the samples with
slight adversarial perturbations. However, as the strength of
transformations increases, the gain to the baseline becomes
less significant. We attribute this to the extreme transforma-
tions, i.e., they may cause difficulties in convergence. To al-
leviate this problem, for substitute training, we apply weak
transformations to the samples with slight adversarial per-
turbations, and additionally regulate the representations with
the strong transformations to be invariant to the representa-
tions with the weak transformations. As shown in Fig. 3,
the red curve reveals that the attack performance of this in-
variant regularization against the transformations with dif-
ferent strengths is obviously better than directly applying
strong transformations. By assigning different weight to all
the transformations with different strengths, the unified in-
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variant regularization can be formulated in a cost-sensitive
manner, as
LAIL(φ ◦ θ;X) :=

1

N

N∑
i=1

Es∼U(0,1){C(s) · (1− cos(za,si , za,s0i ))},
(7)

where the hyper-parameter s denotes the random variable
controlling the strength of input transformation, and s0
stands for the strength of weak transformation. It holds
za,si = gφ ◦ fθ(ts(xi + δi)), z

a,s0
i = gφ ◦ fθ(tw(xi +

δi)), tw ↔ ts0 , ts ∼ T ∗, where T ∗ denotes the set of trans-
formations for adversarial examples. For ts, when s = 0,
no transformation is applied, i.e., the original input is uti-
lized. When s = 1, the strongest transformations are ap-
plied. When s ∈ (0, 1), we multiply s by the probability
that the augmentation happens, to manipulate ts. C(s) is the
cost-sensitive function of s and it is defined as

C(s) = exp

(
− (s− s0)2

2σ2

)
, (8)

where we set s0=0.2 and σ=1 in this paper.
In general, the overall objective of our substitute training

is formulated as
min
θ,φ
LACCL(φ ◦ θ;X) + λ · LAIL(φ ◦ θ;X), (9)

where LACCL is computed via Eq. (5), and λ is a hyper-
parameter balancing the roles of LACCL and LAIL.

Cross-Paradigm Transfer-based Attack
Once the substitute model is trained, transfer-based attack
can be launched. However, in the absence of label infor-
mation, the common schemes, such as maximizing cross-
entropy loss to generate adversarial examples, are not appli-
cable. The most feasible approach is perturbing the interme-
diate features of the trained substitute model. In particular,
for an input image I , its adversarial example can be gener-
ated via
argmin

δ
cos
(
f lθ(I + δ), f lθ(I)

)
, s.t, ‖δ‖∞ ≤ εtest, (10)

where f lθ(·) denotes the intermediate feature of the l-th layer
in the substitute model fθ , δ stands for the adversarial per-
turbation w.r.t. the image I , ‖ · ‖∞ represents the `∞-norm
of a vector and εtest is the adversarial budget used in the
attack stage. In this paper, MI-FGSM (Dong et al. 2018) is
employed to solve Eq. (10) to obtain the final adversarial
example I + δ.

Experiments
Experimental Settings
Dataset. We train our substitute models on three unlabeled
datasets, i.e., COCO (40k samples)(Lin et al. 2014), Comics
(50k samples)(Cenk Bircanoglu 2017) and Paintings (79k
samples)(Painter by Number 2017), respectively. For eval-
uation, we draw 5k images from the validation set of Ima-
geNet (Russakovsky et al. 2015). The training and evalua-
tion protocols are identical to the compared methods, No-
box (Li, Guo, and Chen 2020) and APR (Malik et al. 2022).

Models Architectures. Our substitute model adopts the
architecture of ResNet-50 (He et al. 2016a) without pre-
training. Two types of architectures, i.e., Convolution Neu-
ral Networks (CNNs) and Vision Transformers (ViTs), are
employed as the target models. Specifically, VGG-19 (Si-
monyan and Zisserman 2015), Inception-v3 (Szegedy et al.
2016), ResNet-152 (He et al. 2016a), Dense-121 (Huang
et al. 2017), SeNet (Hu, Shen, and Sun 2018), Wide-ResNet-
50 (Zagoruyko and Komodakis 2016) and MobileNet-V2
(Sandler et al. 2018) are selected as the CNN-type of tar-
get models. ViT-T, ViT-S (Dosovitskiy et al. 2021), DeiT-T,
DeiT-S (Touvron et al. 2021) are selected as the ViT-type
of target models. All the target models are pretrained on the
ImageNet training set.
Substitute Training & Attack Settings. Our substitute
model is randomly initialized. We train it via classical SGD
algorithm with a fixed learning rate of 0.1. The batch size is
set to 64. The weight decay is set to 1e-4. We set εtrain in
Eq. (6) as 1.0 and λ in Eq. (9) as 0.1. The total training epoch
is set to 100. The number of iterations for Eq. (6) is set to 1.
For the training of one AGS model, about 17 hours are de-
manded on a single RTX 3090 GPU, which is an affordable
cost compared to training a pretrained ResNet50 model. Af-
ter the substitute model is trained, we conduct transfer-based
attack, where εtest is set to 0.1, the step size is set to 1/255
and the number of iterations is set to 300. The intermediate
layer l selected in Eq. (10) is ‘layer2’. Top-1 (%) accuracy
is selected as the evaluation metric.

Main Results
In this section, we conduct experiments to attack various tar-
get models, including normally trained CNNs and ViTs, ro-
bustly trained CNNs, as well as object detection and seg-
mentation models, based on our substitute model. We com-
pare our AGS with the closely related state-of-the-art meth-
ods, i.e., No-box (Li, Guo, and Chen 2020) and APR (Malik
et al. 2022). It is noteworthy that we consider two variants of
their methods, ‘Rotation’ mode and ‘Jigsaw’ mode, abbre-
viated as ‘R’ and ‘J’ in the rest of this paper. Additionally,
we also compare AGS with two unsupervised baselines, i.e.,
training the substitute model via classical contrastive learn-
ing (denoted as “CL”) and its adversarial version (denoted
as “CL+adv”, where z1i , z

2
i in Eq. (2) are replaced with

the projection vectors of the adversarial examples). Further-
more, we evaluate the performance of AGS when the sub-
stitute model is a ResNet50 (He et al. 2016a) pretrained on
the entire ImageNet training set (Since the ImageNet train-
ing set lies in the target domain, intuitively, a pretrained
ResNet50 is more likely to achieve a better performance than
our method). For all the compared schemes, the strategy for
generating adversarial examples remains consistent, i.e., Eq.
(10). The sole distinctions lie in the substitute models em-
ployed.
Results on CNNs and ViTs. The attack performance on
CNNs and ViTs across three unlabeled datasets is presented
in Tab. 1, Tab. 2 and Tab. 3, respectively. Four key obser-
vations can be drawn from these results. Firstly, our base-
line schemes, i.e., “CL” and “CL+adv”, outperform existing
closely related methods (No-box and APR) in most cases.
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Models CNNs ViTs
VGG-19 Inc-v3 Res-152 Dense-121 SeNet WRN MNet-V2 Avg. Deit-T Deit-S ViT-T ViT-S Avg.

ResNet50 0.72 4.62 0.84 0.82 2.36 0.84 0.60 1.54 24.52 36.38 12.32 37.78 27.75
No-box (R) 23.20 31.86 37.32 23.90 33.94 34.34 15.44 28.57 29.46 48.78 27.28 49.16 38.67
No-box (J) 30.18 49.30 53.98 44.66 59.48 53.58 16.80 43.40 49.68 65.22 44.74 65.20 56.21
APR (R) 17.02 27.70 26.92 22.80 34.30 21.72 11.82 23.18 34.72 49.32 14.78 41.22 35.01
APR (J) 19.74 37.82 39.10 29.92 42.94 36.42 13.16 31.30 41.72 58.42 25.18 57.28 45.65

CL 13.30 13.52 6.30 6.72 20.42 8.88 2.50 10.23 30.26 46.16 17.70 48.80 35.73
CL+adv 6.12 5.30 7.36 5.90 9.88 5.02 3.32 6.13 19.88 34.56 5.98 26.12 21.64

OCCL (ours) 6.14 5.54 5.16 3.72 11.60 3.58 1.64 5.34 26.04 42.30 10.80 45.44 31.15
ACCL (ours) 1.90 2.88 3.68 2.52 5.12 2.26 0.90 2.75 18.10 30.52 3.20 27.28 19.78

AGS (ACCL+AIL) 1.88 2.08 2.02 1.72 5.24 1.50 1.14 2.23 14.70 26.50 2.96 22.66 16.71

Table 1: Top-1 (%) accuracy of CNNs and ViTs on 5k adversarial examples with εtest ≤ 0.1, from ImageNet validation set.
The substitute models except ResNet50 are trained on the unlabeled COCO (40k) dataset (the lower, the better).

Models CNNs ViTs
VGG-19 Inc-v3 Res-152 Dense-121 SeNet WRN MNet-V2 Avg. Deit-T Deit-S ViT-T ViT-S Avg.

ResNet50 0.72 4.62 0.84 0.82 2.36 0.84 0.60 1.54 24.52 36.38 12.32 37.78 27.75
No-box (R) 49.64 59.12 66.10 58.92 70.88 66.46 36.50 58.23 61.32 74.86 60.06 73.44 67.42
No-box (J) 61.20 67.28 72.96 69.16 78.90 73.90 50.66 67.72 68.64 79.54 70.80 78.50 74.37
APR (R) 15.30 28.00 30.38 25.04 32.56 27.24 10.26 24.11 39.88 55.00 20.78 45.92 40.39
APR (J) 30.78 47.40 48.58 41.68 53.48 49.02 18.90 41.41 50.34 65.82 39.62 63.52 54.83

CL 20.44 24.82 20.48 13.08 30.92 17.56 5.56 18.98 37.70 51.76 25.10 52.54 41.78
CL+adv 5.94 9.80 9.82 6.60 15.14 6.24 2.54 8.01 28.66 43.98 6.90 33.20 28.19

OCCL (ours) 19.60 25.80 18.84 11.60 34.36 15.60 4.36 18.59 39.12 49.42 25.32 53.02 41.72
ACCL (ours) 6.56 19.40 15.32 6.98 18.20 13.76 2.06 11.75 30.04 43.72 16.32 40.48 32.64

AGS (ACCL+AIL) 3.54 11.08 7.30 3.94 12.70 5.06 1.40 6.43 23.76 34.90 7.64 34.60 25.23

Table 2: Top-1 (%) accuracy of CNNs and ViTs on 5k adversarial examples, under εtest ≤ 0.1, from ImageNet validation set.
The substitute models except ResNet50 are trained on unlabeled Comics (50k) dataset (the lower, the better).

Models CNNs ViTs
VGG-19 Inc-v3 Res-152 Dense-121 SeNet WRN MNet-V2 Avg. Deit-T Deit-S ViT-T ViT-S Avg.

ResNet50 0.72 4.62 0.84 0.82 2.36 0.84 0.60 1.54 24.52 36.38 12.32 37.78 27.75
No-box (R) 20.66 27.12 37.30 24.62 39.44 33.94 11.60 27.81 29.62 44.64 26.88 46.20 36.84
No-box (J) 27.62 48.86 51.98 45.60 59.00 52.48 21.52 43.87 48.76 65.12 43.32 62.54 54.94
APR (R) 13.04 18.58 21.26 15.66 30.40 17.80 7.36 17.73 26.08 42.70 11.14 37.02 29.24
APR (J) 22.86 36.30 42.58 29.98 46.42 39.66 16.36 33.45 43.44 61.32 28.88 58.00 47.91

CL 18.70 20.38 13.36 12.50 28.84 18.30 7.86 17.13 38.32 54.34 32.46 57.46 45.65
CL+adv 8.00 7.50 9.44 7.84 15.22 6.30 4.30 8.37 22.08 36.74 8.74 29.54 24.28

OCCL (ours) 12.58 16.28 8.16 8.72 24.76 9.56 4.88 12.13 35.66 52.14 24.82 53.04 41.42
ACCL (ours) 4.12 4.26 4.14 2.92 7.06 3.50 1.82 3.97 17.52 30.58 5.90 28.80 20.70

AGS (ACCL+AIL) 3.10 3.06 3.10 2.54 5.34 1.86 1.62 2.95 15.60 27.44 4.76 24.50 18.08

Table 3: Top-1 (%) accuracy of CNNs and ViTs on 5k adversarial examples, under εtest ≤ 0.1, from ImageNet validation set.
The substitute models except ResNet50 are trained on unlabeled Paintings (79k) dataset (the lower, the better).

This could be attributed to the more advanced substitute
training mechanisms, where contrastive learning is superior
to the auto-encoder approach adopted by No-box and APR
in this task. Secondly, “CL+adv” demonstrates better perfor-
mance than “CL”, especially on ViTs, indicating the adver-
sarial transferability of substitute model benefits from slight
adversarial training. Thirdly, taking COCO dataset as an ex-
ample, our method “ACCL+AIL” outperforms the strongest
baseline “CL+adv” with a margin of 3.9% and 4.9% on
CNNs and ViTs, respectively. Our superiority also exists and
it is even more significant on the other two datasets, show-

casing the effectiveness of our proposed “adversary-centric”
training strategy. Fourthly, we can observe that the attack
performance of our substitute model on CNNs approximates
the supervised baseline, i.e., the pretrained ResNet50 (2.23
vs. 1.54). Meanwhile, our model surpasses ResNet50 on
ViTs with a large margin, i.e., 16.72 vs. 27.75. These phe-
nomenons preliminarily indicates that the models pretrained
on large-scale annotated datasets are not necessarily optimal
for transfer-based adversarial attacks.

Results on Robustly Trained CNNs. Here, we evaluate
our method against the robustly trained CNNs, which are
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Models Inc-v3ens3 Inc-v3ens4 IncRes-v2ens
Original ACC. 78.12 78.18 81.22

ResNet50 55.36 57.48 63.74
No-box(J) 60.36 62.56 66.74
No-box(R) 44.36 50.32 54.64

APR(J) 45.78 47.08 52.62
APR(R) 34.10 32.70 40.02

AGS (Paintings) 23.96 29.80 36.14
AGS (Comics) 47.00 47.96 54.98
AGS (COCO) 12.74 17.64 25.44

Table 4: Top-1 (%) accuracy of robustly trained CNNs on 5k
adversarial examples with εtest ≤ 0.1, which are generated
from the ImageNet validation set.

more challenging to be attacked than the normally trained
CNNs. Three typical robust models, i.e., Inc-v3ens3, Inc-
v3ens4 and IncRes-v2ens (Tramr et al. 2018) are selected
as the target models. The results are shown in Tab. 4. As ob-
served, the adversarial examples generated by the pretrained
ResNet50 only induce a marginal drop in original accuracy,
which implies the challenge of this scenario. On the con-
trary, adversarial examples generated by AGS can lead to
significantly lower accuracies. For instance, AGS achieves
an improvement of over 40% from the pretrained ResNet50
on the COCO (40k) dataset. The primary reason is that our
substitute training method facilitates comprehensive interac-
tion between adversarial and benign examples, allowing the
capture of robust features, which is beneficial for effectively
attacking the robustly trained models.
Results on Object Detection and Segmentation Models.
To validate the generalizability of our method, we further
conduct adversarial attack on object detection and video seg-
mentation models. Following (Malik et al. 2022), we select
two representative models, DETR (Carion et al. 2020) for
object detection, and DINO (Caron et al. 2021) for video
segmentation. The datasets for evaluation are the MS COCO
validation set (Lin et al. 2014) and the DAVIS validation set
(Pont-Tuset et al. 2017), respectively. The evaluation metrics
include mean average precision (mAP), mean average recall
(mAR) and the Jacard index metrics, (J&F )m and (J&F )r.
The results are shown in Tabs. 5 and 6. Two conclusions can
be obtained: 1) AGS outperforms the best compared method
by an average margin of 9.3% and 6.5%, indicating its su-
perior adversarial transferability across various vision tasks;
2) AGS also performs comparably with pretrained ResNet50
in most of the cases. Notably, the pretrained ResNet50 per-
forms slightly better than ours in terms of mAP on the de-
tection task (2.6 vs. 2.8). This is due to the backbone of the
DETR model is exactly the pretrained ResNet50 model. In
contrast, AGS, requiring no annotated data in the training
process, demonstrates its suitability for transfer-based ad-
versarial attacks compared to pretrained ResNet50.

Ablation Study
In this section, we assess the effectiveness of each pro-
posed scheme, i.e., ACCL and AIL, in our substitute training

Models COCO Paintings Comics
mAP mAR mAP mAR mAP mAR

No-box (R) 19.3 - 17.2 - 34.3 -
No-box (J) 24.7 - 24.1 - 38.0 -
APR (R) 14.6 - 11.9 - 13.3 -
APR (J) 14.5 - 14.0 - 20.8 -

ResNet50 2.6 7.4 2.6 7.4 2.6 7.4
AGS (ours) 2.8 6.9 3.8 9.5 5.2 12.1

Table 5: Evaluations on object detection model. The target
detector is DETR with the backbone of Resnet50. The mean
average precision (mAP) and recall (mAR) at [0.5:0.95] on
MS COCO validation set are reported.

Models COCO Paintings Comics
(J&F )m(J&F )r (J&F )m(J&F )r (J&F )m(J&F )r

No-box (R) 53.2 - 52.6 - 57.8 -
No-box (J) 53.9 - 53.2 - 58.3 -
APR (R) 48.9 - 46.9 - 47.8 -
APR (J) 46.6 - 48.5 - 51.7 -

ResNet50 45.3 47.9 45.3 47.9 45.3 47.9
AGS (ours) 41.8 42.6 43.9 45.8 36.1 31.5

Table 6: Evaluations on video segmentation model. The tar-
get model is DINO with the backbone of ViT-S. Two Jacard
index metrics on the DAVIS validation set are reported.

framework. Firstly, to observe the influence of “adversary-
centric” in ACCL, we replace the adversary zai in Eq. (5)
with its original example zi to train the substitute model,
which is denoted as “OCCL”. Then, to validate the effec-
tiveness of AIL, we train the substitute model only with Eq.
(5), which is denoted as “ACCL”. At last, we denote the pro-
posed substitute training framework AGS as “ACCL+AIL”.

As shown in the last three lines of Tab. 1, Tab. 2 and Tab.
3, “ACCL+AIL” performs better than “OCCL” and “ACCL”.
Taking COCO (40k) as an example, “ACCL” improves
“OCCL” by a margin of 2.59% and 11.37% on CNNs and
ViTs, respectively. It indicates that our “adversary-centric”
mechanism is more effective than the “original example-
centric” mechanism, especially on ViTs, which have larger
architecture gaps to the source model. Besides, with the help
of AIL, “ACCL+AIL” (AGS) further improves “ACCL” by
a margin of 0.52% and 3.07% on CNNs and ViTs, respec-
tively. As can be observed from Fig. 5(b) and Fig. 5(c), AIL
makes the loss landscape of substitute model flatter than the
baseline, which is probably the reason of AGS’s superiority.

More Analysis
The Scale of Training Data. One of the aims of this paper
is to train the substitute model only with the unlabeled train-
ing data as little as possible, i.e., striving for affordability.
To this end, we explore the performance change trend of our
AGS when reducing the training data. Taking COCO (40K)
as an example, we firstly utilize it entirely as the training
set. Then, we divide it into different parts to train our sub-
stitute model. The averaged Top-1 (%) accuracies on CNNs
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Figure 4: The attack performances with different scales of
training data for the substitute model, where the training data
is from the COCO (40k) dataset. Averaged Top-1 (%) accu-
racy on (a) CNNs and (b) ViTs are presented.
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Figure 5: Visualization of loss landscape geometry.

and ViTs are shown in Figs. 4(a) and 4(b), respectively. For
CNNs, our method outperforms previous best competitor,
APR (R), by a margin of more than 5%, only with 10% of
COCO (40K). Besides, as shown in Fig. 4(b), our model
achieves better performance than the pretrained ResNet50
model against ViTs only with 50% of COCO (40K). These
results validate the affordability of our AGS framework.
Loss Landscape Geometry. Here, we try to explain the
superior adversarial transferability of our substitute model
from the perspective of loss landscape geometry, which
highly affects the generalizability of the model (Li et al.
2018). Specifically, the loss surface of Eq. (5) is visualized
via the technique in (Li et al. 2018). As can be observed
from Fig. 5(a) to Fig. 5(b), the distance between the contours
gradually increases and our proposed AGS further widens
these spaces, which indicates that a flatter minimum is found
and the generalizability of the model is improved.
Visualizations. In this section, some qualitative explana-
tions of our AGS is given via GradCAM (Selvaraju et al.
2017). As shown in Fig. 6, the adversarial examples gener-
ated by our method can confuse the attentions of the target
model, which leads to wrong predictions.

Conclusion
In this paper, we bring a new insight that the models pre-
trained on large-scale annotated datasets, e.g., ResNet50
pretrained on ImageNet, are not always appropriate for
transfer-based attacks. Without any annotated data, we de-
velop a substitute training framework for transfer-based at-
tacks, named AGS, with which the affordability and gen-
eralizability of the substitute model are simultaneously

input 
image

original 
GradCAM

adv. on
ResNet50

adv. on 
AGS(ours)

Figure 6: The illustration of attention shift. Adversarial ex-
amples are generated on two types of substitute models, i.e.,
pretrained ResNet50 and our proposed AGS, respectively,
with εtest ≤ 0.1. All the activation maps are generated on
ImageNet pretrained ResNet152 model.

achieved. Comprehensive experiments demonstrate the su-
periority of our proposed work. More importantly, we hope
our explorations can inspire the future work on rethinking
and developing more suitable substitute training methods for
transfer-based black-box attacks.
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