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Abstract

Prompt learning has become a prevalent strategy for adapting
vision-language foundation models to downstream tasks. As
large language models (LLMs) have emerged, recent studies
have explored the use of category-related descriptions as in-
put to enhance prompt effectiveness. Nevertheless, conven-
tional descriptions fall short of structured information that
effectively represents the interconnections among entities or
attributes linked to a particular category. To address this lim-
itation and prioritize harnessing structured knowledge, this
paper advocates for leveraging LLMs to build a graph for
each description to model the entities and attributes describ-
ing the category, as well as their correlations. Preexisting
prompt tuning methods exhibit inadequacies in managing
this structured knowledge. Consequently, we propose a novel
approach called Hierarchical Prompt Tuning (HPT), which
enables simultaneous modeling of both structured and con-
ventional linguistic knowledge. Specifically, we introduce a
relationship-guided attention module to capture pair-wise as-
sociations among entities and attributes for low-level prompt
learning. In addition, by incorporating high-level and global-
level prompts modeling overall semantics, the proposed hi-
erarchical structure forges cross-level interlinks and empow-
ers the model to handle more complex and long-term rela-
tionships. Extensive experiments demonstrate that our HPT
shows strong effectiveness and generalizes much better than
existing SOTA methods. Our code is available at https://
github.com/Vill-Lab/2024-AAAI-HPT.

Introduction
Vision-Language foundation models (VLMs) (Radford et al.
2021; Jia et al. 2021), trained on large-scale datasets of
image-text pairs, have made remarkable advancements in
learning transferable representations. To effectively explore
the potential of these powerful foundation models, prompt
tuning methods (Zhou et al. 2022; Zhou et al. 2022; Khattak
et al. 2023) aim to learn a set of continuous vectors known as
prompt vectors and incorporate them in the input space, en-
dowing the pre-trained network with a powerful representa-
tion capability. However, when confronted with ambiguous
category names, models frequently struggle to make accu-
rate judgments regarding the corresponding visual concepts,
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What does [CLASS] look like among all [TYPE]? 
What are the distinct features of [CLASS] for recognition among all [TYPE]? 
How can you identify [CLASS] in appearance among all [TYPE]? 

a pet {} a flower {} a {} car types of flowers    types of cars

LLM

Water lily has distinct features like 
circular blooms, broad flat leaves, 
showy flowers with multiple petals 
and stamen. 
…

LLM

Descriptions

Reconstruct the following 
sentence into 4 parts: All entities, 
All attributes, Relationships 
between entities, Relationships 
between attribute and entity.

Instruction 𝑻′

Structured Graph

+

Water lily

leaves flowers

pedalsflatbroad

showy

stamen

blooms

circular

Attribute

Entity

Entity-to-entity
relationship

Entity-to-attribute
relationship

leaves

broad

Structured 
Graph

Instruction T

passion flower   water lily cyclamen

Figure 1: We input a few hand-written instructions into LLM
to generate human-like category-related descriptions along
with structured graphs based on each description.

leading to underwhelming performance. Therefore, utilizing
category names as text input without the assistance of lin-
guistic knowledge seems to be a suboptimal choice. Recent
methods (Zhang et al. 2023; Pratt, Liu, and Farhadi 2022;
Menon and Vondrick 2022) have addressed this issue by us-
ing large language models (LLMs), such as GPT-3 (Brown
et al. 2020). They take hand-written templates as input and
generate human-like texts, containing rich linguistic knowl-
edge that complements few-shot visual recognition.

In this paper, we propose a novel approach to comple-
ment natural linguistic descriptions with a structured repre-
sentation of knowledge. We assert that this structured knowl-
edge is essential for prompt tuning. Specifically, the de-
scriptions of a category with unstructured knowledge con-
sist of key entities and attributes that define the category.

ar
X

iv
:2

31
2.

06
32

3v
1 

 [
cs

.C
V

] 
 1

1 
D

ec
 2

02
3



For example, the category ‘water lily’ is defined by entities
like ‘leaves’, ‘blooms’, ‘flowers’, each linked to category-
specific attributes. Following related works on knowledge
graphs (Tay et al. 2017; Zhang et al. 2021), we represent
these entities, attributes, and their correlations as a graph for
semantic understanding. This graph-based representation of-
fers a more organized way to present information, leading to
improved data comprehension. It facilitates the discovery of
implicit connections that may not be evident in original de-
scriptions. In this work, we leverage existing large language
models to obtain the structured information from vanilla de-
scriptions, as shown in Figure 1. Given a specific category,
we feed hand-crafted instructions into LLMs, intending to
generate human-like descriptions, as well as structured re-
lationships within each description, including entities, at-
tributes, and relationships among them.

However, existing prompt tuning methods are inade-
quate to explicitly model the structured knowledge repre-
sented in a graph. To this end, we propose Hierarchical
Prompt Tuning (HPT) to incorporate both structured and
conventional linguistic knowledge from LLMs for enhanc-
ing prompt effectiveness in a hierarchical manner. To model
the complex structured information, HPT learns hierarchi-
cal prompts with different semantic levels. Specifically, HPT
contains low-level prompts representing the entities and at-
tributes, high-level prompts with category-related informa-
tion derived from descriptions, and global-level prompts
with category-agnostic knowledge shared across categories.

To capture the LLM-generated pair-wise correspondences
among entities and attributes, we introduce a relationship-
guided attention module, where learnable attention-based
matrices are integrated into the text encoder. Furthermore, to
handle more complex and long-term relationships not fully
exploited by LLMs, cross-level self-attention is adopted to
model relationships between prompts from different levels.
It effectively overcomes the limitations caused by relying
solely on the modeling of low-level tokens and allowing for
a more comprehensive understanding of the category. Our
prompts are trained under a dual-path asymmetric frame-
work (Zhao et al. 2022), where the prompted image en-
coder and text encoder are learned separately by aligning the
output with the frozen encoder from the other modality re-
spectively. By replacing the vanilla-prompted text encoder,
which learns only category-agnostic prompts, with a novel
hierarchical prompted text encoder, text representations can
be better aligned with corresponding visual concepts, lead-
ing to excellent recognition performance.

The contributions of our work are summarized as fol-
lows. 1) We raise the consideration that it is crucial to use
structured knowledge from descriptions to assist learning
prompts. Thus, we leverage large language models to gener-
ate category-related descriptions along with corresponding
structured relationships; 2) We propose Hierarchical Prompt
Tuning (HPT) for simultaneously modeling both structured
and conventional linguistic knowledge. By incorporating
both forms of knowledge, we can enhance prompt effective-
ness with more category-related information; 3) Extensive
experiments on three commonly used evaluation settings
demonstrate remarkable improvements with our method.

Related Work
Large Language Models
Large Language Models (LLMs), such as GPT-3 (Brown
et al. 2020), OPT (Zhang et al. 2022), and PaLM (Chowdh-
ery et al. 2022), are trained on extensive web-scale datasets.
Recently, ChatGPT (OpenAI 2023) has gained widespread
popularity due to its strong ability to generate text re-
sembling human-like writing and discern intricate patterns
across diverse domains. Taking advantage of the vast poten-
tial of LLMs, recent studies have demonstrated their effec-
tiveness in addressing various vision-language tasks (Chen
et al. 2022; Alayrac et al. 2022; Yang et al. 2022a). Addi-
tionally, other studies investigate prompting vision-language
models (Zhang et al. 2023; Li et al. 2022; Wang et al. 2022)
with LLMs for image classification, continuous learning,
image caption generation, and action understanding. In this
study, we aim to leverage the capabilities of LLMs in the
field of the image classification task. When prompted with
the target category, LLMs are able to generate related de-
scriptions as well as corresponding structured relationships.

Visual-Language Models
Large visual-language models (VLMs) have been instru-
mental in driving open vocabulary image classification, with
CLIP (Radford et al. 2021) being the pioneering work in this
domain. Notable approaches include scaling up the mod-
els by using larger amounts of data, larger batch sizes, and
bigger models, such as Align (Jia et al. 2021) and Ba-
sic (Pham et al. 2021), refining objective functions with
models like SLIP (Mu et al. 2022), FILIP (Yao et al. 2021),
and Lion (Chen et al. 2023), and incorporating supplemen-
tary information during training through models such as Flo-
rence (Yuan et al. 2021), UniCL (Yang et al. 2022b), K-
LITE (Shen et al. 2022), and REACT (Liu et al. 2023a). Our
study is motivated by the desire to enhance the capabilities
of CLIP with improved multi-modal prompts.

Prompt Learning for V-L Models
Prompt learning has its roots in natural language process-
ing (NLP) and aims to enhance interaction with large lan-
guage models (Liu et al. 2023b; Brown et al. 2020; Wei et al.
2022). Certain endeavors (Menon and Vondrick 2022; Pratt,
Liu, and Farhadi 2022) propose leveraging pre-trained lin-
guistic knowledge from LLMs to generate prompts, thereby
enhancing V-L models without requiring additional train-
ing or labeling. To automate prompt engineering and ex-
plore optimal prompts, other studies (Rao et al. 2022; Zhou
et al. 2022; Zhou et al. 2022; Lu et al. 2022) employ learn-
able text inputs and optimize them during training, known
as prompt tuning. With the emergency of visual prompt tun-
ing (VPT) (Jia et al. 2022), recent methods (Khattak et al.
2023; Zhao et al. 2022) take a multi-modal approach ap-
plying prompting on both modalities to improve alignment
between vision and language representations. In contrast to
prior studies, we generate diverse forms of linguistic knowl-
edge and conduct hierarchical prompt tuning based on them
to generate more robust representations.
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(a) Overall pipeline for hierarchical prompt tuning
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(b) Structure of hierarchical prompted text encoder

Figure 2: Our HPT applies a dual-path asymmetric network as the framework. Descriptions and relationship-guided graphs
with class names are used as input for the frozen text encoder and the hierarchical prompted text encoder respectively. In the
hierarchical prompted text encoder, we apply three types of prompts, low-level prompts, high-level prompts, and global-level
prompts for hierarchical tuning, and design a relationship-guided attention module for better modeling structure knowledge.

Methodology
Overall Pipeline
In this subsection, we will present the overall pipeline of
our proposed method, as shown in Figure 2(a). In the con-
text of a specific category, we initially input it with a set of
hand-crafted templates as instruction into LLMs to generate
human-like descriptions. Moreover, we further feed gener-
ated descriptions with another instruction into LLMs, aim-
ing to capture the well-organized structure within each de-
scription, encompassing entities, attributes, and their rela-
tionships. We will provide a more detailed exposition in Sec-
tion Linguistic Data Generation.

Given generated data, we apply a dual-path asymmetric
network (Zhao et al. 2022) for prompt tuning with visual-
language models. This network experts in addressing over-
fitting issues associated with learned prompts, particularly
in a few-shot learning scenario. To conduct prompt tuning
for transformer-like encoders, learnable vectors are intro-
duced at each transformer layer’s input space as prompts.
The framework incorporates a novel asymmetric contrastive
loss, which trains the prompted image encoder and text en-
coder separately with the frozen encoder from the oppo-
site modality as guidance. Specifically, representations of
prompted and frozen encoders from different modalities are
aligned in an asymmetric way, leading to generating two
probabilities pi and pt from the two frozen-prompted pairs.
They are then averaged to derive an overall prediction po.

Rather than making any modifications to visual prompts,
we will mainly focus on prompt tuning for the text modal-
ity. In contrast to the prior dual-path asymmetric network,
wherein two text encoders process identical text inputs,

our approach adopts a distinct strategy that the frozen and
prompted text encoders take entirely different inputs. In par-
ticular, unstructured descriptions are fed into the frozen en-
coder, while relationship-guided graphs along with the cor-
responding category name are fed into the novel hierarchical
prompted encoder, which is specifically designed and fine-
tuned for modeling structured information. In Section Hier-
archical Prompt Tuning, we will dive into the core struc-
ture of this encoder for more details of tuning prompts from
different semantic levels. To effectively capture the LLM-
generated pair-wise correspondences among entities and at-
tributes, the hierarchical prompted text encoder integrates
a relationship-guided attention module, whose detailed im-
plementation will be elaborated in Section Relationship-
guided Attention Module.

Linguistic Data Generation
To acquire linguistic knowledge, we use one of the most
powerful LLMs, ChatGPT (OpenAI 2023), to generate de-
scriptions with corresponding structured relationships. As
shown in Figure 1, we adopt Nh question templates as
the language instruction T for LLMs, e.g., “What does a
[CLASS] look like among all a [TYPE]?” or “What are
the distinct features of [CLASS] for recognition among all
[TYPE]?”, etc. [CLASS] denotes a specific category name
with a modifier, like “a pet Abyssinian”. [TYPE] indicates
the type of objects related to the dataset, like “types of pets”
for OxfordPets (Parkhi et al. 2012). We denote the generated
descriptions from T as D = {di}Nh

i=1, formulated as

D = LLM(T ). (1)



For descriptions in D, we design an extra instruction T
′

to leverage LLMs for producing structured knowledge, in-
cluding entities, attributes, and relationships among them.
We denote the structured knowledge generated from D as
R, formulated as

R = LLM([T
′
, D]). (2)

Here R = {ri}Nh
i=1, ri = {Ei, Ai, Re2e,i, Re2a,i}, where Ei,

Ai, Re2e,i, Re2a,i represent the entity set, the attribute set,
the set of entity-entity relationships, and the set of entity-
attribute relationships based on description di.

Our method utilizes both descriptions D and structured
knowledge R as the source of category-related textual infor-
mation, leading to effective prompt tuning.

Hierarchical Prompt Tuning
Given descriptions D and structured knowledge R, we as-
pire to simultaneously model both structured and conven-
tional linguistic knowledge. Therefore, we propose a novel
approach called Hierarchical Prompt Tuning (HPT), which
leverages both forms of knowledge for learning prompts
in a hierarchical manner, as shown in Figure 2(b). HPT
contains low-level prompts, high-level prompts, and global-
level prompts, respectively denoted as pl, ph, pg .

Low-Level Prompt To model pair-wise relationships
within a description, we select essential words from this de-
scription as the input of the text encoder. Specifically, for
entities in the entity set Ei and attributes in the attribute set
Ai, we simply concatenate them together as the low-level
prompts p0l for description di and feed them into the first
layer of the encoder. These prompts are seen as nodes in
a relationship-guided graph, whose relationships are further
processed by a novel relationship-guided attention module.

High-Level Prompt In order to capture more intricate as-
sociations between individual tokens and the complete de-
scription, we derive high-level prompts ph that encapsu-
late the overall semantics of the category based on a series
of descriptions. In detail, we feed descriptions D into the
frozen text encoder. Instead of simply utilizing representa-
tions from the last layer, we extract the last tokens from each
layer containing rich semantics and feed them into a learn-
able prompt generator f , formulated as

plh,i = f
(
hl
i

)
, (3)

where hl
i represents the last token of description di at the l-

th layer. These tokens are then concatenated together as the
high-level prompts plh = [plh,1; ...; p

l
h,Nh

] of this category,
which are further integrated into the corresponding layer of
the hierarchical prompted encoder.

Global-Level Prompt To represent category-shared
knowledge pertinent to the task, we employ the standard
approach for tuning the global-level prompts pg . Instead of
leveraging any form of knowledge, we automatically learn
Ng category-agnostic continuous vectors shared across
categories as contexts and concatenate them with other
prompts for each layer.

Hierarchical Tuning Based on the above prompts, we
conduct the proposed hierarchical prompt tuning on the hi-
erarchical prompted text encoder, formulated as[

c1, , , p1l
]
= L1

([
c, p0g, p

0
h, p

0
l

])
(4)[

ci, , , pil
]
= Li

([
ci−1, pi−1

g , pi−1
h , pi−1

l

])
,

i = 2, 3, ..., N (5)

where c represents the token of the class name. Via the pro-
jection head of the text encoder TextProj, the final text rep-
resentation z is acquired by projecting the text embeddings
xN corresponding to the last token of the last transformer
block LN to a common V-L latent embedding space,

z = TextProj
(
xN

)
. (6)

Relationship-guided Attention Module
We introduce a relationship-guided attention module to
model structured knowledge R to capture pair-wise corre-
spondences among entities and attributes in a layer-wise
manner. For the l-th layer of a transformer-like encoder, an
attention-based matrix M l is constructed based on generated
relationships from each description. Two types of scalar val-
ues λl

e2e and λl
e2a are learned to indicate the strength of the

relationship of entity-entity pairs and entity-attribute pairs
separately. We assign the value to the respective element in
the matrix, formulated as

M l
i,j =

 λl
e2e (wi, wj) ∈ Re2e

λl
e2a (wi, wj) ∈ Re2a

0 otherwise,
(7)

where wi indicates the entity or attribute associated with the
i-th token in the sequence of low-level prompts.

Guided by structured knowledge, the learned attention-
based matrices are integrated into layers of the text encoder.
In practice, we compute the attention function on a set of
queries simultaneously, packed together into a matrix Q.
The keys and values are also packed together into matrices
K and V . For the l-th layer, with the attention-based matrix
M l, the output of self-attention is computed as

Attentionl(Q,K, V ) = softmax

(
QK⊤ +M l

√
dk

)
V. (8)

By explicitly adding M l into the calculation of self-
attention, our model explicitly represents rich structured re-
lationships within each description, thus enhancing crucial
information associated with the category.

To deal with more intricate relationships, we include high-
level and global-level prompts for the construction of long-
term relationships. Unlike modeling correspondences with
matrices, we automatically leverage the implicit associations
through cross-level self-attention itself without any manual
intervention. This design, as a hierarchical knowledge mod-
eling approach, blends holistic semantics from multiple lev-
els with structured relationships, thereby helping us discover
complex associations that LLMs have failed to identify.



Experimental Setup
To evaluate our method, we follow the experiment setup es-
tablished in previous works such as CoOp (Zhou et al. 2022),
CoCoOp (Zhou et al. 2022), and MaPLe (Khattak et al.
2023). We first describe evaluation protocols and datasets,
followed by a discussion on implementation details.

Evaluation Protocols
Base-to-New Generalization Aiming to evaluate the gen-
eralizability across various classes, this process involves di-
viding the dataset into base (seen) and new (unseen) classes
and then training the model using a small number of sam-
ples from the base classes. Finally, we evaluate the model’s
performance on both base (few-shot performance) and new
(zero-shot performance) classes. Additionally, we calculate
the harmonic mean over the accuracy on both base and new
classes to highlight the generalization trade-off.

Cross-Dataset Evaluation This evaluation approach aims
to assess the zero-shot ability of the model on a cross-dataset
setup. To validate the potential of our approach in cross-
dataset transfer, we train our model on all ImageNet classes
in a few-shot manner and evaluate it directly on ten other un-
seen datasets with unknown categories in a zero-shot regime.

Domain Generalization To evaluate the robustness of our
method on out-of-distribution datasets, we consider Ima-
geNet as the source domain and its other variants as the tar-
get domain. We finetune our model on ImageNet in a few-
shot setting and evaluate it on four variants of ImageNet
with identical classes or subsets while manifesting diverse
domain shifts.

Datasets
For base-to-new generalization and cross-dataset evaluation,
we follow the prior work (Zhou et al. 2022) and evalu-
ate the performance of our method on 11 image recogni-
tion datasets, which cover a wide range of recognition tasks.
Specifically, the benchmark includes ImageNet (Deng et al.
2009) and Caltech101 (Fei-Fei, Fergus, and Perona 2004)
for classification on generic objects; OxfordPets (Parkhi
et al. 2012), StanfordCars (Krause et al. 2013), Flow-
ers102 (Nilsback and Zisserman 2008), Food101 (Bossard,
Guillaumin, and Gool 2014) and FGVCAircraft (Maji et al.
2013) for fine-grained classification; SUN397 (Xiao et al.
2010) for scene recognition; UCF101 (Soomro, Zamir, and
Shah 2012) for action recognition; DTD (Cimpoi et al.
2014) for texture classification; and finally EuroSAT (Hel-
ber et al. 2019) for satellite imagery recognition. For do-
main generalization, we utilize ImageNet as the source
dataset and its four variants as target datasets including Ima-
geNetV2 (Recht et al. 2019), ImageNet-Sketch (Wang et al.
2019), ImageNet-A (Hendrycks et al. 2021b) and ImageNet-
R (Hendrycks et al. 2021a).

Implementation Details
We apply prompt tuning to the pre-trained CLIP (Radford
et al. 2021) model, using ViT-B/16 as the visual backbone.
We utilize SGD optimization with an initial learning rate of

0.0025 for base-to-new generalization and 0.001 for other
tasks. Following the prior work (Zhao et al. 2022), the cross-
entropy loss is adopted to equally minimize the discrep-
ancy between the ground-truth label and the three aforemen-
tioned distributions pi, pt, po, while the overall distribution
po is used for inference. We randomly pick one description
for each category to conduct relationship-guided attention
learning during training for saving memory while leverag-
ing all Nh descriptions per category for inference.

For base-to-new generalization, the maximum epoch is
set to 10, with a batch size of 8. The length of global-level
prompts Ng is set to 2, and the number of descriptions for
each category Nh, which is also the length of high-level
prompts is set to 5. In accordance with the prior work (Zhou

Dataset CLIP CoCoOp MaPLe* HPT ∆

B 69.34 80.47 82.28 84.32 +2.04
Average N 74.22 71.69 75.14 76.86 +1.72

H 71.70 75.83 78.55 80.23 +1.68

B 72.43 75.98 76.66 77.95 +1.29
ImageNet N 68.14 70.43 70.54 70.74 +0.20

H 70.22 73.10 73.47 74.17 +0.70

B 96.84 97.96 97.74 98.37 +0.41
Caltech101 N 94.00 93.81 94.36 94.98 +0.62

H 95.40 95.84 96.02 96.65 +0.63

B 91.17 95.20 95.43 95.78 +0.35
OxfordPets N 97.26 97.69 97.76 97.65 -0.11

H 94.12 96.43 96.58 96.71 +0.13

B 63.37 70.49 72.94 76.95 +4.01
StanfordCars N 74.89 73.59 74.00 74.23 +0.23

H 68.65 72.01 73.47 75.57 +2.10

B 72.08 94.87 95.92 98.17 +2.25
Flowers102 N 77.80 71.75 72.46 78.37 +0.57

H 74.83 81.71 82.56 87.16 +4.60

B 90.10 90.70 90.71 90.46 -0.25
Food101 N 91.22 91.29 92.05 91.57 -0.48

H 90.66 90.99 91.38 91.01 -0.37

B 27.19 33.41 37.44 42.68 +5.24
FGVCAircraft N 36.29 23.71 35.61 38.13 +1.84

H 31.09 27.74 36.50 40.28 +3.78

B 69.36 79.74 80.82 82.57 +1.75
SUN397 N 75.35 76.86 78.70 79.26 +0.56

H 72.23 78.27 79.75 80.88 +1.13

B 53.24 77.01 80.36 83.84 +3.48
DTD N 59.90 56.00 59.18 63.33 +3.43

H 56.37 64.85 68.16 72.16 +4.00

B 56.48 87.49 94.07 94.24 +0.17
EuroSAT N 64.05 60.04 73.23 77.12 +3.89

H 60.03 71.21 82.35 84.82 +2.48

B 70.53 82.33 83.00 86.52 +3.52
UCF101 N 77.50 73.45 78.66 80.06 +1.40

H 73.85 77.64 80.77 83.16 +2.39
* Previous SOTA method, the same for other generalization tasks.

Table 1: Comparison with existing methods on base-to-new
generalization. B: Base Classes. N: New Classes. HM: Har-
monic mean. ∆: absolute improvement of HPT over the pre-
vious best result. HPT demonstrates strong generalization
performance on 11 image recognition datasets.



Source Target
ImNet Caltech Pets Cars Flowers Food Aircraft SUN397 DTD EuroSAT UCF Average

CoOp 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoCoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
MaPLe 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30

HPT 71.72 94.20 92.63 66.33 74.84 86.21 25.68 68.75 50.87 47.36 70.50 67.74

Table 2: Comparison with existing methods on cross-dataset evaluation. HPT achieves competitive performance providing the
highest average accuracy, indicating superior generalization abilities on other datasets.

Source Target
ImageNet ImageNetV2 ImageNet-S ImageNet-A ImageNet-R Average

CLIP 66.73 60.83 46.15 47.77 73.96 57.17
CoOp 71.51 64.20 47.99 49.71 75.21 59.28
CoCoOp 71.02 64.07 48.75 50.63 76.18 59.90
MaPLe 70.72 64.07 49.15 50.90 76.98 60.26

HPT 71.72 65.25 49.36 50.85 77.38 60.71

Table 3: Comparison with existing methods on domain generalization. Overall, HPT shows consistent improvements on target
variant datasets while achieving the highest accuracy on ImageNet.

et al. 2022), we select 16 shots for training and the entire
test set for evaluation. For domain generalization and cross-
dataset evaluation, the maximum epoch is set to 3, with a
batch size of 8, where we use the same hyperparameters for
each dataset instead of a separate search.

Experiments
We evaluate our approach in three generalization settings,
i.e. base-to-new generalization, cross-dataset evaluation, and
domain generalization. We compare its performance with
zero-shot CLIP (Radford et al. 2021) and recent prompt
learning works as strong baselines including CoOp (Zhou
et al. 2022) and CoCoOp (Zhou et al. 2022), as well as the
state-of-the-art method MaPLe (Khattak et al. 2023). In the
case of CLIP, we use hand-crafted prompts specifically de-
signed for each dataset. We further conduct several ablation
experiments and sample analyses to better demonstrate the
effectiveness of the proposed hierarchical prompt tuning.

Base-to-New Generalization
Table 1 presents the performance of HPT in base-to-new
generalization setting on 11 recognition datasets. Compared
to the state-of-the-art prompt tuning method MaPLe, our
approach achieves an enhancement of 1.72% in terms of
average accuracy for new classes, while simultaneously
maintaining high accuracy on seen classes, even surpass-
ing MaPLe by 2.04%. When considering both base and new
classes, HPT shows an absolute average gain of 1.68% on
the harmonic mean over MaPLe, achieving a good trade-
off between in-domain and out-of-domain data. The highest
improvement of 4.64% over the previous SOTA in the har-
monic mean is observed for Flowers102. With more avail-
able linguistic knowledge instead of only category names,

our model trained by hierarchical prompt tuning shows a
significant improvement.

Cross-Dataset Evaluation
Table 2 shows the performance comparison between our
HPT and existing methods on cross-dataset evaluation. On
the ImageNet source dataset, HPT demonstrates comparable
performance to competing approaches, yet it exhibits signif-
icantly superior generalization across 8 out of 10 datasets.
Overall, HPT shows competitive performance leading to the
highest average accuracy of 67.74% with a gain of 1.44%
compared to the previous SOTA. Unlike other methods that
simply transfer the learned prompt vectors to new tasks, we
provide a rich set of category-related knowledge as well as a
novel hierarchical learning strategy for modeling the knowl-
edge, leading to superior cross-domain performance.

Domain Generalization
We evaluate the direct transferability of our HPT trained
on ImageNet to various out-of-domain datasets and observe
that HPT consistently improves against all the existing ap-
proaches, as indicated in Table 3. Compared to MaPLe, HPT
performs slightly worse on ImageNet-A but better on the
other three. As variant datasets share identical categories
or subsets of categories with ImageNet, related linguistic
knowledge from the source domain can be easily transferred,
thereby assisting in recognizing out-of-domain data.

Ablation Experiments
Influence of Different Prompts in HPT We perform an
ablation analysis on base-to-new generalization with various
prompt combinations in HPT, as illustrated in Table 4. The
baseline method trains simply with global-level prompts.
Experimental results show that both low-level and high-level



prompts positively affect recognition performance. Among
them, low-level prompts demonstrate a significant improve-
ment in new classes, which shows the effectiveness of ex-
plicitly modeling structured relationships within descrip-
tions thereby providing additional information linked to un-
familiar categories. High-level prompts also play an insepa-
rable role in boosting performance by incorporating holistic
semantics to handle more complex relationships. When all
prompts are tuned with cross-level self-attention simultane-
ously, our model achieves optimal performance.

Global High Low Base New HM
✓ 84.02 75.20 78.99
✓ ✓ 84.23 75.53 79.33
✓ ✓ 84.05 76.11 79.59
✓ ✓ ✓ 84.32 76.86 80.23

Table 4: Ablation on different prompts in HPT.

Influence of Components in Relationship-guided Atten-
tion Module As shown in Table 5, we perform an ablation
study on combinations of components in the relationship-
guided attention module, including entities and attributes,
along with their relationships. Entities and attributes con-
tribute essential insights extracted from descriptions indicat-
ing pertinent information. Consequently, they play an impor-
tant role in aligning category-related text with corresponding
visual concepts. Furthermore, by incorporating relationships
that capture pair-wise correspondences among entities and
attributes, we comprehensively model structured knowledge
with vital information linked to the category, thereby leading
to additional performance enhancements.

Ent. Attr. Rel. Base New HM
84.23 75.53 79.33

✓ 84.21 75.76 79.49
✓ 84.25 75.86 79.56

✓ ✓ 84.34 76.00 79.71
✓ ✓ 84.11 76.43 79.85
✓ ✓ ✓ 84.32 76.86 80.23

Table 5: Ablation on entities, attributes and their relation-
ships in relationship-guided attention module.

Influence of the Number of Descriptions We conduct ex-
periments by varying the value Nh, the number of descrip-
tions for each category. In Figure 3, as Nh increases, the
knowledge related to a category becomes richer, thus leading
to consistent improvement in recognition accuracy. Notably,
the impact on accuracy is considerably more pronounced for
new classes compared to base classes. This is because, in the
case of unseen classes where training images are unavail-
able, performance mainly relies on the diversity of linguistic
knowledge. We set Nh = 5 for implementation as the accu-
racy barely changes when more information is provided.
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Figure 3: Performance of HPT using different values of Nh.

Sample Analysis
In order to demonstrate the capability of HPT to capture
category-related semantics, we provide sample analysis on
three randomly selected categories from Caltech101. Fig-
ure 4 presents a comparison between our method and the
baseline trained with the global-level prompts only. We ob-
serve the attention scores between tokens of entities and at-
tributes from descriptions and the last token at the last layer
of the prompted encoder. The top four features with the high-
est scores are displayed. It proves that HPT is capable of
identifying discriminative visual concepts that significantly
contribute to image recognition, leading to a substantial en-
hancement in the quality of text representations.
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Figure 4: Visualization of the top features with the highest
attention scores according to the selected categories.

Conclusion
In this paper, we posit that utilizing structured relation-
ships from descriptions to aid learning prompts is crucial.
Consequently, we produce human-like descriptions accom-
panied by their corresponding structured relationships and
present Hierarchical Prompt Tuning (HPT), a method that
concurrently models both structured and conventional lin-
guistic knowledge to strongly enhance prompt effectiveness.
Our method demonstrates superior performance across three
generalization tasks. We aspire that this work will garner in-
creased attention toward the role of structured knowledge in
natural language for prompt tuning, enabling its application
to diverse tasks beyond classification.



Ethical Statement
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