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Abstract

Gait recognition is a promising biometric method that aims
to identify pedestrians from their unique walking patterns.
Silhouette modality, renowned for its easy acquisition, sim-
ple structure, sparse representation, and convenient modeling,
has been widely employed in controlled in-the-lab research.
However, as gait recognition rapidly advances from in-the-
lab to in-the-wild scenarios, various conditions raise signifi-
cant challenges for silhouette modality, including 1) unidenti-
fiable low-quality silhouettes (abnormal segmentation, severe
occlusion, or even non-human shape), and 2) identifiable but
challenging silhouettes (background noise, non-standard pos-
ture, slight occlusion). To address these challenges, we revisit
gait recognition pipeline and approach gait recognition from a
quality perspective, namely QAGait. Specifically, we propose
a series of cost-effective quality assessment strategies, includ-
ing Maxmial Connect Area and Template Match to eliminate
background noises and unidentifiable silhouettes, Alignment
strategy to handle non-standard postures. We also propose
two quality-aware loss functions to integrate silhouette qual-
ity into optimization within the embedding space. Extensive
experiments demonstrate our QAGait can guarantee both gait
reliability and performance enhancement. Furthermore, our
quality assessment strategies can seamlessly integrate with
existing gait datasets, showcasing our superiority. Code is
available at https://github.com/wzb-bupt/QAGait.

1 Introduction
Gait recognition has attracted widespread interest in com-
puter vision and biometrics community due to its potential to
identify individuals from a distance. Unlike other biometric
characteristics such as face, fingerprint, and iris, gait is dif-
ficult to disguise and can be non-intrusively acquired with-
out any cooperation (Sepas-Moghaddam and Etemad 2022).
These inherent characteristics contribute to gait recogni-
tion a promising solution for wide applications, including
surveillance, suspect tracking, motion monitoring, and iden-
tification (Wan, Wang, and Phoha 2018; Shen et al. 2022).

One notable advantage of gait recognition, as highlighted
in previous research (Fan et al. 2023; Ma et al. 2023; Wang
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Figure 1: The quality difference when advanced from in-the-
lab to in-the-wild gait datasets, including: 1) more extremely
low-quality silhouettes that are unidentifiable; and 2) higher
quality variances due to various and complex environments.

et al. 2023a), is its common use of binary silhouette as input.
This preference stems from its simple structure and sparse
representation, which allows researchers to focus on extract-
ing essential motion patterns and action variations, rather
than being distracted by background, color, or texture de-
tails from RGB images. Moreover, this simplified input en-
ables efficient and practical processing. Extensive in-the-lab
experiments with shallow models have achieved impressive
performance, i.e., 95.9% on CASIA-B dataset (Hsu et al.
2022) and 92.1% on OU-MVLP dataset (Dou et al. 2023).

In most cases, the immense success of in-the-lab gait
datasets can be attributed to their high-quality segmenta-
tion, controlled viewpoint of standard posture, minimal oc-
clusion, etc. Under these controlled settings, a simple data
preprocessing approach (Chao et al. 2019; Fan et al. 2023)
can easily ensure that pedestrians are uniformly processed,
thus facilitating subsequent feature extraction and analysis.

However, as in Figure 1, when gait recognition advances
from controlled in-the-lab to in-the-wild scenarios (e.g.,
Gait3D (Zheng et al. 2022) and GREW (Zhu et al. 2021)), it
encounters various challenges such as complex background,
arbitrary camera position, and crowded environment. These
uncontrolled conditions lead to two key issues:

• Unidentifiable with low quality: The traditional data pre-
processing approach mentioned above is insufficient to
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handle the complexities of uncontrolled conditions, po-
tentially reserving a significant number of unexpected
challenging silhouettes. Even though some are unidenti-
fiable, all of them are passed to the gait model for feature
learning and may potentially affect the model prediction.

• Identifiable yet with various quality variances: Consider-
able noise and variability observed across multiple envi-
ronments increase the uncertainty of gait sequence, re-
sulting in various quality variances. However, current
methods usually treat all gait sequences uniformly.

These two issues potentially mislead gait model to learn
biased gait patterns, thereby resulting in poor performance
when compared with in-the-lab settings. In this case, a key
question arises: Is there a cost-effective quality assessment
or quality-aware approach to mitigate the negative impact
of background noises, unidentifiable silhouettes, and identi-
fiable silhouettes yet with various quality variances?

In this paper, we revisit gait recognition from a quality
perspective and propose a unified quality assessment and
quality-aware framework, i.e., QAGait, to address the above
challenges in a cost-effective way. Specifically, before feed-
ing into the feature extractor, we propose a series of quality
assessment strategies to guarantee silhouette quality, includ-
ing Maximal Connect Area, Template Match, and Align-
ment. In the feature learning stage, we introduce a gait qual-
ity indicator and propose two quality-aware loss functions to
adaptively adjust optimization based on inherent gait qual-
ity, including Quality Adaptive Margin CE loss (QACE) and
Quality Adaptive Margin Triplet loss (QATriplet).

• To the best of our knowledge, we make one of the first
attempts to explore quality-oriented gait recognition, in-
cluding unified quality assessment strategies and quality-
aware feature learning.

• Our thoughtful quality assessment strategies provide a
unified and cost-effective approach, suitable for both in-
the-wild and in-the-lab gait datasets.

• Our novel quality-aware feature learning incorporates a
reliable gait quality indicator and two quality-aware loss
functions, allowing us to dynamically adjust the opti-
mization progress from a quality perspective.

• Extensive experimental results on in-the-wild and in-the-
lab gait datasets demonstrate the effectiveness of our
method. For example, we achieve a remarkable 7.3% im-
provement in Rank-1 accuracy on Gait3D dataset.

2 Related Work
2.1 Gait Recognition
Currently, gait recognition can be primarily categorized into
model-based and appearance-based methods.

Model-based methods mostly utilize 2D/3D pose, 3D
mesh, and point cloud as input. For example, GaitGraph and
GaitGraph2 (Teepe et al. 2021, 2022) utilize human pose
estimation to extract 2D poses from RGB images and com-
bine GCN for spatial-temporal modeling. SMPLGait (Zheng
et al. 2022) employs a 3D SMPL model to learn 3D param-
eters of body shape, pose, and camera viewpoint as supple-
mentary information. LidarGait and LiCamGait (Shen et al.

2023; Han et al. 2022) leverage LiDAR to explore point
cloud for gait recognition. However, all these methods, along
with others not explicitly mentioned (Pinyoanuntapong et al.
2023; Wu et al. 2023) rely on the prediction from estimation
models of pose, mesh, point cloud, and others.

Appearance-based methods are widely used to learn
the inherent spatial and temporal variations in body shape,
clothing, and movement dynamics. GEINet (Shiraga et al.
2016) aggregates each gait sequence to a gait energy image
(GEI) for feature learning. GaitSet (Chao et al. 2019, 2021)
regards each gait sequence as an unordered set and lots of
works (Hou et al. 2020, 2021; Chai et al. 2021) follow this
setting. GaitPart (Fan et al. 2020) proposes to improve part-
based feature learning from focal convolution. GaitGL (Lin,
Zhang, and Yu 2021) develops a 3D global-local feature ex-
tractor to ensemble global and local features. CSTL (Huang
et al. 2021a) achieves adaptive temporal learning and salient
spatial mining. MetaGait (Dou et al. 2022a) proposes to cap-
ture omni-scale dependency from spatial/channel/temporal
dimensions of gait sequences. DyGait (Wang et al. 2023a)
proposes to focus on the extraction of dynamic features. Fur-
thermore, other methods such as 3D-Local (Huang et al.
2021b), LagrangeGait (Chai et al. 2022), GaitMPL (Dou
et al. 2022b), GaitGCI (Dou et al. 2023), and DANet (Ma
et al. 2023) are continuously emerging due to the manifold
advantages of using silhouettes, such as easy acquisition,
simple structure, sparse representation, and convenient mod-
eling. Meanwhile, as gait recognition moves to real-world
scenarios, gait quality becomes crucial, and some researches
now require high-quality silhouette (Wang et al. 2023b).

2.2 Image Quality Assessment
In computer vision, Image Quality Assessment (IQA) is cru-
cial for evaluating the inherent quality of images. Various
methods can be broadly categorized into two types: model-
based and model-free approaches. Model-based meth-
ods (Yang et al. 2022; Madhusudana et al. 2022; Pan et al.
2022) utilize neural networks to automatically learn im-
age quality features. Model-free approaches (Al-Najjar and
Chen 2012; Nascimento et al. 2023; Abdelreheem et al.
2023) usually employ well-designed perceptual metrics such
as the Structural Similarity Index (SSIM) and Peak Signal-
to-Noise Ratio (PSNR) to quantify image quality. Addition-
ally, various techniques available in libraries like OpenCV
can be utilized for image quality enhancement, such as im-
age smoothing, denoising, histogram equalization, etc.

However, quality assessment in gait task is underdevel-
oped. GQAN (Hou et al. 2022) attempts to evaluate gait
quality using network design at frame and part levels to
emphasize interpretability. Differently, our method seeks to
mitigate challenges from unidentifiable and variable-quality
silhouettes through quality assessments and quality-aware
feature learning without network modification.

3 Methodology
3.1 Revisit Gait Recognition Pipeline
1) Early Data Processing. Existing appearance-based
gait models often apply a simple data preprocessing ap-
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Figure 2: Overview of our QAGait and some examples with quality issues. (a) We design a series of cost-effective quality
assessment strategies, alignment, and data augmentation for given gait sequences before feeding them into backbone. During
feature learning, we introduce a quality indicator and propose two quality-aware loss functions based on CE loss and Triplet loss
(i.e., QACE and QATriplet) to improve model adaptability for various quality variances between gait sequences. (b-d) Some
examples with diverse quality issues from in-the-wild gait datasets. HPM: Horizontal Pyramid Mapping (Chao et al. 2019).

proach (Chao et al. 2019; Fan et al. 2023) to process both
in-the-lab and in-the-wild datasets, including:

• Crop out black regions at top of head and bottom of feet.
• Resize image to the expected height.
• Horizontally move human to image center and crop extra

side regions to the expected width.

[TODO] However, this process is conducted from early
gait recognition and tailored for controlled in-the-lab gait
datasets. When transmitting to complex in-the-wild datasets,
it is not always suitable for in-the-wild datasets with com-
plex backgrounds, non-human shapes, nonstandard pos-
tures, and other unforeseen scenarios.

2) Data Augmentation. Data augmentation in gait recog-
nition is an effective approach to expand the diversity of
training dataset, enhance the generalization capability of the
model, and prevent overfitting, including:

• Horizontal Flip (HF), Rotation (R), Perspective Transfor-
mation (PT), Affine Transformation (AT), Random Eras-
ing (RE).

[TODO] However, we note that nonstandard postures are
quite common in outdoor datasets (Zheng et al. 2022) due
to their unnormalized camera perspectives. This makes us-
ing Rotation or Perspective Transformation on an extremely
tilted person (e.g., the line connecting the head and feet is
nearly parallel to the ground) potentially create even worse
patterns that are unidentifiable.

3) Feature Extraction. During the feature extraction stage,
the goal is to transform the preprocessed gait sequences into
discriminative and compact feature representations.

Given that this paper does not primarily emphasize the
backbone, as a trade-off, we select the latest GaitBase (Fan
et al. 2023) as our base model for feature representation.

4) Loss Function. In the embedding space, the softmax
cross-entropy loss and triplet loss serve as fundamental loss
functions in current gait models (Fan et al. 2023). The for-
mer measures the discrepancy between predicted class prob-
abilities and true labels, while the latter pulls the positive
pair closer and pushes the negative pair further.

[TODO] However, both of them treat all gait sequences
equally and do not account for the significant uncertainty as-
sociated with various quality variances in different gait se-
quences. This oversight severely impacts both the conver-
gence speed and its discrimination capability.

3.2 Model Overview
As shown in Figure 2, our QAGait presents a comprehensive
approach for quality modeling. In quality assessments, we
start from Maximal Connect to remove background noise.
Only then can we introduce Template Match for accurate
shape matching, leaving normal silhouettes for improved
Lean-aware Alignment. On top of that, we observe that
high quality variance still exists. Thus we further introduce
quality-aware losses to mitigate the impact of remaining
low-quality silhouettes, which is agnostic to the network and
computationally efficient.

3.3 Unified Silhouette Quality Assessment
In this section, as shown in Figure 3(a), we introduce two
unified quality assessment strategies, i.e., Maxmial Connect
Area and Template Match, aiming to remove the quality is-
sues mentioned above in a cost-effective manner. We expect
the remaining gait silhouettes can preserve the unique gait
patterns, not affected by unrelated factors.

1) Maximal Connect Area. Since gait recognition is fre-
quently encountered in complex backgrounds and crowded
environments, some obvious segmentation errors often ex-
ist in outdoor gait datasets. This kind of segmentation error
can be largely regarded as background noise and always dis-
sociates from the human body. Thus, as illustrated in Fig-
ure 3(a), we develop a Maxmial Connect Area process as
our first quality assessment strategy to remove these obvi-
ous mistakes.

For details, we calculate the Maximal Connect Area
(area) by OpenCV (i.e., cv2.connectedComponents(·))
for each silhouette, and set a threshold (ϵ) for two cases:

• When area ≥ ϵ and small regions exist, we simply re-
move these small regions and reserve the main body.

• When area < ϵ, the whole silhouette will be removed.
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Figure 3: Top: Examples of our silhouette quality assessment
and alignment. Bottom: Our gait template sequence collec-
tion and the statistical results of quality assessment.

2) Template Match. As shown in Figure 3(a), only when
the first Maximal Connect Area progress removes back-
ground noise can we proceed with the second Template
Match progress to further remove unidentifiable silhouettes,
such as the person with non-human shape, severe occlusion,
missing body, or abnormal segmentation.

Building on remarkable processes in 3D SMPL (Loper
et al. 2023) and improving industry standards in gait
recognition (Mirelman et al. 2018), leveraging their well-
established frameworks makes it possible to create a cred-
ible benchmark for standard gait template sequences based
on 3D virtual human. To this end, as shown in Figure 3(c),
we construct an optimal environment and collect a series of
standard gait sequences, including various conditions:

• Multiple horizontal views: 0◦-180◦, with a 30◦ interval.
• Multiple vertical heights: 1.5 m, 2.5 m, and 3.5 m.
• Different genders: woman and man.

Even though these standard gait template sequences are
available, two challenges still persist for our template match:
1) Non-normalized camera views in outdoor scenes cause
deviations (rotation) from the standard pose; and 2) Varying
camera distances lead to scale differences. Based on these
two observations, we employ Hu Moments1, renowned for
their robustness against rotation and scale variations, as our
shape-matching algorithm and set a low threshold (τ ) to ef-
fectively remove non-human shapes.

3.4 Lean-aware Data Augmentation and Alignment
As mentioned above, we consistently emphasize the non-
standard postures observed in unnormalized camera views.
In this case, the commonly used Rotation (R) and Perspec-
tive Transformation (PT ) in data augmentation may result
in challenging and even unidentifiable samples. Our anal-
ysis indicates that current methods lack sensitivity to lean
human body. For example:

1Hu moments contain seven distinct invariant moments that ex-
hibit invariance to translation, rotation, and scale changes, provid-
ing a compact representation to describe images. This can be effi-
ciently achieved by cv2.matchShapes(·) in OpenCV.

• A person who leans significantly to the left (e.g., 60◦ or
more) is not suitable to apply leftward rotation.

To address this, we introduce a strict constraint (i.e., lean-
aware) in R and PT to prevent excessive deviations. Fur-
thermore, to comprehensively tackle this issue, we propose
a lean-aware alignment method aimed at rectifying all sil-
houettes with nonstandard postures.

1) Lean-aware Rotation and Perspective Transformation.
To begin with, we uniformly divide the human body into
four regions: top-left, top-right, bottom-left, and bottom-
right. We then compare the calculated area of each region:
• If top-left area is larger than top-right by a certain propor-

tion (e.g., 50%), and bottom-left is smaller than bottom-
right by a certain proportion, it is denoted as “Lean-Left”,
avoiding leftward rotation.

• The same to “Lean-Right”, without rightward rotation.

2) Lean-aware Alignment. To fundamentally address the
lean body in gait sequences and enable consistent learning,
as shown in Figure 3(b), we introduce a lean-aware align-
ment module, including four steps as follows.
• Step1: Find minimal bounding box2 around human body.
• Step2: Calculate rotation angle between the longer side

and vertical line.
• Step3: Generate affine transformation for correction.
• Step4: Add a slight rotation disturbance (θ) to aligned

gait sequence for diversity.
It is worth noting that a positive or negative angle in-

dicates the lean direction, so we call it Lean-aware Align-
ment. In our implementation, we carefully compare frame-
level and sequence-level alignment and select the latter (i.e.,
average angles across all silhouettes in a gait sequence.) to
ensure consistency within a gait sequence.

3.5 Quality-aware Feature Learning
In this section, we establish a connection between gait re-
liability and quality to mitigate various quality variances in
remaining gait sequences. Specifically, we introduce a Qual-
ity Indicator for gait quality assessment and update standard
Cross-Entropy loss and Triplet loss toward Quality Adap-
tive Margin CE loss (QACE) and Quality Adaptive Margin
Triplet loss (QATriplet) for quality-aware feature learning.

1) Quality Indicator. Given the pivotal role of partial fea-
ture representation in gait recognition (e.g., horizontal strips
division to pursue more clues for human body (Chao et al.
2019; Fan et al. 2020)) and the compatibility of feature norm
within model-free image quality assessment approaches (Li
et al. 2018; Schlett et al. 2022; Kim, Jain, and Liu 2022), we
adopt Partial Feature Norm as our quality indicator.

|̂|pi|| =

⌊
||pi|| − µp

σp/h

⌉1

−1

(1)

2The minimal bounding box is strongly related to the above
quality assessment strategies for that background noise and non-
human shape will affect the bounding selection and angle calcula-
tion. This can be efficiently achieved by cv2.minAreaRect(·).
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Figure 4: Our quality-aware loss functions facilitate the optimization of trustworthy gait sequences and mitigate the effect of
low-quality gait sequences. Left: QACE utilizes Partial Feature Quality as the quality indicator to generate adaptive margin
functions. This is then applied to the logits of the model output. Right: QATriplet emphasizes Pairwise Quality as the quality
indicator for adaptively adjusting positive and negative pair margins, respectively. BNNeck (Luo et al. 2019).

where pi indicates partial features extracted from the back-
bone, ||pi|| indicates average partial features, µp and σp de-
note the batch mean and variance, ⌊·⌉1−1 constrains values to

facilitate subsequent processing (i.e., ̂||pi|| ∈ [−1, 1], from
low quality to high quality), h indicates that we follow ”3-σ
rule” (also known as the ”68-95-99.7 rule”) in normal distri-
bution and set h = 0.33 (Lehmann 2013).

Discussion. The quality indicator is a soft manner to in-
tegrate quality into loss calculation to mitigate the effect of
low-quality frames. Its necessity comes from two aspects:
1) Real-world gait data varies in quality, making it hard to
adopt a fixed threshold to distinguish high- or low-quality
frames easily. Moreover, highly reliable quality metrics are
still lacking. 2) To some extent, the low-quality frames (but
identifiable) are necessary to ensure the generalization of
gait recognition to multiple scenes (e.g., low-resolution).

2) Quality Adaptive Margin CE loss (QACE). The soft-
max cross-entropy loss is widely used for classification
and has been advanced to margin-based forms like Arc-
Face (Deng et al. 2019) and CosFace (Wang et al. 2018). The
introduction of a margin can compress the learning space to
enhance the discriminative capability of the model. Here is
the combined form of both as follows.

L1 = −
1

N

N∑
i=1

log
es(cos(θyi+mangle)−madd)

es(cos(θyi+mangle)−madd) +
∑N

j=1,j ̸=yi
es cos θyi

(2)
where mangle and madd are angular and additive margin for
ArcFace and CosFace, s indicates scale transformation, yi
is the true labels. The learned embedding features are dis-
tributed on a hypersphere with a radius of s.

However, we notice that a fixed margin always treats all
features uniformly even when they have varying quality dis-
tributions. This will lead to: 1) Lower-quality gait sequences
often cluster near the classification boundary since its mixed
and unstable information, and the margin may have a nega-
tive effect. 2) Higher-quality gait sequences tend close to the
classification center, allowing for a larger margin to com-
press feature space further.

Therefore, we combine the quality indicator into the mar-
gin and dynamically adjust the margin based on the quality
of gait sequence. Empirically, we propose to calculate the

corresponding mangle and madd as follows.

mangle = −m1 · ̂||pi||, madd = m1 · ̂||pi||+m1 (3)

where m1 is the initial margin and ̂||pi|| ∈ [−1, 1] serves
as the quality indicator. When ̂||pi|| → {−1}, the overall
margin is a simple mangle with initial m1. When ̂||pi|| →
{1}, mangle and madd all tend to assign a larger value.

3) Quality Adaptive Margin Triplet loss (QATriplet).
Triplet loss primarily focuses on pairwise samples, pulling
the positive pair closer and pushing the negative pair further
apart. The original triplet loss can be simply formulated as:

L2 = max {d(a, p)− d(a, n) +m2, 0} (4)

Similar to QACE, the original triplet loss treats all positive
or negative pairs equally. However, we argue that optimizing
gait model with lower-quality pairs may not always yield re-
liable results. For higher-quality pairs, a more effective strat-
egy is to increase the optimization distance for positive pairs
while reducing the optimization distance for negative pairs.

L3 = max {(d(a, p) +map)− (d(a, n)−man), 0} (5)

We define the pairwise quality indicator (PQ(s1, s2)) and
propose to adaptively adjust the margin (map, man) based
on pairwise quality for an appropriate optimization process.

PQ(s1, s2) = min
{
̂||pi,s1 ||, ̂||pi,s2 ||

}
(6)

where min indicates that if one of gait sequences is unreli-
able, the overall pairwise quality becomes compromised.

map = man = 1.5 ·m2 + (0.5 ·m2 · PQ(s1, s2)) (7)

where m2 is the initial margin, s1 and s2 are pairwise gait
sequences. map and man are personalized margins for pos-
itive and negative pairs. The coefficients (1.5 and 0.5) are
used to confine the range of map or man within [m2, 2m2].
PQ ∈ [−1, 1]. As PQ → {−1}, a minimal distance of m2

is added, while as PQ → {1}, a maximal distance of 2m2

is added. These correspond to small and large optimization
distances, respectively.
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0. Original Benchmark (Gait3D | GREW)

Method Source Gait3D | Gait3D# GREW | GREW#

R-1 R-5 mAP R-1 R-5 R-10 R-20
GaitSet AAAI’19 36.7 58.3 30.0 46.3 63.6 70.3 76.8
GaitPart CVPR’20 28.2 47.6 21.6 44.0 60.7 67.3 73.5
GaitGL ICCV’21 29.7 48.5 22.3 47.3 63.6 69.3 74.2
CSTL ICCV’21 11.7 19.2 5.6 50.6 65.9 71.9 -

SMPLGait CVPR’22 46.3 64.5 37.2 - - - -
MTSGait ACM MM’22 48.7 67.1 37.6 55.3 71.3 76.9 81.6
DAGait CVPR’23 48.0 69.7 - - - - -

GaitBase CVPR’23 62.4 77.7 52.3 58.9 73.7 79.1 83.1

1. After Quality Assessment (Gait3D# | GREW#)
GaitSet AAAI’19 41.7↑5.0 61.5↑3.2 32.6↑2.6 46.5↑0.2 64.0↑0.4 70.5↑0.2 76.9↑0.1

GaitPart CVPR’20 31.3↑3.1 50.7↑3.1 23.9↑2.3 46.3↑2.3 63.2↑2.5 69.5↑2.2 74.4↑0.9

GaitGL ICCV’21 34.1↑4.4 53.4↑4.9 25.1↑2.8 51.4↑4.1 66.8↑3.2 72.4↑3.1 76.6↑2.4

GaitBase CVPR’23 59.7↓2.7 77.6↓0.1 51.0↓1.3 57.2↓1.7 72.3↓1.4 77.1↓2.0 81.3↓1.8

2. After Quality Assessment & Quality-aware (Gait3D# | GREW#)
QAGait 67.0↑7.3 81.5↑3.9 56.5↑5.5 59.1↑1.9 74.0↑1.7 79.2↑2.1 83.1↑1.8

Table 1: Comparison results on Gait3D and GREW.

0. Original Benchmark (CASIA-B)
Method Source NM BG CL
GaitSet AAAI’19 95.0 87.2 70.4
GaitPart CVPR’20 96.2 91.5 78.7
MT3D MM’20 96.6 92.9 82.2
GaitGL ICCV’21 97.4 94.5 83.6
3DLocal ICCV’21 97.5 94.3 83.7

CSTL ICCV’21 97.8 93.6 84.2
LagrangeGait CVPR’22 97.5 94.6 85.1

MetaGait ECCV’22 98.1 95.2 86.9
DANet CVPR’23 98.0 95.9 89.9

†GaitBase CVPR’23 96.7 93.0 75.1

1. After Quality Assessment (CASIA-B#)
†GaitBase CVPR’23 97.8↑1.1 94.3↑1.3 77.1↑2.0

2. After Quality Assessment & Quality-aware (CASIA-B#)
†QAGait 97.9↑0.1 94.6↑0.3 78.2↑1.1

Table 2: Comparison results on CASIA-B, † indicates we
reduce the last two layers to suit small-scale CASIA-B.

4 Experiments
4.1 Experimental Settings
Datasets. Our method is primarily evaluated on two in-
the-wild gait datasets, Gait3D (Zheng et al. 2022) and
GREW (Zhu et al. 2021), due to their complex data collec-
tion environments and various covariates in outdoor scenes.
We also include CASIA-B (Yu, Tan, and Tan 2006) since it
utilizes outdated background subtraction for segmentation.
We strictly follow the original training and test settings.

Training Details. We adopt the latest GaitBase (Fan et al.
2023) as our backbone. All data are normalized to 64 × 44.
We randomly select P identities and corresponding K se-
quences in a mini-batch (i.e., {32,4} for Gait3D / GREW
and {8,16} for CASIA-B). Each sequence contains 30 ran-
domly sampled silhouettes. We use SGD optimizer with
weight decay 5e-4. The initial learning rate is 0.1 and decays

10 times at each milestone (i.e., {20K,40K,50K} for Gait3D
/ CASIA-B, and {80K,120K,150K} for GREW). The to-
tal iterations are 60K for Gait3D / CASIA-B and 180K for
GREW. The overall loss function is: L = L1 + L3.

Implementation Details. For a fair comparison, we retain
at least 15 frames for a sequence when too many frames need
to be removed in the quality assessment step. For the margin
setting, we apply grid search and select the optical (m1 =
0.1, s = 8) for ArcFace (Table 6), and our QACE follows
this setting. For QATriplet, we follow the latest gait research
and set m2 = 0.15 to achieve the average margin of map

and man is around 0.2. The threshold3 in Maximal Connect
Area and Template Match is ϵ = 0.95 and τ = 0.001. The
random disturbance in Alignment is set as θ = 5◦.

4.2 Comparison with State-of-The-Art Methods
In this section, we evaluate our method on two aspects: 1)
original benchmark with our quality assessment (denoted as
Gait3D#/GREW#/CASIA-B#), and 2) original benchmark
with our whole QAGait (i.e., quality assessment, alignment,
data augmentation, and quality-aware feature learning).

Evaluation on outdoor datasets (Gait3D & GREW). As
shown in Figure 3(d) and Table 1, our quality assessment
strategies on original Gait3D and GREW can effectively
remove unidentifiable silhouettes and reduce noise impact
to some extent, i.e., removing 3.2% / 6.5% silhouettes for
Gait3D / GREW. This yields remarkable improvements
based on current shallow models. Take GaitPart / GaitGL for
example, we achieve 3.1% / 4.4% and 2.3% / 4.1% Rank-1
gains for Gait3D# and GREW# from their original settings.
These enhancements align well with our motivation.

We also adopt the latest GaitBase while it experiences
minor drops under default settings (e.g., 62.4%→59.7% in

3We invite 20 volunteers, half from our group and half from the
college. Each is assigned 30 sequences and asked to select thresh-
olds to distinguish identifiable and unidentifiable frames. Finally,
we set the threshold by calculating the median of their selections.
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Conditions R-1 R-5 mAP
Original Gait3D (w/o DA) 55.1 72.8 46.6
+QA(MaxConnect) 55.8 72.9 45.7
+QA(MaxConnect+TemplateMatch) 54.9 73.0 45.9
+QA+DA 62.2 78.7 51.6
+QA+DA+Align 63.5 79.8 54.2
+QA+DA+Align+QACE 66.0 80.5 56.2
+QA+DA+Align+QACE+QATriplet 67.0 81.5 56.5

Table 3: Evaluation results on each component in QAGait.

HF R PT AT RE R-1 R-5 mAP
✓ ✓ ✓ 59.7 77.6 51.0
✓ ✓(Lean) ✓(Lean) 61.1 77.2 50.8
✓ ✓(Lean) ✓ 62.2 78.7 51.6

Table 4: Ablation study on Data Augmentation. “Lean”
refers to restricting rotation or perspective transformation.

Gait3D#). The probable reason is the mismatch of orig-
inal data augmentation with the corrected data. The per-
formance can be improved with our data augmentation
(59.7%→62.2% in Table 4). Additionally, our cost-effective
quality-aware feature learning mitigates various quality is-
sues and achieves remarkable enhancements of 7.3% and
1.9% Rank-1 accuracy on Gait3D# and GREW# datasets,
highlighting the substantial utility of our approach.

Evaluation on CASIA-B. Since CASIA-B dataset uses
outdated background subtraction for segmentation, some
segmentation errors may exist. Nevertheless, unlike the
Gait3D and GREW datasets, CASIA-B is meticulously col-
lected within a controlled in-the-lab environment, thereby
preventing error amplification. Table 2 shows that our qual-
ity assessment yields a modest 2.0% improvement on CL
condition based on GaitBase, and our whole QAGait can
further provide an additional 1.1% improvement.

4.3 Ablation Study
Effectiveness of different components in QAGait. As
shown in Table 3, we present our overall approach encom-
passing quality assessment (QA), alignment, and quality-
aware feature learning (QACE & QATriplet). Our QAGait
can progressively improve recognition performance.

Impact of strict constraint in data augmentation. As
shown in Table 4, lean-aware R and PT can enhance data
credibility and lead to a 1.4% Rank-1 improvement. More-
over, our exploration also reveals a new data augmentation
combination (i.e., HF, R, and RE) that is better suitable for
Gait3D#, with an additional 1.1% recognition enhancement.

Frame-level Sequence-level Disturb R-1 R-5 mAP
- - - 62.2 78.7 51.6
✓ 63.0 78.9 53.2
✓ ✓ 63.0 79.1 53.7

✓ ✓ 63.5 79.8 54.2

Table 5: Ablation study on alignment types and disturbance.

Fixed
Margin

Quality-aware
Margin

Quality
Calculation R-1 R-5 mAP

- - - 63.5 79.8 54.2
✓(0.1) 65.0 80.2 55.6

✓ Sum-Partial 65.3 80.8 55.4
✓ Min-Partial 64.0 80.5 55.1
✓ Avg-Partial 66.0 80.5 56.2

Table 6: Ablation study on quality-aware margin and quality
calculation forms in QACE.

Fixed
Margin

Pair Quality
Margin

Pair Quality
Calculation R-1 R-5 mAP

✓(0.2) 66.0 80.5 56.2
✓ AvgQualityPair 63.9 80.7 54.2
✓ MinQualityPair 67.0 81.5 56.5

Table 7: Ablation study on pairwise quality adaptive margin
and pairwise quality calculation forms in QATriplet.

Impact of align types in alignment. We experiment with
Frame / Sequence-level Alignment and explore the impact
of random disturbance. Table 5 shows that sequence-level
alignment with a 5◦ random disturbance achieves higher per-
formance, indicating that alignment facilitates unified per-
spective learning and perturbations enhance model diversity.

Impact of quality adaptive margin in QACE. Here we
introduce margin into CE loss and develop a quality-aware
adaptive margin CE loss (QACE) for evaluation. Table 6 re-
veals that a fixed margin (i.e., m = 0.1, similar to ArcFace)
enhances Rank-1 accuracy by 1.5%. Moreover, our QACE,
with average partial quality, provides an additional perfor-
mance gain, surpassing the original CE loss by 2.5%.

Impact of pairwise quality calculation in QATriplet.
Our QATriplet emphasizes pairwise quality of gait se-
quences and dynamically adjusts optimization distance. Ta-
ble 7 shows that our QATriplet achieves 1.0% performance
gain with minimizing pairwise quality, highlighting the
adaptability to diverse gait sequences.

Discussion about computation cost. Our approach is
computationally efficient largely due to two aspects. 1) The
quality assessments are customized for gait based on low-
level image processing (OpenCV), making it both affordable
and readily available. 2) The quality-aware feature learn-
ing is agnostic to the network and non-parametric with only
minimal additional computation (<1% training time). Fur-
thermore, the inference time is unaffected.

5 Conclusion
In conclusion, we present a comprehensive study of gait
recognition pipeline and propose a novel quality-oriented
gait recognition, namely QAGait. Our method involves cost-
effective quality assessment strategies and quality-aware
feature learning to effectively address challenges arising
from unidentifiable silhouettes and identifiable silhouettes
yet with various quality variances. We expect our method to
provide a convenient way to assess gait recognition quality
and inspire future research in quality-aware gait recognition.
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