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Abstract

Never having seen an object and heard its sound simultane-
ously, can the model still accurately localize its visual po-
sition from the input audio? In this work, we concentrate
on the Audio-Visual Localization and Segmentation tasks
but under the demanding zero-shot and few-shot scenarios.
To achieve this goal, different from existing approaches that
mostly employ the encoder-fusion-decoder paradigm to de-
code localization information from the fused audio-visual
feature, we introduce the encoder-prompt-decoder paradigm,
aiming to better fit the data scarcity and varying data distri-
bution dilemmas with the help of abundant knowledge from
pre-trained models. Specifically, we first propose to con-
struct a Semantic-aware Audio Prompt (SAP) to help the
visual foundation model focus on sounding objects, mean-
while, the semantic gap between the visual and audio modal-
ities is also encouraged to shrink. Then, we develop a Cor-
relation Adapter (ColA) to keep minimal training efforts as
well as maintain adequate knowledge of the visual founda-
tion model. By equipping with these means, extensive ex-
periments demonstrate that this new paradigm outperforms
other fusion-based methods in both the unseen class and
cross-dataset settings. We hope that our work can further
promote the generalization study of Audio-Visual Local-
ization and Segmentation in practical application scenarios.
Project page: https://github.com/GeWu-Lab/Generalizable-
Audio-Visual-Segmentation

Introduction
Audio-Visual Localization (AVL) aims to locate the region
of sounding objects within a visual scene based on the input
audio (Wei et al. 2022; Arandjelovic and Zisserman 2018;
Chen et al. 2021), which has made satisfactory development
with the help of multimodal learning (Baltrušaitis, Ahuja,
and Morency 2018) in recent years. Moreover, the demand
for more precise localization in real-world scenarios has led
the task of AVL to shift from localization with bounding box
or coarse heatmap to finer pixel-level segmentation masks,
i.e., Audio-Visual Segmentation (AVS) (Zhou et al. 2022b).
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Currently, as illustrated in the upper-center of Figure 1,
many methods commonly implement AVS based on cross-
modal correlation learning, such as calculating audio-visual
heatmaps through representation similarity (Arandjelovic
and Zisserman 2018) or attention (Zhou et al. 2022b). These
methods initially fuse the latent features of audio and vi-
sual modalities, then learn to localize sounding objects with
the fused representation. We name such methods as the
encoder-fusion-decoder paradigm. However, in real-world
applications, the limited training data and varying data dis-
tribution hinder the segmentation performance of models
when faced with unseen classes and different datasets (cross-
datasets). Therefore, this study focuses on generalizable
audio-visual segmentation, which facilitates effective local-
ization for both unseen classes and cross-dataset settings.

To probe the generalization capability of the current
encoder-fusion-decoder paradigm, we conduct cross-dataset
tests on the VGG-SS dataset (Chen et al. 2021) but trained
on AVS-Benchmarks (Zhou et al. 2022b). The right side of
Figure 1 demonstrates that fusion-based models under the
zero-shot setting are unable to surpass the performance of
the classic AVL models trained on the VGG-Sound dataset
(Chen et al. 2020), which has the same data distribution with
VGG-SS. We attribute this performance to the limited gener-
alization ability resulting from exploring audio-visual corre-
lations on specific datasets using the encoder-fusion-decoder
paradigm, without prior knowledge from pre-trained mod-
els. SLAVC (Mo and Morgado 2022a) demonstrates that
leveraging the prior knowledge within pre-trained visual
models can improve the generalization ability.

We argue that one of the ways to enhance generaliza-
tion capability is to leverage the prior knowledge encoded
in large-scale pre-trained models (Yang et al. 2023). Many
models in natural language processing (NLP) and com-
puter vision (CV) exhibit remarkable generalization abili-
ties (Brown et al. 2020; He et al. 2016). Some researchers
(Li et al. 2022; Zheng et al. 2022; Zang et al. 2022) con-
sider prompt learning to enhance the model generalization
ability. One of the key benefits lies in its ability to align the
data distribution of downstream tasks with the prior knowl-
edge embedded in the foundation model, as the task for-
mats and the output space have reached a consensus between
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Figure 1: The AVS pipeline of encoder-fusion-decoder (the upper-center) and our proposed encoder-prompt-decoder (the lower-
center) paradigms. Classical encoder-fusion-decoder methods decode mask from the fused modality while we prompting visual
input with audio to adapt AVL and AVS tasks to the visual foundational model. The results on the VGG-SS dataset highlight
the challenge of generalizing across different datasets. However, our approach breaks through the 40% cIoU barrier, getting the
performance closer to the best trained on in-set (VGG-Sound) method.

pre-trained models and downstream tasks (Shu et al. 2022;
Jia and Zhang 2022), consequently enhancing the model’s
generalization capability across diverse downstream tasks.
Drawing inspiration from prompt learning in NLP and mul-
timodal research, we consider that a visual foundation model
incorporating audio context cues holds great promise for
achieving generalizable AVL and AVS.

Therefore, we introduce an encoder-prompt-decoder
paradigm that instructs the visual foundation model to per-
form sounding object segmentation using audio cues, rather
than solely decoding from the fused modality. This paradigm
facilitates the seamless integration of the AVS task within
the underlying visual foundation model, thereby enhanc-
ing the generalization capability of prompt-based models in
AVL and AVS through effective utilization of the pre-trained
model’s prior knowledge. Firstly, we construct a Semantic-
aware Audio Prompt (SAP) to bridge the semantic gap be-
tween the visual and auditory modalities, aligning the se-
mantics of the given image and audio through contrastive
learning. SAP assists the visual foundation model in local-
izing objects based on the provided audio cues with the
same cross-modal semantics. Subsequently, we use a cor-
relation adapter (ColA) to construct the audio-visual corre-
lation to retain as much prior knowledge as possible from
the visual foundation model. We use the Segment Anything
Model (SAM) (Kirillov et al. 2023) as our visual founda-
tion model for its remarkable segmentation capabilities in
generalization-sensitive scenarios.

To evaluate the effectiveness of our method, we first verify
the segmentation performance of our Generalizable Audio-
visual Segmentation (GAVS) method on AVS-Benchmarks
(Zhou et al. 2022b), then we evaluate the zero-shot and few-
shot generalization capabilities on AVS-V3 and VGG-SS
(Chen et al. 2021) for unseen classes and cross-dataset set-
tings respectively. Experimental results demonstrate that our
model achieves superior generalizable segmentation perfor-
mance and outstanding few-shot learning ability compared
to fusion-based models. In summary, our contributions can

be summarized as follows:

• We investigate the under-explored generalization issue in
the AVS task and introduce an encoder-prompt-decoder
paradigm to enhance the generalization of the AVS
model by leveraging the prior knowledge of the visual
foundation model.

• We introduce a Semantic-aware Audio Prompt (SAP) to
assist the model in focusing on the regions of the image
that share the same semantics as the given audio.

• We propose a Correlation Adapter (ColA) to construct
the audio-visual correlation but retain the prior knowl-
edge of the visual foundation model.

Related Work
Audio-Visual Localization and Segmentation
AVL aims to predict the location of sounding objects in a
video (Wei et al. 2022). The traditional AVL task (Seno-
cak et al. 2018; Hu et al. 2021; Chen et al. 2021; Mo and
Morgado 2022a,b; Park, Senocak, and Chung 2023) is typ-
ically unsupervised, where the goal is to predict the bound-
ing box or coarse heatmap of the object’s location by jointly
learning the correspondences between audio and visual fea-
tures. In recent years, AVL studies have gradually shifted
towards learning audio-visual correspondence through the
contrastive learning of positive and negative examples.

A more challenging task of sound source localization,
AVS (Zhou et al. 2022b), has been proposed recently, which
is a complex extension of the AVL task, as it requires
a pixel-level shape description besides localization. AVS-
Bench (Zhou et al. 2022b) utilizes multi-stage audio-visual
feature fusion to perform a supervised segmentation task on
a midsize dataset, predicting the probability of each pixel
in the image belonging to the sounding object. AuTR (Liu
et al. 2023b) proposes an audio-aware query-enhanced trans-
former to address the limitations of small receptive fields in
convolutions and inadequate fusion of audio-visual features.
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Figure 2: The overview of GAVS. (1) We firstly align the audio and visual semantics for SAP, and introduce visual features as
cues (the green one in FA′ ) for audio input (the blue one in FA′ ). Then we further combine audio input with learnable adaptive
noise (the pink one in FA′ ) to construct the final SAP FA′ , and get the projected prompt FP . (2) Next, we utilize cross-modal
attention to learn the correlation between audio and visual in the Audio Source Decoder, projecting audio into the visual space.
The self-attention for FP before the first cross-modal attention is omitted for clarity.

AVSC (Liu et al. 2023a) presents an audio-visual instance-
aware approach to address the ambiguity of silent objects
and explore audio-visual semantic correlation to highlight
corresponding sounding instances. AUSS (Ling et al. 2023)
proposes to unmix complicated audio signals and distin-
guish similar sounds. AVSegFormer (Gao et al. 2023) em-
ploys the transformer architecture to decode fused audio-
visual features and utilize audio queries to enhance the
model’s focus on sounding objects in the visual space. AV-
SAM (Mo and Tian 2023) leverages the promptable na-
ture of SAM to accomplish AVS, however, it still employs
fused modalities at the pixel level as the prompt input.
This approach of prompt constructing still fails to avoid the
problem of insufficient information prompts caused by data
scarcity and diverse data distributions. In the experimen-
tal section, we further assess the feasibility of AV-SAM’s
encoder-fusion-prompt-decoder paradigm by implementing
a simple Audio-SAM model.

Overall, current research on AVS are primarily focused
on close-set and in-domain situations and obtained satisfac-
tory results to some extent. However, there has been a lack
of emphasis on investigating the generalization ability in un-
seen classes and varying data distribution scenarios.

Prompt Learning
Most pre-trained language models are trained using lan-
guage modelling objectives, which may differ significantly
from the objectives of downstream tasks. Consequently, sev-
eral studies (Li and Liang 2021; Lester, Al-Rfou, and Con-
stant 2021; Liu et al. 2023c) have introduced prompt learn-
ing to bridge the gap between pre-training and downstream
tasks. In essence, prompt learning assists the model’s learn-
ing process during pre-training by providing task-specific
cues, thereby assisting the model in effectively utilizing
contextual information (Liu et al. 2023c). Relative studies
(Schick and Schütze 2021; Zhou et al. 2022a) have demon-
strated that prompt learning leads to improved performance
of pre-trained language models in few-shot and zero-shot

scenarios. For example, the CLIP (Radford et al. 2021)
vision-language model leverages textual prompts that ex-
plain the concepts present in the image and achieves gen-
eralizable cross-modal matching. Similarly, in the speech-
language domain, context from text prompts is used to im-
prove speech emotion recognition (Jeong, Kim, and Kang
2023). Given previous works (Schick and Schütze 2021;
Zhou et al. 2022a) on NLP that have shown how prompts can
aid in improving the model’s fit to pre-trained models and
better utilize prior knowledge, further research on prompt
learning should be a crucial consideration in advancing the
efficacy of models within the audio-visual field.

Generalizable Audio-Visual Segmentation
In practical applications, challenging generalization-related
issues such as zero-shot and few-shot segmentation on un-
seen classes and different datasets can deteriorate the per-
formance of pre-trained audio-visual models. In this section,
we introduce how our model, GAVS as shown in Figure 2,
deals with the above issues by focusing on the following two
aspects: (i) constructing audio prompts to guide audio source
decoding, (ii) correctly projecting audio prompts into the vi-
sual space and generating the corresponding mask.

Multimodal Representation
Based on the previous works (Zhou et al. 2022b; Gao
et al. 2023) for video and audio processing, we sample the
video at intervals of 1 second to obtain frames xframes ∈
RT×3×H×W , where T represents the number of frames as
well as the video duration in seconds. The above operations
transform the video segmentation task into image segmenta-
tion. The visual foundation model SAM extracts image fea-
tures from a ViT (Dosovitskiy et al. 2020) model containing
12 transformer layers. We further tune the visual encoder
with bottleneck adapters (Houlsby et al. 2019) and obtain
the visual feature FV ∈ RdV ×H×W .

We extract audio features using the VGGish (Hershey
et al. 2017) method. The VGGish model is specifically de-
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signed for audio feature extraction and is capable of captur-
ing both temporal and spectral information. Firstly, we pre-
process the audio into a mono-waveform with a sampling
rate of 16kHz. Then, we use the Fourier transform to obtain
the mel spectrum, which is subsequently fed into the VG-
Gish model to extract audio feature FAs ∈ RT×dm and dm
is 128 in default. Finally, for each video clip, the ith frame
corresponds to the audio feature FA = FAs[i].

Semantic-aware Audio Prompting
SAP prompts the visual foundation model to retrieve sound-
ing objects from the visual space by leveraging the prior
knowledge and consists of audio input, visual cues and
learnable adaptive noise, as shown in the left part of Figure
2. The global average pooling GAP (·) is designed to incor-
porate visual cues into the audio input, thereby introducing
visual context to enhance the audio-visual correlation during
the audio source decoding.

As shown in Equation 1, we first obtain the comprehen-
sive visual feature FV G ∈ RdV by performing GAP on the
visual feature FV , then we feed FV G into an MLP module
to achieve consistent dimension with the audio feature FA,
resulting in the visual cues FC ∈ Rdm :

FC = MLP (GAP (FV )), (1)

the reason for unifying the dimensions of visual and au-
dio features is to enable contrastive learning, which extracts
cross-modal representations with semantic consistency and
thus enhances cross-modal generalization. Besides, incorpo-
rating visual cues as scene contextual information for audio
input can provide semantic context from the visual modality
during cross-modal audio-visual interactions.

In addition to visual cues, we introduce a learnable adap-
tive noise FN ∈ RdN as part of the audio prompt. In-
stead of explicitly providing semantic information, the adap-
tive noise prompt implicitly aligns current modality features
with the data distribution of the visual foundation model dur-
ing the tuning process for specific downstream tasks. More-
over, embedding adaptive noise into audio input provides
more diverse representations of audio prompts in the fea-
ture space, enhancing the model’s generalization and noise
tolerance during the inference.

Through the aforementioned operations, we simply con-
catenate the prompt components and audio input to obtain
the final audio prompt FA′ ∈ R2dm+dN , which we also refer
to as SAP:

FA′ = [FC ;FN ;FA]. (2)

Finally, we feed the visual input and projected prompt1
FP ∈ R6×dV into the Audio Source Decoder for sounding
object segmentation.

Audio Source Decoder
In previous approaches, the decoder generates pixel-level
masks based on fused features. We argue that decoding in

1SAM provides 6 token slots including 1 IoU token, 4 query
tokens and 1 prompt token; we use the first query token for mask
generating.

the visual space with the help of audio prompts can enhance
the generalization ability of AVS models. Specifically, we
tune the mask decoder of SAM. However, to maintain the
prior knowledge of the visual foundation model, instead of
tuning the whole decoder or modifying the cross-modal at-
tention modules in the middle of Figure 2 that already con-
tain prior interactive knowledge, we propose ColA method
to efficiently construct the audio-visual correlation by tuning
the core context engaging in different cross-modal attention
CMA(·) modules:

Fcontext = FP + CMA(FP , F
T
V ), (3)

FP ′ = ColA(MLP (Fcontext)) +MLP (Fcontext), (4)
where ColA(·) is a bottleneck adapter, and Fcontext ∈
R6×dV is the addition of FP and output of AV cross-modal
attention (the former one in Figure 2). FP ′ is the updated
prompt feature that is ready to be fed into VA cross-modal
attention (the latter one in Figure 2) with Fcontext, serving as
the key K ∈ R6×dV . Then we get the updated visual feature
FV ′ ∈ RH×W×dV :

K = Fcontext + FP ′ , (5)

FV ′ = FT
V + CMA(FT

V ,K). (6)
By employing the above approach, we only need to tune

the core context features to establish the outstanding audio-
visual correlation. We later validate the effectiveness of
ColA in the ablation study by comparing it with tuning the
cross-modal attention modules.

After traversing through all transformer layers, we use
the final visual output as the mask embedding FM ∈
RdV ×H×W . Then, we upscale the mask embedding by a
transposed convolutional module and we get the upscaled
embedding Fup ∈ R

dv
8 ×4H×4W .

Next, we pass the object query through the MLP module
and finally, the mask Mpred ∈ R4H×4W is calculated based
on the query part of FP and the upscaled embedding:

Mpred = Fup ×MLP (FP [1]). (7)

The above flows accomplish AVS based on audio
prompts. Then we can directly add the mask embedding
from the two-way transformer to the image embedding FV

for further training.

Learning Objectives
Segmentation Loss. We use the binary cross-entropy
BCE(·) loss to measure the difference between the model’s
predicted mask and the ground truth label during the model
training process:

Lseg = BCE(Mpred,Mgt). (8)

Semantic Loss. We adopt a simple triplet loss to optimize
contrastive learning for achieving semantic alignment, and
use cosine similarity as the metric for feature similarity mea-
surement. For each video, we select the average visual fea-
ture vi and the average audio feature ai as the positive pair,
and select the average visual feature vi and the average audio
feature aj of the other video as the negative pair:
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V1S V1M V2
Method Audio-backbone Visual-backbone mIoU(%) F-score mIoU(%) F-score mIoU(%) F-score
AVSBench (ECCV’2022) VGGish PVT-v2 78.70 0.879 54.00 0.645 62.45 0.756
AVSegFormer (AAAI’2024) VGGish PVT-v2 82.06 0.899 58.36 0.693 64.34 0.759
AVSC (ACMMM’2023) VGGish PVT-v2 81.29 0.886 59.50 0.657 - -
AuTR (ArXiv’2023) VGGish Swin-base 80.40 0.891 56.20 0.672 - -
AV-SAM (ArXiv’2023) ResNet18 ViT-Base 40.47 0.566 - - - -
Audio-SAM† (ours) VGGish ViT-Base 56.33 0.727 33.68 0.459 57.41 0.684
SAM-Fusion‡ (ours) VGGish ViT-Base 71.92 0.775 50.61 0.637 60.19 0.724
GAVS (ours) VGGish ViT-Base 80.06 0.902 63.70 0.774 67.70 0.788

Table 1: Performance on AVS-Benchmarks. Although GAVS shows deficiencies on the V1S dataset, it exhibits comparable
improvements in the V1M and V2 datasets to other models that trained with the encoder-fusion-decoder paradigm. †: We only
replace the sparse prompt in SAM with audio inputs, to conduct a comparative experiment with AV-SAM. ‡: Set up similar to
GAVS, but fuse the audio and visual modalities without prompting before the Audio Source Decoder.

Figure 3: Visualization of performance improvements of AVS models on the AVS-V2 dataset in relation to the amount of data
used for training. We compare models with subsets consisting of 10%, 30%, and 50% of the full dataset. Our results show
that our method achieves better performance with only 10% of the training data compared to other models trained with 30%.
Moreover, our model outperforms other models trained on the full dataset when trained with only half of the data.

vi = F̄V =

∑T
FV

T
; ai = F̄A =

∑T
FA

T
, (9)

Lsem =
1

N

N∑
i=1

[
m− sim(vi, ai) +

N
max
j=1

[sim(vi, aj)]

]
+

,

(10)
in which N represents the mini-batch size, and m represents
the margin to control the distance between positive pairs and
negative pairs.

Total Loss. The final loss function is a linear combination
of the aforementioned loss functions:

L = Lseg + λLsem, (11)

where λ is the weight of semantic loss.

Experiments
To evaluate the grounding performance of our model, we
conduct tests on AVS-Benchmarks and use mean intersec-
tion over union (mIoU) and F-score as the performance met-
rics, following previous works (Zhou et al. 2022b; Gao et al.
2023). Additionally, to assess the generalization ability, we

split zero-shot and few-shot testing subsets2 based on AVS-
Benchmarks and VGG-SS datasets.

Grounding Segmentation on AVS-Benchmarks

AVS-Benchmarks (Zhou et al. 2022b) is a dataset specifi-
cally designed for AVS tasks. Refer to Table 1, our model
achieves the best performance in multi-source setting (V1M
and V2) and gets comparable performance in single-source
setting (V1S). Compared with AV-SAM, where both mod-
els utilize prompts, our implemented straightforward Audio-
SAM freezes all parameters except for the audio input,
which is passed through an additional MLP module for
updating. This results in a performance improvement of
15% compared to AV-SAM, demonstrating the effective-
ness of the encoder-prompt-decoder paradigm, which di-
rectly prompted the visual foundation model.

Besides, we further compare the performance of various
open-source models at different data volumes to demon-
strate our superiority in data utilization, as the AVS task is
cost-intensive. As shown in Figure 3, with only 50% of the
data, we can achieve the best performance equivalent to us-
ing 100% of the data by other models.

2Refer to the project page for detailed split settings.
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0-shot 1-shot 3-shot 5-shot
Method mIoU(%) F-score mIoU(%) F-score mIoU(%) F-score mIoU(%) F-score
AVSBench (ECCV’2022) 53.00 0.707 56.11 0.754 63.22 0.767 63.87 0.783
AVSegFormer (ArXiv’2023) 54.26 0.715 58.30 0.764 64.19 0.774 65.17 0.785
SAM-Fusion (ours) 46.25 0.630 50.39 0.671 57.05 0.719 60.82 0.741
GAVS (ours) 54.71 0.722 62.89 0.768 66.28 0.774 67.75 0.795

Table 2: Performance on AVS-V3 for testing the generalization ability on unseen object classes. Our model GAVS, which is
trained with the encoder-prompt-decoder paradigm achieves a significant performance improvement compared to other models
following the conventional encoder-fusion-decoder paradigm.

Method Train cIoU(%) AUC
HardWay (CVPR’2021) in-set 34.4 0.382
EZ-VSL (ECCV’2022) in-set 38.85 0.395
SLAVC (NeurIPS’2022) in-set 39.80 -
MarginNCE (ICASSP’2023) in-set 39.78 0.400
AVIN-RN (ACMMM’2023) in-set 44.90 0.436
AVSBench (ECCV’2022) zero-shot 36.86 0.370
AVSegFormer (ArXiv’2023) zero-shot 38.86 0.390
SAM-Fusion (ours) zero-shot 30.17 0.302
GAVS (ours) zero-shot 41.07 0.411

Table 3: The results of VGG-SS for comparing the per-
formance of zero-shot AVS models with traditional self-
supervised in-set AVL models. Our model outperforms other
AVS models in cross-dataset settings.

Unseen Classes on AVS-V3
We design AVS-V3 to assess the generalization ability of
AVS models on unseen classes. It consists of four settings:
0-shot, 1-shot, 3-shot, and 5-shot. In the zero-shot setting,
the classes of objects in the test set do not appear during the
training or validation. In the other settings, we select N=[1,
3, 5] data samples for each class and include them in the
training process to enable few-shot learning.

As shown in Table 2, our model achieves the highest 0-
shot performance, exhibiting superior generalization when
encountering unseen object classes. Meanwhile, we can ob-
serve that after 3-shot learning, our model surpasses other
models’ performance trained with 5-shot, indicating that our
model possesses better few-shot learning ability.

Cross-datasets on VGG-SS
VGG-SS. VGG-SS (Chen et al. 2021) is a dataset de-
signed for the AVL task performance test. Each image has a
corresponding audio source and a bounding box label. VGG-
SS contains 5,158 images covering 220 categories, and all
the data is only used for testing purposes.

In this experiment, we test models’ cross-dataset gen-
eralization on the VGG-SS test set. Previous works such
as HardWay (Chen et al. 2021), EZ-VSL (Mo and Mor-
gado 2022b), SLAVC (Mo and Morgado 2022a), Margin-
NCE (Park, Senocak, and Chung 2023) and AVIN-RN (Liu
et al. 2023d) trained models on VGG-Sound 144k, we label
them as “trained on in-set” because VGG-SS is extracted
from VGG-Sound. In contrast, we train typical AVS mod-
els on AVS-V2 and can be labelled as “trained with zero-
shot” for cross-dataset testing. As shown in Table 3, models
such as AVSBench and AVSegFormer perform well on AVS-
Benchmarks but fail to perform as well in VGG-SS. Our

model has better cross-dataset generalization ability and sur-
passes other zero-shot models, although there is still some
gap compared to the best in-set model.

VGG-SS-Sub. Due to VGG-SS only containing the test
set, we split it and obtain VGG-SS-Sub to assess the few-
shot cross-dataset generalization ability of fusion-based and
prompt-based AVS models transfer from AVS to AVL task.
Same with the AVS-V3, it is set up with zero-shot and few-
shot (1, 3, 5) settings. Note that the zero-shot performance
of this subset cannot be compared with the VGG-SS full set
as the test set is different.

From Table 4, we can observe that our model achieves
better zero-shot and few-shot performance, suggesting that
with SAP and ColA, our model can better fit the data distri-
bution across different datasets.

Ablation Study
As shown in Table 5, we evaluate the capabilities of our
model on the AVS-V2 dataset. Initially, We investigate the
effects of different tuning strategies in the Audio Source De-
coder to establish the correlation between audio and visual
modalities. We conduct separate tests for a) freezing the de-
coder parameters, b) fine-tuning the entire decoder, and c)
tuning the AV cross-modal attention and d) VA cross-modal
attention using adapters, comparing them with our proposed
e) ColA, and the combined strategy f) ColA & tuning AV
and VA cross-modal attention with adapters. Experimental
results demonstrate that adapter-based tuning outperforms
freezing and fine-tuning. Additionally, our proposed ColA
achieves better results compared to modifying cross-modal
attention components that include pre-trained knowledge,
indicating that ColA can better construct the audio-visual
correlation by leveraging the prior knowledge of the visual
foundation model.

Furthermore, we explore the effectiveness of different
AVS paradigms with the same visual foundation model, and
the results of g) and h) indicate that using audio as cues
to prompt the visual foundation model can outperform fus-
ing audio and visual modalities directly. Building upon the
encoder-prompt-decoder paradigm, we further incorporate i)
visual backbone adapters and j) SAP, resulting in improve-
ments in segmentation performance.

Qualitative Analysis
As shown in Figure 4, (a)(b)(c) represent the visualization
results on AVS-V2, while (d)(e)(f) represent the visualiza-
tion results on AVS-V3 zero-shot test set. On AVS-V2, our
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0-shot 1-shot 3-shot 5-shot
Method cIoU(%) AUC cIoU(%) AUC cIoU(%) AUC cIoU(%) AUC
AVSBench (ECCV’2022) 37.28 0.374 53.33 0.534 56.78 0.569 57.38 0.574
AVSegFormer (ArXiv’2023) 37.99 0.380 53.41 0.534 56.84 0.569 57.65 0.577
SAM-Fusion (ours) 31.22 0.315 40.39 0.407 45.25 0.453 48.67 0.487
GAVS (ours) 38.62 0.387 53.70 0.537 57.41 0.574 60.14 0.602

Table 4: Performance on VGG-SS-Sub for testing the generalization ability across different datasets. Our model is trained
following the encoder-prompt-decoder paradigm and achieves the best zero-shot and few-shot performance.

Raw
Image

Ground
truth

AVS
Bench

GAVS
(Ours)

Audio

(a) (b) (c)

(d)

Raw
Image

Ground
truth

GAVS
(Ours)

Audio

(e) (f)

AVS
Bench

Figure 4: Visualization of segmented masks on the AVS-V2 (a∼c) and AVS-V3 (d∼f) zero-shot test set for unseen classes.
The results reveal that our method effectively identifies objects although their semantic classes were not present in the training
set. This observation suggests that our model possesses superior zero-shot generalization capabilities compared to AVSBench,
which follows the encoder-fusion-decoder paradigm.

Method mIoU(%) F-score
a) freeze 57.41 0.684
b) fine-tune 62.08 0.714
c) AV-adapter 62.11 0.720
d) VA-adapter 61.84 0.715
e) ColA 63.35 0.727
f) ColA + AV + VA 62.09 0.721
g) AV-fusion 59.69 0.701
h) audio-prompt 63.35 0.727
i) +visual-adapter 65.92 0.759
j) +SAP 67.70 0.788

Table 5: Ablation study. We conduct ablation analyses on
the AVS-V2 dataset and the results show that adding visual-
adapters and SAP both contribute to better performance
gains compared to using only audio prompts. We also
demonstrate the superiority of ColA in building audio-visual
correlation compared to other tuning methods.

model produces higher-quality visualization results, indicat-
ing that our model has better grounding AVS performance. It
is worth noting that in AVS-V3, the object classes in the test
set were not included during the training phase. Our model,
trained using the encoder-prompt-decoder paradigm, ex-

hibits improved object recognition ability for unseen classes
when prompted with audio input. In contrast, AVSBench er-
roneously segments or incorrectly recognizes extra objects.

Conclusion and Future Work
The development of large pre-trained models has greatly
enhanced the generalization performance of traditional CV
tasks, but little attention is given to the generalization of
cross-modal AVS in zero-shot and few-shot scenarios. In
this work, we introduce GAVS, the model following the
encoder-prompt-decoder paradigm to address the increas-
ing demand for precise localization with limited annotated
data and varying data distribution in real-world scenarios.
Our method achieves generalizable cross-modal segmenta-
tion, benefiting from using SAP to help the visual founda-
tion model focus on the sounding objects and using ColA for
efficient audio-visual correlation construction. Our method
is only one solution and provides a reference for exploring
generalizable AVS, future work can investigate more flexible
methods for generalizable audio-visual correlation learning
based on large pre-trained models, as well as how to effec-
tively handle the interaction between audio and visual fea-
tures to further promote the model’s generalization.
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Baltrušaitis, T.; Ahuja, C.; and Morency, L.-P. 2018. Mul-
timodal machine learning: A survey and taxonomy. IEEE
transactions on pattern analysis and machine intelligence,
41(2): 423–443.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners. Ad-
vances in neural information processing systems, 33: 1877–
1901.
Chen, H.; Xie, W.; Afouras, T.; Nagrani, A.; Vedaldi, A.; and
Zisserman, A. 2021. Localizing visual sounds the hard way.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 16867–16876.
Chen, H.; Xie, W.; Vedaldi, A.; and Zisserman, A.
2020. VGGSound: A Large-scale Audio-Visual Dataset.
arXiv:2004.14368.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.
Gao, S.; Chen, Z.; Chen, G.; Wang, W.; and Lu, T.
2023. AVSegFormer: Audio-Visual Segmentation with
Transformer. arXiv preprint arXiv:2307.01146.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Hershey, S.; Chaudhuri, S.; Ellis, D. P.; Gemmeke, J. F.;
Jansen, A.; Moore, R. C.; Plakal, M.; Platt, D.; Saurous,
R. A.; Seybold, B.; et al. 2017. CNN architectures for large-
scale audio classification. In 2017 ieee international con-
ference on acoustics, speech and signal processing (icassp),
131–135. IEEE.
Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.;
De Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; and
Gelly, S. 2019. Parameter-efficient transfer learning for
NLP. In International Conference on Machine Learning,
2790–2799. PMLR.
Hu, D.; Wei, Y.; Qian, R.; Lin, W.; Song, R.; and Wen, J.-R.
2021. Class-aware sounding objects localization via audio-
visual correspondence. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 44(12): 9844–9859.

Jeong, E.; Kim, G.; and Kang, S. 2023. Multimodal Prompt
Learning in Emotion Recognition Using Context and Audio
Information. Mathematics, 11(13): 2908.
Jia, C.; and Zhang, Y. 2022. Prompt-based Distribution
Alignment for Domain Generalization in Text Classification.
In Proceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, 10147–10157.
Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.;
Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A. C.; Lo,
W.-Y.; et al. 2023. Segment anything. arXiv preprint
arXiv:2304.02643.
Lester, B.; Al-Rfou, R.; and Constant, N. 2021. The Power
of Scale for Parameter-Efficient Prompt Tuning. In Proceed-
ings of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, 3045–3059.
Li, A.; Zhuang, L.; Fan, S.; and Wang, S. 2022. Learning
common and specific visual prompts for domain generaliza-
tion. In Proceedings of the Asian Conference on Computer
Vision, 4260–4275.
Li, X. L.; and Liang, P. 2021. Prefix-Tuning: Optimiz-
ing Continuous Prompts for Generation. In Proceedings of
the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Pa-
pers), 4582–4597.
Ling, Y.; Li, Y.; Gan, Z.; Zhang, J.; Chi, M.; and Wang, Y.
2023. Hear to Segment: Unmixing the Audio to Guide the
Semantic Segmentation. arXiv preprint arXiv:2305.07223.
Liu, C.; Li, P.; Qi, X.; Zhang, H.; Li, L.; Wang, D.; and Yu,
X. 2023a. Audio-Visual Segmentation by Exploring Cross-
Modal Mutual Semantics. arXiv:2307.16620.
Liu, J.; Ju, C.; Ma, C.; Wang, Y.; Wang, Y.; and
Zhang, Y. 2023b. Audio-aware Query-enhanced Trans-
former for Audio-Visual Segmentation. arXiv preprint
arXiv:2307.13236.
Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; and Neubig,
G. 2023c. Pre-train, prompt, and predict: A systematic sur-
vey of prompting methods in natural language processing.
ACM Computing Surveys, 55(9): 1–35.
Liu, T.; Zhang, P.; Huang, W.; Zha, Y.; You, T.; and Zhang,
Y. 2023d. Induction Network: Audio-Visual Modality Gap-
Bridging for Self-Supervised Sound Source Localization.
arXiv preprint arXiv:2308.04767.
Mo, S.; and Morgado, P. 2022a. A closer look at weakly-
supervised audio-visual source localization. Advances in
Neural Information Processing Systems, 35: 37524–37536.
Mo, S.; and Morgado, P. 2022b. Localizing visual sounds
the easy way. In European Conference on Computer Vision,
218–234. Springer.
Mo, S.; and Tian, Y. 2023. AV-SAM: Segment anything
model meets audio-visual localization and segmentation.
arXiv preprint arXiv:2305.01836.
Park, S.; Senocak, A.; and Chung, J. S. 2023. Margin-
nce: Robust sound localization with a negative margin.
In ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 1–5.
IEEE.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5676



Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from nat-
ural language supervision. In International conference on
machine learning, 8748–8763. PMLR.
Schick, T.; and Schütze, H. 2021. Exploiting Cloze-
Questions for Few-Shot Text Classification and Natural Lan-
guage Inference. In Proceedings of the 16th Conference of
the European Chapter of the Association for Computational
Linguistics: Main Volume, 255–269.
Senocak, A.; Oh, T.-H.; Kim, J.; Yang, M.-H.; and Kweon,
I. S. 2018. Learning to localize sound source in visual
scenes. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 4358–4366.
Shu, M.; Nie, W.; Huang, D.-A.; Yu, Z.; Goldstein, T.;
Anandkumar, A.; and Xiao, C. 2022. Test-time prompt tun-
ing for zero-shot generalization in vision-language models.
Advances in Neural Information Processing Systems, 35:
14274–14289.
Wei, Y.; Hu, D.; Tian, Y.; and Li, X. 2022. Learning in
audio-visual context: A review, analysis, and new perspec-
tive. arXiv preprint arXiv:2208.09579.
Yang, S.; Nachum, O.; Du, Y.; Wei, J.; Abbeel, P.; and Schu-
urmans, D. 2023. Foundation models for decision mak-
ing: Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129.
Zang, Y.; Li, W.; Zhou, K.; Huang, C.; and Loy, C. C. 2022.
Unified vision and language prompt learning. arXiv preprint
arXiv:2210.07225.
Zheng, Z.; Yue, X.; Wang, K.; and You, Y. 2022. Prompt
vision transformer for domain generalization. arXiv preprint
arXiv:2208.08914.
Zhou, C.; He, J.; Ma, X.; Berg-Kirkpatrick, T.; and Neubig,
G. 2022a. Prompt Consistency for Zero-Shot Task Gener-
alization. In Findings of the Association for Computational
Linguistics: EMNLP 2022, 2613–2626.
Zhou, J.; Wang, J.; Zhang, J.; Sun, W.; Zhang, J.; Birchfield,
S.; Guo, D.; Kong, L.; Wang, M.; and Zhong, Y. 2022b.
Audio–visual segmentation. In European Conference on
Computer Vision, 386–403. Springer.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5677


