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Abstract

Recently, several lightweight methods have been proposed to
implement single-image super-resolution (SISR) on resource-
constrained devices. However, these methods primarily fo-
cus on simplifying network structures without the full utiliza-
tion of shallow features. The fact remains that shallow fea-
tures encompass crucial details for the super-resolution task,
including edges, textures, and colors. Therefore, developing
a novel architecture that can effectively integrate features
from different levels and capitalize on their mutual comple-
mentarity is necessary. We first analyze the relationship be-
tween multi-stage features and the restoration tasks in a clas-
sic lightweight SR method. Based on these observations, we
propose an Omni-Stage Feature Fusion (OSFF) architecture,
which incorporates Original Image Stacked Initialisation,
Shallow Feature Global Connection, and Multi-Receptive
Field Dynamic Fusion. An Attention-Enhanced Feature Dis-
tillation module is also designed to enhance the model perfor-
mance. Finally, leveraging these contributions, we construct
an Omni-Stage Feature Fusion Network (OSFFNet). Through
extensive experiments on various benchmark datasets, the
proposed model outperforms state-of-the-art methods. No-
tably, it achieves a 0.26dB PSNR improvement over the
second-best method for ×2 SR on the Urban100 dataset.

Introduction
As a typical branch of low-level vision methods, single-
image super-resolution (SISR) aims to reconstruct a high-
resolution (HR) image from a degraded low-resolution (LR)
image. Compared to traditional methods, deep learning (DL)
methods have achieved outstanding performance and real-
istic visual effects thanks to their learnable feature repre-
sentations (Wang, Chen, and Hoi 2020). As a result, some
studies have aimed to improve image restoration quality by
increasing convolutional layers or adopting complex net-
work topologies. These characteristics often restrict prac-
tical applications as resource-constrained mobile devices
struggle with intensive SR methods. Therefore, the design
of lightweight and efficient SR models has become essential
and also a challenging problem.

Researchers have proposed several lightweight and effi-
cient SR methods to address this challenge. The main idea
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Figure 1: Visualization of feature maps at different stages in
IMDN.

of these methods is to design efficient network structures,
which involve strategies such as parameter sharing, fea-
ture distillation, attention mechanisms, and convolution op-
timization. These SR methods have successfully balanced
reconstruction performance and computational cost. How-
ever, these networks often rely on sequentially simplify-
ing network structures to improve computational efficiency,
which leads to the underutilization of low-level features dur-
ing the forward propagation process. Figure 1 illustrates how
feature maps in IMDN (Hui et al. 2019) contain detailed in-
formation, with low-level features emphasizing edges and
textures near the network input, while deep-level features
focus on extracting local features with fewer details near the
output. Neglecting low-level features may lead to the loss
of crucial details, affecting SR model performance. There-
fore, a new network architecture needs to be designed to
effectively integrate feature maps from different stages and
leverage their complementarity. Such an architecture will be
able to maintain computational efficiency and enhance SR
performance. To achieve this, we propose a novel Omni-
Stage Feature Fusion (OSFF) architecture to efficiently
fuse multi-level features. OSFF includes Original Image
Stacked Initialization (OISI), Shallow Feature Global Con-
nection (SFGC), and Multi-Receptive Field Dynamic Fusion
(MFDF). OISI duplicates and stacks the original image mul-
tiple times along the channel dimension to enrich details
in shallow features. SFGC combines shallow features with
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Figure 2: The overall architecture of Omni-Stage Feature Fusion Network (OSFFNet).

multi-stage features through element-wise addition to stabi-
lize the training process and utilize texture details. MFDF
integrates different-stage features with dynamic receptive-
field modules to enhance and merge features from different
stages. Furthermore, we improve model performance by de-
signing an Attention-Enhanced Feature Distillation (AEFD)
module based on IMDB (Hui et al. 2019), which has shown
effectiveness in previous super-resolution tasks. We also in-
tegrate Blueprint Separation Convolutions (BSConv) (Haase
and Amthor 2020) to reduce redundancy. Building on these
achievements, we develop an Omni-Stage Feature Fusion
Network (OSFFNet) for lightweight image super-resolution,
which outperforms current state-of-the-art methods based
on experimental results on benchmark datasets, especially
with significant improvements on the Urban100 dataset. The
main contributions of this paper are as follows:
• We propose an Omni-Stage Feature Fusion architecture

that enhances the contribution of shallow features by em-
ploying Original Image Stacked Initialization, Shallow
Feature Global Concatenation, and Multi-Stage Feature
Dynamic Fusion. This enables effective complementar-
ity among multiple feature levels.

• We design an Attention-Enhanced Feature Distillation
module and integrate Blueprint Separation Convolution
as the core building block. This combination enhances
network performance while maintaining lightweight
computational overhead.

• Our extensive experiments on benchmark datasets con-
firm the effectiveness of our methods. The results show
that OSFFNet reaches a new state-of-the-art performance
in lightweight SISR, with significant improvements ob-
served on the Urban100 dataset in particular.

Related Work
SISR for Reconstruction Quality
Dong et al. (Dong et al. 2014) initially introduced SR-
CNN, a three-layer CNN for LR to HR image mapping.
SRCNN demonstrated significant improvements over tra-
ditional methods in SR reconstruction, inspiring the devel-
opment of subsequent CNN-based methods (Lepcha et al.
2023) for further enhancement.

VDSR (Kim, Lee, and Lee 2016a) utilized residual learn-
ing with stacked convolutional layers to improve SR accu-
racy. EDSR (Lim et al. 2017) introduced a deeper and wider
residual network to enhance feature representation capabil-
ity. However, residual learning-based methods have limita-
tions and inefficiencies. To address these, MSRN (Li et al.
2018) introduced a multi-scale residual network to adap-
tively detect image features at different scales, improving
feature representation. SRDenseNet (Tong et al. 2017) intro-
duced dense connections to address gradient vanishing and
feature information loss, enabling effective feature propaga-
tion and reuse between layers.

As the networks become larger and deeper, the introduc-
tion of various attention mechanisms has become another
trend in deep super-resolution research. For instance, RCAN
(Zhang et al. 2018) used channel attention, PAN (Zhao et al.
2020) employed pixel attention, SAN (Dai et al. 2019) uti-
lized second-order attention, and ENLCN (Xia et al. 2022)
utilized efficient non-local sparse attention. Additionally,
self-attention mechanisms have shown remarkable perfor-
mance in image reconstruction. SwinIR (Liang et al. 2021)
leveraged Swin Transformer (Liu et al. 2021) architecture,
multi-scale feature representation, hybrid attention mecha-
nisms, and local-global feature interactions to achieve ex-
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Figure 3: The architecture of CCA block.

cellent SISR. HAT (Chen et al. 2023) combined channel
attention and self-attention mechanisms to fully exploit the
global information induction ability of channel attention and
the powerful representation capability of self-attention, ulti-
mately aiming to activate more pixel information.

SISR for Computational Efficiency

To meet the demands of edge devices, it is imperative to
develop lightweight and efficient SR models (Gendy, He,
and Sabor 2023). Many researchers have designed vari-
ous lightweight SR algorithms to reduce parameter count
and computational complexity. Initially, researchers identi-
fied the computational redundancy in the pre-upsampling
stage of SRCNN and began designing lightweight models
using a post-upsampling infrastructure. For example, FSR-
CNN (Dong, Loy, and Tang 2016) broke the computational
bottleneck by restoring feature maps to the desired high-
resolution size using deconvolution layers at the end of the
network. ESPCN (Shi et al. 2016) achieved efficient im-
age super-resolution reconstruction in the pixel reconstruc-
tion stage using sub-pixel convolution without the need for
additional interpolations, resulting in fast and high-quality
reconstructions. Therefore, sub-pixel convolution has been
widely adopted in lightweight super-resolution.

LapSRN (Lai et al. 2017) leveraged a pyramid structure
and skip connections to utilize multi-scale image informa-
tion, and gradually improved resolution through hierarchi-
cal reconstruction. DRCN (Kim, Lee, and Lee 2016b) intro-
duced recursive learning into super-resolution and reduced
parameter count through weight-sharing strategies. CARN
(Ahn, Kang, and Sohn 2018) adopted a cascading mecha-
nism based on residual learning and used grouped convolu-
tion instead of standard convolution to reduce the number
of model parameters. IDN (Hui, Wang, and Gao 2018) em-
ployed an information distillation strategy to better utilize
hierarchical features by independently processing the cur-
rent feature map. IMDN (Hui et al. 2019) improved model
efficiency through more effective feature distillation mecha-
nisms and efficient adaptive cropping strategies.

Recently, researchers have been optimizing the convolu-
tional approach to develop lighter and more efficient SR
models. For instance, ECBSR (Zhang, Zeng, and Zhang
2021) applied the structure reparameterization technique
from RepVGG (Ding et al. 2021) to effectively extract edge
and texture information. FMEN (Du et al. 2022) prioritized
memory efficiency and utilized structure reparameterization
to further accelerate network inference. BSRN (Li et al.
2022) introduced blueprint separation convolution, a variant
of depthwise separable convolution, combined with residual
learning to achieve efficient super-resolution.
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Figure 4: The architecture of ESA block.

Proposed Method
Overall Network Architecture

The overall network architecture of the Omni-Stage Feature
Fusion Network (OSFFNet) is shown in Figure 2. OSFFNet
consists of three main stages: an initial feature extraction, a
multi-stage feature extraction, and a high-resolution recon-
struction. Here, ILR represents the original image input to
OSFFNet, and ISR represents the restored image. Prior to
the high-resolution reconstruction stage, the feature maps
maintain the same resolution as ILR. We perform stack ini-
tialization on the original image in the initial feature ex-
traction stage. Specifically, we replicate and stack the input
original image multiple times along the channel dimension.
Then, we apply a 3 × 3 Blueprint Separation Convolution
(BSConv) to extract shallow features, allowing for a richer
representation of texture details in the shallow feature maps.
This process can be expressed as:

Fs = HSF (Concatoi=1ILR), (1)

where HSF represents shallow feature extraction using a
3 × 3 BSConv (Haase and Amthor 2020). Concat denotes
channel-wise concatenation, and o indicates the number of
copies of the original image. Next, Fs extracts multi-stage
features using AEFDs and Dynamic Receptive Field (DRF)
modules. This process can be expressed as:

Fk =

{
HAEFD(Fs) k = 1

HAEFD(Fk−1 + λk−1Fs) 1 < k ≤ n
, (2)

F k
f = Hk

DRF (Fk), 1 ≤ k ≤ n , (3)

where HAEFD denotes an AEFD module, Hk
DRF is the k-th

DRF module. λ denotes a learnable weight parameter, and n
is the number of AEFDs. Then, the F k

f s are concatenated
and fused. This process can be expressed as:

Ffused = HFusion(Concatnk=1F
k
f ), (4)

where Hfusion denotes the fusion operation which consists
of a 1 × 1 convolution and a 3 × 3 BSConv. Lastly, the re-
construction module is applied to generate the final high-
resolution image ISR as:

ISR = Hrec(Ffused + Fs), (5)

where Hrec denotes the reconstruction which consists of a
3×3 convolution and a sub-pixel operation (Shi et al. 2016).
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Method Scale #Params #Multi-Adds Set5 Set14 BSD100 Urban100 Manga109
[K] [G] PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN

×2

8 52.7 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946 35.60 0.9663
VDSR 666 612.6 37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 37.22 0.9750
EDSR 1335 307.9 37.99 0.9604 33.57 0.9175 32.16 0.8994 31.98 0.9272 35.85 0.9436
CARN 1592 222.8 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
IMDN 694 158.8 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774
HNCT 357 82.4 38.08 0.9608 33.65 0.9182 32.22 0.9001 32.22 0.9294 38.87 0.9774
FMEN 748 172.0 38.10 0.9609 33.75 0.9192 32.26 0.9007 32.41 0.9311 38.95 0.9778
BSRN 332 73.0 38.10 0.9610 33.74 0.9193 32.24 0.9006 32.34 0.9303 39.14 0.9782
RepRFN 386 85.12 38.07 0.9612 33.63 0.9184 32.22 0.9009 32.10 0.9274 39.00 0.9779
OSFFNet 516 83.2 38.11 0.9610 33.72 0.9190 32.29 0.9012 32.67 0.9331 39.09 0.9780
SRCNN

×3

8 52.7 32.75 0.9090 29.30 0.8215 28.41 0.7863 26.24 0.7989 30.48 0.9117
VDSR 666 612.6 33.66 0.9213 29.77 0.8314 28.82 0.7976 27.14 0.8279 32.01 0.9340
CARN 1592 118.9 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440
IMDN 703 71.5 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445
HNCT 363 37.8 34.47 0.9275 30.44 0.8439 29.15 0.8067 28.28 0.8557 33.81 0.9459
FMEN 757 77.2 34.45 0.9275 30.40 0.8435 29.17 0.8063 28.33 0.8562 33.86 0.9462
FDIWN 645 51.5 34.52 0.9281 30.42 0.8438 29.14 0.8065 28.36 0.8567 - -
BSRN 340 33.3 34.46 0.9277 30.47 0.8449 29.18 0.8068 28.39 0.8567 34.05 0.9471
RepRFN 392 38.4 34.45 0.9280 30.39 0.8430 29.13 0.8068 28.06 0.8494 33.76 0.9451
OSFFNet 524 37.8 34.58 0.9287 30.48 0.8450 29.21 0.8080 28.49 0.8595 34.00 0.9472
SRCNN

×4

8 52.7 30.48 0.8626 27.50 0.7513 26.90 0.7101 24.52 0.7221 27.58 0.8555
VDSR 666 612.6 31.35 0.8838 28.01 0.7674 27.29 0.7251 25.18 0.7524 28.83 0.8870
EDSR 1778 102.9 32.09 0.8938 28.58 0.7813 27.57 0.7357 26.04 0.7849 30.21 0.8336
CARN 1592 90.9 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
IMDN 715 40.9 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
HNCT 373 22.0 32.31 0.8957 28.71 0.7834 27.63 0.7381 26.20 0.7896 30.70 0.9112
FMEN 769 44.2 32.24 0.8955 28.70 0.7839 27.63 0.7379 26.28 0.7908 30.70 0.9107
FDIWN 664 28.4 32.23 0.8955 28.66 0.7829 27.62 0.7380 26.28 0.7919 - -
BSRN 352 19.4 32.35 0.8966 28.73 0.7847 27.65 0.7387 26.27 0.7908 30.84 0.9123
RepRFN 402 22.1 32.28 0.8969 28.68 0.7836 27.65 0.7389 26.18 0.7858 30.79 0.9102
OSFFNet 537 22.0 32.39 0.8976 28.75 0.7852 27.66 0.7393 26.36 0.7950 30.84 0.9125

Table 1: Quantitative results of the state-of-the-art models on four benchmark datasets. The best result is marked with bold, and
the second-best result is underlined.

Code OISI SFGC MFDF #Params #Multi-Adds Set5 Set14 BSD100 Urban100
[K] [G] PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

000 ✘ ✘ ✘ 486 19.4 31.92 0.8908 28.45 0.7786 27.48 0.7336 25.76 0.7775
100 ✔ ✘ ✘ 488 19.5 32.11 0.8936 28.58 0.7818 27.57 0.7365 25.98 0.7846
010 ✘ ✔ ✘ 486 19.4 31.97 0.8914 28.47 0.7794 27.50 0.7342 25.80 0.7789
001 ✘ ✘ ✔ 535 21.9 31.95 0.8921 28.50 0.7806 27.52 0.7352 25.86 0.7818
110 ✔ ✔ ✘ 488 19.5 32.11 0.8937 28.58 0.7818 27.56 0.7365 25.98 0.7847
101 ✔ ✘ ✔ 536 22.0 32.25 0.8958 28.65 0.7833 27.61 0.7379 26.12 0.7890
011 ✘ ✔ ✔ 535 21.9 31.89 0.8912 28.46 0.7795 27.49 0.7343 25.80 0.7795
111 ✔ ✔ ✔ 537 22.0 32.25 0.8958 28.65 0.7833 27.61 0.7379 26.12 0.7891

Table 2: Different Configurations of OSFF.

Omni-Stage Feature Fusion architecture
Original Image Stacked Initialization The image stack-
ing technique (Lee and Tai 2016) is commonly used in pho-
tography post-process for denoising and enhancement. It uti-
lizes the randomness of noise by capturing a series of im-
ages without camera movement, resulting in slightly dif-
ferent noise patterns. Combining these images intelligently
can remove noise without sacrificing details. In CNN-based
super-resolution models, we can simulate this noise random-
ness by duplicating the original images and initializing con-
volutional kernels randomly.

We have designed an Original Image Stacked Initializa-

tion (OISI) method based on this phenomenon. As expressed
in Equation 1, we stack multiple original images as input to
the network and then use a 3× 3 BSConv to extract shallow
features. This initialization method of network input allows
the shallow features to contain richer texture information,
thus improving the model’s ability to reconstruct images.
BSRN’s research (Li et al. 2022) has already validated the
effectiveness of this approach.

Shallow Feature Global Connection Inspired by resid-
ual learning (He et al. 2016), we introduce the Shallow Fea-
ture Global Connection (SFGC) strategy, depicted in Fig-
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ure 2. This strategy involves additive blending of shallow
features with input features at the beginning of each feature
extraction block. Before each addition operation, the shal-
low features are multiplied by a learnable weight parame-
ter. This shared residual connection enables direct element-
wise addition of shallow features with features at various
levels, facilitating the transmission of low-frequency fea-
tures and non-local information. Furthermore, these resid-
ual connections effectively address gradient vanishing and
exploding issues, leading to faster convergence and more
accurate model training. Although the SFGC may lead to
an increase in computational and memory overhead for
lightweight SISR networks, these additional costs are ac-
ceptable and do not significantly impact performance.

Multi-Receptive Field Dynamic Fusion To integrate fea-
tures from various stages and leverage the complementary
benefits of shallow and deep features, we introduce a Multi-
Receptive Field Dynamic Fusion (MFDF) strategy. In this
approach, as depicted in Figure 2, MFDF comprises multiple
DRFs (matched with AEFDs). Lower-level features are pro-
cessed using DRFs with smaller convolution kernels to bet-
ter restore image texture and structures. Conversely, deeper-
level features are processed using DRFs with larger convo-
lution kernels to capture a broader range of contextual infor-
mation and enhance overall structural recovery in the image.
This process can be expressed as:

F k
f = Hk

DRF (Fk)

= Hd
ERB(Fk)×HCCA(Fk),

(6)

where Hd
ERB denotes an Efficient Residual Block (ERB)

based on a d× d BSConv, with d = ⌊k
2 ⌋× 2+1. HCCA de-

notes the Contrast-aware Channel Attention (CCA) block,
which adaptively adjusts the importance of different chan-
nels in the feature map. Figure 3 illustrates how CCA en-
hances the expressive power of multi-level features by pri-
oritizing crucial features in the deeper dimension.

Attention-Enhanced Feature Distillation
To further enhance the OSFFNet’s feature extraction capa-
bility, we design an Attention-Enhanced Feature Distillation
(AEFD) module based on the information distillation mech-
anisms (Hui et al. 2019). Firstly, we combine the refinement
blocks based on ERB and the distillation blocks based on
1 × 1 convolution to perform feature distillation. The dis-
tilled features have half the number of channels compared to
the input features. This process can be expressed as:

fbn = HBN (finput),

f1
d , f

1
r = H1

D(fbn), H
1
R(fbn),

f2
d , f

2
r = H2

D(f1
r ), H

2
R(f

1
r + fbn),

f3
d , f

3
r = H3

D(f2
r ), H

3
R(f

2
r + fbn),

f4
d = H4

D(F 3
R),

(7)

where HBN represents denotes the batch normalization, HD

denotes an ERB based on a 3× 3 BSConv, and HR denotes

Figure 5: The performance and complexity comparisons on
Urban100 for ×4 SR.

a 1 × 1 standard convolution. Then, these distilled features
are fused by:

ffused = Hfusion(Concat4i=1f
i
d), (8)

where Hfusion denotes a 1 × 1 convolution layer used to
adjust the number of channels. Next, we linearly combine
the Enhanced Spatial Attention (ESA) (Liu et al. 2020) and
CCA (Hui et al. 2019) blocks to achieve attention enhance-
ment. The architecture of ESA is shown in Figure 4. In the
following experiments, applying visual attention modules to
super-resolution tasks has been proven to be highly effec-
tive. This process can be expressed as:

fatt = HCCA(HESA(ffused)) + fbn, (9)

where HESA denotes the ESA module. During the final
phase of AEFD, a feedforward network (FFN) (Liu et al.
2021) consisting of layer normalization (LN) and multi-
layer perceptron (MLP) is used to enhance the features fur-
ther. Thus the whole process of AEFD can be expressed as:

foutput = HAEFD(finput)

= HMLP (HLN (fatt)) + fatt,
(10)

where HMLP denotes the MLP module, and HLN denotes
the operation of LN layer.

Experiments
Benchmarks
Datasets Drawing from previous works (Du et al. 2022;
Li et al. 2022; Deng et al. 2023), we utilize two widely used
training datasets DIV2K (Agustsson and Timofte 2017) and
Flickr2K (Agustsson and Timofte 2017). Bicubic downsam-
pling is used to generate corresponding LRs during train-
ing, and 64× 64 patches are obtained through random crop-
ping. Additionally, we introduce random flips and rotations
(90°, 180°, 270°) to the images to enhance data diversity. For
evaluation, we employ five common benchmark datasets:
Set5 (Bevilacqua et al. 2012), Set14 (Zeyde, Elad, and Prot-
ter 2012), BSD100 (Martin et al. 2001), Urban100 (Huang,
Singh, and Ahuja 2015), and Manga109 (Matsui et al. 2017).
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Metrics We evaluate all the SR results by PSNR↑ and
SSIM↑ metrics on the Y channel of the YCbCr color space.
Furthermore, to evaluate the complexity of the model, we
also measure the number of parameters (#Params) and
the number of multiply-add operations (#Multi-Adds) per-
formed by the model on RGB HRs of size 1280×720.

Implementation Details
Hyperparameters To determine a complete OSFFNet, we
need to configure several hyperparameters, including the
number of stacked original images (O), the number of chan-
nels in the hidden layers (C), the number of AEFD modules
(N ), and the kernel size in each DRF (D). After balanc-
ing network complexity and reconstruction performance, we
propose an OSFFNet with O = 8, C = 64, N = 8, Ds =
(1, 1, 3, 3, 5, 5, 7, 7), respectively.

Optimizer & Scheduler For the optimization of our pro-
posed OSFFNet, we utilize the Adam optimizer (Kingma
and Ba 2014) with β1 = 0.9, β2 = 0.999, and ε = 1× 10−8

to minimize the mean absolute error (MAE) loss. As for the
scheduler, the initial learning rate is set to 1× 10−4 and de-
cayed to the final value of 1 × 10−7 over 5 × 105 cosine
annealing iterations. Lastly, the training is performed on an
RTX3090 GPU with a mini-batch size of 64. Specifically,
the models for ×3 and ×4 are the results of fine-tuning based
on the entirety of training on ×2.

Comparisons with State-of-the-art Methods
Quantitative Comparison To demonstrate the effective-
ness of the proposed OSFFNet, we conduct a quantita-
tive objective comparison with some state-of-the-art (SOTA)
lightweight SR methods, which include SRCNN (Dong et al.
2014), VDSR (Kim, Lee, and Lee 2016a), EDSR (Lim et al.
2017), CARN (Ahn, Kang, and Sohn 2018), IMDN (Hui
et al. 2019), HNCT (Fang et al. 2022), FMEN (Du et al.
2022), FDIWN (Gao et al. 2022), BSRN (Li et al. 2022)
and RepRFN (Deng et al. 2023). The quantitative compari-
son results are shown in Table 1, where our model achieves
the best metrics on most datasets. The performance and
complexity comparisons on Urban100 for ×4 SR are also
shown in Figure 5. Based on these comparisons, we can see
that OSFFNet achieves the best results across all datasets at
the ×4 scale, highlighting its superior adaptability for high-
scale ratio SR tasks. Furthermore, our model demonstrates
notable improvements on the Urban100 dataset across all
three scales, potentially due to OSFF’s integration of multi-
ple strategies to enhance shallow feature contribution, par-
ticularly suited for repetitive structures in urban scenes.
However, OSFFNet falls short in achieving the best per-
formance on the ×2 downscaled Set14 dataset, indicating
a need for further improvement in local feature extraction.

Qualitative Comparison The qualitative comparisons of
OSFFNet with other SOTA methods for ×4 SR are shown
in Figure 6, featuring images from Set14, BSD100, Ur-
ban100, and Manga109. Notably, OSFFNet excels in accu-
rately restoring book structure information in barbara, and
produces clearer road textures in 78004 compared to other

78004 - BSD100

PSNR / SSIM 24.56 / 0.6514 25.28 / 0.6937 26.39 / 0.7504

26.45 / 0.7514 26.83 / 0.7618 26.69 / 0.7563 26.96 / 0.7659

barbara - Set14

PSNR / SSIM 25.24 / 0.6912 25.68 / 0.7302 26.10 / 0.7537

26.18 / 0.7548 26.40 / 0.7616 26.07 / 0.7527 26.46 / 0.7643

Sama~ - Manga109

PSNR / SSIM 24.66 / 0.7839 26.56 / 0.8445 29.93 / 0.9091

30.04 / 0.9099 30.40 / 0.9140 30.04 / 0.9099 30.44 / 0.9147

img011 - Urban100

PSNR / SSIM 16.04 / 0.6083 16.25 / 0.6060 17.76 / 0.7985

17.21 / 0.7749 18.34 / 0.8130 17.65 / 0.7930 19.52 / 0.8448

HR

IMDN

Bicubic

BSRN FMEN

SRCNN

OSFFNet

EDSR

HR

IMDN

Bicubic

BSRN FMEN

SRCNN

OSFFNet

EDSR

HR

IMDN

Bicubic

BSRN FMEN

SRCNN

OSFFNet

EDSR

HR

IMDN

Bicubic

BSRN FMEN

SRCNN

OSFFNet

EDSR

Figure 6: Qualitative comparison of OSFFNet with the state-
of-the-art methods for ×4 SR.

methods. It also demonstrates superior feature representa-
tion in img011 and Samayoeru, resulting in finer HR images.
For instance, in img011, only OSFFNet accurately rebuilds
the texture of the small area with satisfactory visualization,
consistent with quantitative results. Additionally, in Samay-
oeru, the female character depicted in the OSFFNet recon-
struction results shows more pronounced eyebrows.

Ablation Studies
Study on Configurations of OSFF To investigate the im-
pact of different configurations of individual modules in
OSFF on network performance, we have implemented sev-
eral variants of OSFFNet, each named based on its code
designation. Then, the experiments are performed at the ×4
scale, and all models are trained for only 1 × 105 iterations
with the same training configuration. The training process is
illustrated in Figure 7, with PSNR calculated on the Set5.
The final results are reported in Table 2. Notably, signif-
icant improvements are achieved with OISI when using a
single module. SFGC demonstrates good performance gains
at minimal cost, making it the most cost-effective option.
Our network achieves the best performance when combin-
ing MFDF with the other two modules.

Effectiveness of OSFF Architecture After configuring
the OSFF architecture, we apply it to IMDN to evaluate its
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Model Scale #Params #Multi-Adds Set5 Set14 BSD100 Urban100
[K] [G] PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

w/o ×2
694 158.8 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283

w/ 739 168.8 38.05 0.9606 33.59 0.9178 32.22 0.9000 32.20 0.9287
w/o ×3

703 71.5 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519
w/ 748 75.8 34.45 0.9277 30.32 0.8415 29.13 0.8056 28.19 0.8528
w/o

×4

715 40.9 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838
w/o (channel-extended) 805 46.0 31.97 0.8917 28.46 0.7780 27.47 0.7325 25.71 0.7740
w/o (depth-extended) 823 47.2 32.27 0.8956 28.63 0.7821 27.59 0.7361 26.11 0.7856
w/ 760 43.4 32.26 0.8957 28.64 0.7822 27.59 0.7363 26.11 0.7862

Table 3: IMDN without vs. with OSFF.

Model ESA CCA #Params #Multi-Adds Set5 Set14 BSD100 Urban100
[K] [G] PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Net-w/oAtt ✘ ✘ 499 20.7 32.11 0.8941 28.57 0.7816 27.56 0.7357 25.96 0.7825
Net-ESA ✔ ✘ 532 22.0 32.30 0.8968 28.71 0.7845 27.65 0.7386 26.28 0.7925
Net-CCA ✘ ✔ 504 20.7 32.30 0.8963 28.66 0.7834 27.62 0.7377 26.17 0.7887
OSFFNet ✔ ✔ 537 22.0 32.39 0.8976 28.75 0.7852 27.66 0.7393 26.36 0.7950

Table 4: Evaluation results of Attention Mechanism.

Figure 7: The training process of OSFFs.

effectiveness. The results of the ablation study are given in
Table 3, demonstrating that integrating the OSFF architec-
ture into IMDN significantly improves metrics, with only
a slight increase in #Params and #Multi-Adds. To ensure
fairness in parameter count and computational complexity,
we extend the original IMDN in both channel and depth as-
pects and conduct experiments at the ×4 scale. As shown in
Table 3, the depth-extended IMDN outperforms the OSFF-
based IMDN, partially due to its higher #Params.

Evaluation of Attention Mechanism We conduct an ab-
lation study on the attention mechanism for the OSFFNet to
analyse the performance before and after applying the at-
tention mechanism. By varying the presence of ESA and
CCA, we obtain three variants: Net-w/oAtt, Net-ESA, and
Net-CCA. These variants are evaluated on the benchmark
dataset at the ×4 scale, and the results are summarized in Ta-
ble 4. Notably, the model without the attention mechanism
(#Params) exhibits a noticeable decline in performance. The
inclusion of either ESA or CCA individually shows some
performance improvement. Additionally, the best perfor-
mance is achieved when ESA and CCA are combined as an

37073 in BSD100 img035 in Urban100 Nichijou~ in Manga109
LR SR LR SR LR SR

Figure 8: Visual results of OSFFNet for ×16 SR.

enhanced attention mechanism, resulting in a 0.40dB PSNR
increase on Urban100 compared to the Net-w/oAtt variant.

Performance at the high scale Figure 8 shows the re-
markable super-resolution visual effect at ×6 scale. De-
spite the extreme degradation, with the LR image reduced
to a very small resolution, our OSFFNet demonstrates a
notably impressive super-resolution reconstruction ability.
This achievement is attributed to the meticulously designed
OSFF architecture, which safeguards crucial details in its
underlying functionality, enabling OSFFNet to achieve out-
standing performance even under severe degradation.

Conclusion
This paper focuses on the under-utilization of low-level
features, a practical scenario rarely explored in previous
lightweight SR studies. Consequently, we propose an Omni-
Stage Feature Fusion Network (OSFFNet) to leverage the
advantages of multi-level features, particularly shallow fea-
tures. The OSFF architecture, featuring OISI, SFGC, and
MFDF, seamlessly integrates features from different lev-
els and incorporates an attention-enhanced feature distilla-
tion module to enhance model performance. The experi-
mental results undoubtedly demonstrate the superiority of
our model in lightweight SR reconstruction. Ablation exper-
iments further confirm the effectiveness of the modules, of-
fering valuable guidance for future research.
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