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Abstract

Despite the great potential in capturing long-range depen-
dency, one rarely-explored underlying issue of transformer in
medical image segmentation is attention collapse, making it
often degenerate into a bypass module in CNN-Transformer
hybrid architectures. This is due to the high computational
complexity of vision transformers requiring extensive train-
ing data while well-annotated medical image data is rela-
tively limited, resulting in poor convergence. In this paper, we
propose a plug-n-play transformer block with dynamic token
merging, named DTMFormer, to avoid building long-range
dependency on redundant and duplicated tokens and thus pur-
sue better convergence. Specifically, DTMFormer consists of
an attention-guided token merging (ATM) module to adap-
tively cluster tokens into fewer semantic tokens based on fea-
ture and dependency similarity and a light token reconstruc-
tion module to fuse ordinary and semantic tokens. In this way,
as self-attention in ATM is calculated based on fewer tokens,
DTMFormer is of lower complexity and more friendly to con-
verge. Extensive experiments on publicly-available datasets
demonstrate the effectiveness of DTMFormer working as a
plug-n-play module for simultaneous complexity reduction
and performance improvement. We believe it will inspire fu-
ture work on rethinking transformers in medical image seg-
mentation. Code: https://github.com/iam-nacl/DTMFormer.

1 Introduction
Medical image segmentation is a fundamental task in
computer-aided diagnosis, image-guided surgery, and treat-
ment planning. Despite the great success of convolutional
neural networks (CNN) (Milletari, Navab, and Ahmadi
2016; Ronneberger, Fischer, and Brox 2015; Zhou et al.
2018), its relatively limited receptive fields have been a ma-
jor bottleneck, especially in dealing with small-size objects,
irregular shapes, etc. Transformer (Vaswani et al. 2017;
Dosovitskiy et al. 2021; Zheng et al. 2021), designed for
capturing long-term dependencies and allowing the network
to dynamically aggregate relevant features globally, seems a
perfect complement for CNN. Therefore, developing CNN-
Transformer hybrid architectures has been extensively stud-
ied for medical image segmentation.
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Figure 1: Attention collapse in existing transformer-based
medical image segmentation approaches. The color of each
token in a row represents its dependency score. The darker
the color, the closer the dependency. All tokens sharing a
uniform dependency distribution is called attention collapse.

Unfortunately, one underlying but rarely-explored issue in
existing CNN-Transformer hybrid frameworks is attention
collapse (Lin et al. 2023a) where all patches/tokens share
the same dependency distribution. In other words, trans-
former becomes a bypass module, completely failing to ex-
tract meaningful global features, as illustrated in Fig. 1. The
main reasons can be summarized as follows:

1. High Model Complexity. Vision transformer is of
O(n2) model complexity where n is the length of input
token sequences (Vaswani et al. 2017). In medical image
segmentation, with the increase of patches/tokens, it be-
comes too complicated to well converge given relatively
limited well-annotation training data, making transform-
ers less effective in capturing long-range dependency.

2. Severe Dependence Redundancy. Medical images of
the same modality share stable structures/views and
in most cases rely on local features for segmenta-
tion. Consequently, building pair-wise dependence for all
patches/tokens may produce severe dependence redun-
dancy (Lin et al. 2023b), which in turn makes it more
difficult to capture truly-useful long-range dependence.

Inspired by the above analysis, if we can filter out those
redundant tokens in transformers and preserve those impor-
tant tokens, it will not only reduce model complexity and
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Figure 2: Illustration of dependence establishment in ViT
and DTMFormer: (a) ViT builds pair-wise dependency for
all tokens. (b) DTMFormer clusters vanilla tokens into fewer
semantic tokens (i.e., marked with different colors) and
builds pair-wise dependency across semantic tokens.

dependence redundancy but also boost the convergence of
transformers for long-range dependency establishment, thus
leading to performance improvement. It should be noted
that such a motivation is different from existing research on
transformer pruning/sparsification whose goal is to pursue
lightweight transformers with acceptable performance sac-
rifice. Comparatively, our primary goal is to pursue perfor-
mance improvement instead of transformer de-complexity.
To accomplish this, we propose a novel transformer block
with dynamic token merging, named DTMFormer, to first
cluster tokens into fewer semantic tokens and then build
pair-wise dependence only on those semantic tokens, as il-
lustrated in Fig. 2. Experiments on multiple widely-used
datasets demonstrate the effectiveness of DTMFormer for
not only complexity reduction but also stable performance
improvement across various CNN-Transformer hybrid mod-
els. The main contributions are summarized as follows:

• A plug-n-play transformer block, DTMFormer, which
can be inserted as a super-ordinate replacement into
vanilla transformers for complexity reduction and perfor-
mance improvement.

• An attention-guided token merging mechanism to ad-
dress attention collapse in medical transformers as well
as enhancing important tokens to accelerate convergence.

• A lightweight token reconstruction module to reconstruct
and fuse cross-resolution tokens.

2 Related Work
2.1 Medical Image Segmentation
Medical image segmentation was mainly dominated by con-
volutional neural networks (CNN) (Milletari, Navab, and
Ahmadi 2016; Ronneberger, Fischer, and Brox 2015; Mou
et al. 2019; Peng et al. 2017; Zhou et al. 2018; Zhao et al.
2017), suffering from limited receptive fields. Recently,
transformers (Vaswani et al. 2017; Dosovitskiy et al. 2021;
Zheng et al. 2021), born to capture long-term interaction,
have drawn extensive attention (Chen et al. 2021; Zhang,
Liu, and Hu 2021; Valanarasu et al. 2021; Cao et al. 2022).
Specifically, TransUNet (Chen et al. 2021) made the first
attempt to combine transformers with U-Net to establish
a self-attention mechanism, proving the potential of trans-
former working as a powerful encoder for medical image
segmentation. TransFuse (Zhang, Liu, and Hu 2021) fused

transformer and CNN in a parallel way to improve the effi-
ciency of global environment modeling. To improve model
efficiency, MedT (Valanarasu et al. 2021) introduced axial
deeplab-based gated axial attention and a local-global train-
ing strategy. Swin-UNet (Cao et al. 2022) changed vanilla
transformers into Swin transformers, and designed a sym-
metric Swin transformer-based decoder and a patch exten-
sion layer to perform up-sampling operations. MCTrans
(Ji et al. 2021) incorporated rich contextual dependencies
and semantic relations for accurate biomedical segmentation
within a unified transformer network.

2.2 Token Sparsification in Transformer
Token Pruning Few works were proposed to learn to-
ken markers to identify and remove unimportant tokens for
image classification like Power-BERT (Goyal et al. 2020),
AViT(Yin et al. 2022), etc. On the one hand, most prun-
ing operations are applied to the inference phase instead of
the training phase, making them less flexible. On the other
hand, though token pruning conveniently reduces model pa-
rameters, simply extending it to image segmentation may be
counter-productive, resulting in severe under-segmentation.

Token Merging Among the few token merging ap-
proaches, SPViT (Kong et al. 2022) merged all unimportant
and removable tokens as one token. TokenLearner (Ryoo
et al. 2021) used a multilayer perceptron structure to reduce
the number of tokens. Token pooling (Marin et al. 2021)
used a K-means-based token merging method, but was not
applicable to off-the-shelf models as its training is too slow.
In addition, a token reduction strategy along with token fu-
sion was proposed in TCFormer (Zeng et al. 2022), which is
theoretically extendable to segmentation.

It should be noted that, till now, token sparsification is
under-explored even in natural image processing, not to
mention medical image segmentation in this work.

3 Methodology
3.1 Preliminaries
DTMFormer is to replace vanilla transformer blocks with
lightweight self-attention calculation. Taking a transformer
block with four transformer layers as an example as illus-
trated in Fig. 3. DTMFormer mainly consists of three mod-
ules: vanilla transformer layers, an Attention-guided Token
Merging (ATM) module, and a Light Token Reconstruction
(LTR) module, where ATM dynamically merges tokens into
fewer semantic tokens and LTR reconstructs the original to-
ken resolution and fuse different types of tokens.

3.2 ATM
ATM is to merge redundant and similar tokens into fewer
tokens with more semantic-aware information. It is formu-
lated as clustering, including cluster center selection (i.e. de-
termining semantic tokens) and clustering (i.e. assigning to-
kens to semantic tokens and updating semantic tokens).

Attention-guided Cluster Center Selection Selecting a
suitable center token is crucial for token merging. Optimal
center/semantic tokens should satisfy
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Figure 3: Overview of DTMFormer against ViT. Token spar-
sification is accomplished via an Attention-guided Token
Merge (ATM) module to cluster tokens based on feature and
dependency similarities and a Light Token Reconstruction
(LTR) module to recover the original token resolution.

• majorly sampled from foreground and boundary regions,
to guarantee segmentation performance.

• sparsely sampled from background and redundant re-
gions, to avoid dependence redundancy.

To accomplish this, we propose to cluster tokens accord-
ing to both dependence importance and feature similarity,
as illustrated in Fig. 3. Feature similarity is based on the
observation that medical images usually share stable struc-
tures/views, leading to lower intra-class variations. There-
fore, tokens from the same category/organ are more likely
to share similar features following related work (Zeng et al.
2022; Zhou et al. 2023). Based on feature similarity, it is ex-
pected to merge tokens from the background and large-scale
foreground regions. Dependence importance is to fairly pre-
serve tokens from boundaries and small-scale foreground re-
gions, which is based on the observation of stable structures
in medical images where pair-wise dependency across dif-
ferent organs/objects is more stable compared to natural im-
ages. In other words, tokens from the same category/organ
are more likely to share similar dependency distributions.
Therefore, dependency importance is chosen as one crite-

rion for cluster center selection.
Given input feature map X ∈ RH×W×C , a sequence of

tokens are generated as I ∈ RN×C′
, where C ′ = p2 · C

is the token channel determined by the patch size (p, p) and
N = HW/C is the total number of tokens. Then, given
h-head self-attention and I , totally h attention maps M ∈
Rh×N×N are produced. To measure the dependence scores
Sd of tokens, we column-wisely calculate the sum of M and
sum up h

2 heads, defined as

Sd = norm

 h
2∑

i=1

N∑
j=1

M(i, j, k)

 ∈ RN×1. (1)

Here, only half of the self-attention heads are used for cal-
culation. It is to maintain the diversity of extracted features,
as M will be penalized by an auxiliary loss during training
(as discussed in Section 3.4).

In terms of the feature dimension, we directly apply DPC-
KNN (Du, Ding, and Jia 2016) to tokens based on fea-
ture similarity. In optimal clustering, cluster centers are sur-
rounded by low-density neighbors, and distant from other
centers or high-density points. Inspired by this, we calculate
two variables for each token i: the density ρi and the mini-
mum distance to a higher density token δi.

As shown in Fig. 3, instead of directly using the token
features produced by transformer layers, both dependence
importance and token features are used. Specifically, we first
compute the distance scores

Dtoken(i, j) =
∥xi − xj∥22√

C ′
, (2)

and

Dattn(i, j) =
∥yi − yj∥22√

N
, (3)

where xi, xj represent any two tokens in I , and yi, yj are
their dependence importance from Sd, Dtoken ∈ RN×N and
Dattn ∈ RN×N represent the distance scores of all token
pairs, and the final distance matrix D is defined as:

D = (1− α)Dtoken + αDattn, (4)
According to D, the local density ρi of token i to its K-

nearest neighbors is calculated as

ρi = exp

 ∑
j∈KNN(D(i))

D(i, j)

 , (5)

where KNN (D(i)) denotes the K-nearest neighbors of to-
ken i. Similarly, the minimum distance δi between token i
and any other token with a higher density is obtained by

δi =

{
minj:ρj>ρi D(i, j), if ∃j s.t. ρj > ρi
maxj D(i, j), otherwise .

(6)

To this end, the feature score of each token i is calculated as
Si
f = ρiδi. (7)

The final score S of all tokens is formulated as:
S = Sd + Sf , (8)

based on which the top rN tokens (i.e., r is the sparsity ra-
tio) with the highest scores are selected as center/semantic
tokens for merging.
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Figure 4: Illustration of how to stack ordinary ViT blocks
and DTMFormer blocks respectively from the same scale.

Token Clustering/Merging Given center/semantic to-
kens, all other tokens are clustered based on feature sim-
ilarity. Instead of directly averaging the tokens belonging
to the same center, inspired by the attention mechanism in
(Rao et al. 2021), we propose a token feature fusion method
guided by the attention score, described as

zi =

∑
j∈Ci

ePjxj∑
j∈Ci

ePj
, (9)

where zi represents the merged token features of each se-
mantic token i, Ci indicates the set of tokens assigned to i,
xj represents the original token features in I , and Pj is the
weight of token j learned based on xj through linear projec-
tion layers.

In addition, for better feature fusion, the merged tokens
are fed into a transformer layer as queries (i.e. Q), and the
original tokens are projected into keys (i.e., K) and values
(i.e., V ) for self-attention calculation. To further up-weight
important tokens, we add the weight scores P to the compu-
tation of attention, defined as

Attention(Q,K, V ) = softmax

(
QKT

√
dk

+ P

)
V, (10)

where
√
dk is the channel number of Q.

3.3 LTR
LTR is to aggregate two different scale tokens (i.e., ordinary
tokens and dynamically-merged semantic tokens) and recon-
struct output tokens for the following down-sampling/up-
sampling operations. As shown in Fig. 3, LTR only uses
two linear layers and one MLP layer to reduce computation
burdens. Specifically, for each merged token containing ab-
stract semantics, LTR up-samples the token and recovers the
feature mapping based on its merging history. During token
merging in ATM, we record the positional correspondence
between the original and merged tokens. In the up-sampling
process of LTR, those records are to copy the merged token
features into the corresponding up-sampled tokens.

3.4 Loss Functions
As described above, only the attention maps of the first mod-
ule in DTMFormer are used for token merging (i.e., depen-
dence importance estimation) as illustrated in Fig. 4. To pro-
duce high-quality attention maps, we introduce an L1 loss
onto Sd penalized by ground truth, denoted as Lattn. Thus,
the overall loss is written as

L = Ldice + λLCE + βLattn, (11)

where Ldice represents the Dice loss, LCE denotes the cross-
entropy loss, λ and β are balancing hyper-parameters.

Why not Multi-Stage? Most existing work on trans-
former token sparsification used a multi-stage network struc-
ture (i.e., gradually merging tokens). Comparatively, DTM-
Former uses only a two-stage structure. On the one hand,
such a two-stage structure is more flexible to work as a plug-
and-play module. On the other hand, according to our exper-
iments, using stages would bias more to abstract the seman-
tics of tokens. In medical image segmentation, overly ab-
stract semantics tokens would make tokens less distinguish-
able, resulting in attention collapse. Consequently, the later
stages of such multi-stage structures often fail to work. An-
other major reason for not using multi-stage is to avoid error
propagation. During token merging, each merged token will
unavoidably contain irrelevant tokens (e.g., background to-
kens). Given multi-stage clustering, merged tokens might be
dominated by irrelevant tokens especially for small-scale or-
gans/objects, leading to performance degradation.

4 Experiments
4.1 Datasets and Evaluation Metric
Three publicly-available and widely-used datasets are
adopted for evaluation, including

1. ACDC: The ACDC dataset (Bernard et al. 2018) con-
sists of short-axis cine-MRI from 150 patients with left
ventricle (LV), right ventricle (RV), and myocardium
(Myo) manually annotated by experienced experts on
end-diastolic (ED) and end-systolic (ES) phase instants.
In the official challenge, the ACDC dataset was divided
into 100 and 50 patients for training and testing respec-
tively. For a fair comparison, we strictly follow Tran-
sUNet (Chen et al. 2021) to divide the 100 patients into
7:1:2 for training, validation, and testing respectively.

2. ISIC: The ISIC dataset (Codella et al. 2019) contains a
total of 2596 dermoscopic images with well-annotated
labels. The same data split in APFormer (Lin et al.
2023b) is adopted for training and testing.

3. BTCV: The BTCV dataset is an abdominal multi-
organ segmentation dataset, consisting of 50 abdomi-
nal CT scans with varying volume sizes (512×512×
85-512×512×198 pixels), among which 30 scans with
pixel-wise annotations of 13 organs are publicly avail-
able. Following the setting of most transformer-based
methods (Cao et al. 2022; Xu et al. 2021; Huang et al.
2022; Lin et al. 2023b), the same train-test data split is
adopted to select 18 CT scans for training and the rest 12
CT scans for testing, and eight of 13 organs are used for
evaluation.

For a fair evaluation, the most commonly-used metrics are
adopted, including Dice, Hausdorff Distance (HD), Intersec-
tion over Union (IoU), and Accuracy (Acc).

4.2 Experimental Setup
Implementation Details All methods were implemented
within PyTorch and trained by the following settings:
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Figure 5: Qualitative comparison results with and without DTMFormer combined with various SOTA transformer-based archi-
tectures on the ACDC, ISIC, and BTCV datasets respectively. Different organs/targets are assigned with different colors.

• ACDC:bs=4; lr=5e-4; ep=600; opt=Adam;
• BTCV:bs=4; lr=1e-4; ep=500; opt=Adam;
• ISIC:bs=4; lr=5e-4; ep=400; opt=Adam;

For data augmentation. random rotation, random scaling,
cropping, contrast adjustment, and gamma augmentation
were applied. Particularly, for better convergence and com-
parison of TransFuse and TransFuse+DTMFormer, the ini-
tial learning rate is set as 5e-4 for BTCV.

Baseline Networks for Comparison. For a comprehen-
sive evaluation, both pure transformer-based and CNN-
Transformer hybrid architectures were selected to testify the
plug-n-play nature of DTMFormer, including SETR (Zheng
et al. 2021), TransFuse (Zhang, Liu, and Hu 2021), Tran-
sUnet (Chen et al. 2021), and FATNet (Wu et al. 2022).

4.3 Evaluation on ACDC
Comparison Methods. SOTA 2D and 3D task-specific
approaches are adopted for evaluation, including nnFormer
(Zhou et al. 2022), UNETR (Hatamizadeh et al. 2022), D-
Former (Wu et al. 2023), SwinUnet (Cao et al. 2022), and
MISSFormer (Huang et al. 2022).

Quantitative Comparison. As summarized in Table 1,
among comparison approaches, D-Former achieves the best

Type Method Avg. RV Myo LV

3D
nnFormer 92.06 90.94 89.58 95.65
UNETR 88.61 85.29 86.52 94.02

D-Former 92.29 91.33 89.60 95.93

2D SwinUnet 90.00 88.55 85.62 95.83
MISSFormer 90.86 89.55 88.04 94.99

2D

SETR 88.56 86.48 84.70 94.48
+ DTMFormer 89.64 89.50 84.83 94.60

TransFuse 90.48 90.43 86.43 94.58
+ DTMFormer 90.95 90.70 87.21 94.93

TransUnet 91.83 91.29 88.87 95.33
+ DTMFormer 92.30 91.88 89.23 95.77

FATNet 91.94 90.71 89.15 95.95
+ DTMFormer 92.53 92.21 89.55 95.85

Table 1: Comparison measured in Dice on ACDC. The best
and second-best results are bolded and underlined.

performance across all three organs. Without DTMFormer,
all baseline networks are sub-optimal compared to SOTA
comparison methods. By introducing DTMFormer, consis-
tent performance improvements are achieved across all base-
line networks, leading to an average increase of 0.47%-
1.08% in Dice. More importantly, FATNet+DTMFormer
achieves the best segmentation performance against SOTA
comparison methods, outperforming D-Former.
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Type Method Dice HD IoU Acc

CNN

Unet 88.15 7.93 80.64 95.48
Att-UNet 88.53 7.79 81.44 95.69
CPFNet 89.66 5.40 82.75 95.96
CANet 89.81 5.11 83.12 96.23

nnU-Net 90.22 - 83.76 96.48
Ms RED 90.25 - 83.77 96.44

Hybrid
/Trans

MedT 88.75 - 81.74 95.85
Patcher 89.11 - 82.36 96.08

SwinUNet 89.15 5.99 82.26 96.00
MISSFormer 88.42 7.50 81.65 96.15
LeViTUNet 89.85 5.45 83.39 96.28
H2Former 89.45 6.02 82.74 96.10

Hybrid
/Trans

SETR 88.42 6.39 81.07 96.02
+ DTMFormer 88.98 6.77 82.15 95.95

TransFuse 88.00 6.77 80.71 95.65
+ DTMFormer 89.21 5.82 82.02 95.91

TransUnet 89.19 5.73 82.12 96.04
+ DTMFormer 89.67 5.76 82.90 96.04

FATNet 89.05 6.73 81.86 95.95
+ DTMFormer 90.40 4.99 83.90 96.38

Table 2: Comparison against SOTA methods on ISIC. The
best and second-best results are bolded and underlined.

Qualitative Comparison. Qualitative comparison results
of baseline networks with and without DTMFormer are il-
lustrated in the first two rows of Fig. 5. Across various base-
line networks, coupling DTMFormer effectively reduces
false positives and false negatives, even for small-size or-
gans, leading to better segmentation results.

4.4 Evaluation on ISIC
Comparison Methods. SOTA CNN-/Transformer-based
task-specific approaches are adopted for evaluation, includ-
ing UNet (Ronneberger, Fischer, and Brox 2015), Att-UNet
(Schlemper et al. 2019), CPFNet (Feng et al. 2020), CANet
(Gu et al. 2021), nnU-Net (Isensee et al. 2021), Ms RED
(Dai et al. 2022), MedT (Valanarasu et al. 2021), and Patcher
(Ou et al. 2022), SwinUNet (Cao et al. 2022), MISSFormer
(Huang et al. 2022) ,LeVit-UNet-384 (Xu et al. 2021), and
H2Former (He et al. 2023).

Quantitative Comparison. As summarized in Table 2, in
general, CNN approaches are superior compared to both
pure transformer-based and CNN-Transformer hybrid meth-
ods, indicating that transformers fail to enrich global fea-
tures as expected. Through DTMForer to boost model
convergence, all baseline networks benefit from meaning-
ful long-range dependence exploration, achieving an aver-
age increase of 0.48%-1.35% in Dice. More importantly,
FATNet+DTMFormer achieves the best performance across
Dice, HD, and IoU and the second-best performance on Acc.

Qualitative Comparison. Qualitative comparison results
of baseline networks with and without DTMFormer are il-
lustrated in the middle two rows of Fig. 5. Across differ-
ent cases, baseline networks can suffer from either over-
segmentation or under-segmentation depending on the tar-
gets. By introducing DTMFormer, consistent improvements
are achieved on all baseline networks, leading to better seg-
mentation results.

4.5 Evaluation on BTCV
Comparison Methods. SOTA 2D CNN-/Transformer-
based task-specific approaches are adopted for evaluation,
including R50 U-Net (Chen et al. 2021), R50 Att-UNet
(Chen et al. 2021), UNet (Ronneberger, Fischer, and Brox
2015), Att-UNet (Schlemper et al. 2019), SwinUNet (Cao
et al. 2022), TransClaw U-Net (Yao et al. 2022), LeVit-
UNet-384 (Xu et al. 2021), MT-UNet (Wang et al. 2022),
MISSFormer (Huang et al. 2022), CA-GANformer (You
et al. 2022), and APFormer (Lin et al. 2023b).

Quantitative Comparison. As summarized in Table 3,
transformer-based approaches generally are superior com-
pared to CNN-based methods, indicating the necessity of ex-
tracting global features. Among comparison methods, AP-
Former achieves the best performance of 83.53% in Dice.
Comparatively, though the baseline network FATNet outper-
forms APFormer solely, introducing DTMFormer can fur-
ther bring an average increase of 0.81% in Dice, leading to
the best performance compared to all 2D approaches. More
importantly, adopting DTMFormer achieves consistent per-
formance improvements across all baseline networks, vali-
dating its flexibility to work as a plug-n-play module.

Qualitative Comparison. Qualitative comparison results
of baseline networks with and without DTMFormer are il-
lustrated in the last two rows of Fig. 5. Across various base-
line networks, the main benefit of DTMFormer is reducing
false positives, leading to “cleaner” segmentation maps.

4.6 Evaluation on Complexity Reduction
Though the primary goal of DTMFormer is to boost trans-
former convergence and segmentation performance, it is also
expected to reduce model complexity. Quantitative results of
baseline networks with and without DTMFormer measured
in model parameters and GFLOPs are summarized in Ta-
ble 4. As expected, introducing DTMFormer for dynamic
token merging would effectively reduce model parameters
and GFLOPs. As DTMFormer is only applied to transformer
blocks, model efficiency improvements of baseline networks
vary depending on how many transformer blocks are used.

4.7 Ablation Study
On the Hyper-parameter r. One key factor in DTM-
Former is the hyper-parameter r that determines the sparsity
of ATM for token merging. A series of ablation studies under
various r are conducted on SETR as summarized in Table 5.
In general, adopting any r would achieve performance im-
provements, validating the necessity of redundancy reduc-
tion in transformers for medical image segmentation. Grad-
ually increasing r is more beneficial as it would improve the
convergence property of transformers on fewer tokens. Fur-
ther increasing r may be harmful, as important tokens might
be wrongly merged, resulting in performance degradation.

Comparison with SOTA Token Sparsification Methods.
As discussed above, token sparsification is under-explored
even in natural image processing. To better validate the ef-
fectiveness of DTMFormer, both DViT (Rao et al. 2021) and
CTM (Zeng et al. 2022) are re-implemented and included for
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Type Method Avg. Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

CNN

R50 U-Net 74.68 87.74 63.66 80.60 78.19 93.74 56.90 85.87 74.16
R50 Att-UNet 75.57 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95

U-Net 76.85 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58
Att-UNet 77.77 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75

Hybrid
/Trans

Swin-Unet 79.13 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
TransClaw U-Net 78.09 85.87 61.38 84.83 79.36 94.28 57.65 87.74 73.55
LeVit-Unet-384 78.53 87.33 62.23 84.61 80.25 93.11 59.07 88.86 72.76

MT-UNet 78.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81
MISSFormer 81.96 86.99 68.65 85.21 82.00 94.41 65.67 91.92 80.81

CA-GANformer 82.55 89.05 67.48 86.05 82.17 95.61 67.49 91.00 81.55
APFormer 83.53 90.84 64.36 90.54 85.99 94.93 72.16 91.88 77.55

Hybrid
/Trans

SETR 75.23 84.91 53.70 81.01 76.60 94.55 52.17 89.98 68.89
+ DTMFormer 79.31 86.20 53.49 87.74 82.23 95.25 61.32 89.96 78.30

TransFuse 71.84 73.55 49.48 79.64 74.89 92.35 46.01 88.54 70.28
+ DTMFormer 72.56 74.67 48.68 80.37 76.78 92.46 48.58 87.43 71.52

TransUnet 81.99 89.23 59.05 88.25 85.19 95.79 69.02 91.43 77.97
+ DTMFormer 82.27 90.49 58.56 90.04 85.38 95.83 67.09 91.61 79.12

FATNet 84.44 91.28 63.58 91.13 86.17 96.22 73.92 92.39 80.85
+ DTMFormer 85.25 91.48 65.02 92.03 85.37 95.98 74.18 94.23 83.71

Table 3: Comparison measured in Dice against SOTA 2D methods on BTCV. The best results are bolded.

Baseline P (M) ∆ P GFLOPS ∆ GFLOPs
SETR 51.5 ↓ 18.0 53.2 ↓ 43.4+ DTMFormer 33.5 9.8

TransFuse 143.0 ↓ 9.7 82.8 ↓ 17.9+ DTMFormer 133.3 64.9
TransUnet 93.2 ↓ 9.3 32.3 ↓ 17.8+ DTMFormer 83.9 14.5

FATNet 34.9 ↓ 6.0 57.3 ↓ 2.5+ DTMFormer 28.9 54.8

Table 4: Computational complexity analysis of DTMFormer
on different baseline architectures.

r Avg. RV Myo LV P (M) GFLOPs
baseline 88.56 86.48 84.70 94.48 51.5 53.2
1/2 89.08 88.92 84.23 94.08 33.5 17.1
1/4 89.28 88.79 84.65 94.39 33.5 12.2
1/8 89.64 89.50 84.83 94.60 33.5 9.8
1/16 89.53 89.11 84.87 94.61 33.5 8.6
1/32 89.19 88.59 84.53 94.46 33.5 8.0

Table 5: Ablation study on the parameter r based on SETR
evaluated on ACDC. The best results are bolded.

comparison as summarized in Table 6. DViT can hardly im-
prove model efficiency while encountering significant per-
formance degradation. Comparatively, CTM effectively re-
duces model complexity but fails to boost segmentation per-
formance. Comparatively, introducing ATM would outper-
form the baseline with large margins and better model ef-
ficiency. It should be noted that such model efficiency im-
provements are acceptable as the primary goal of DTM-
Former is for performance improvement.

On the Hyper-parameter k. In DTMFormer, token clus-
tering is based on both dependency importance and feature
similarity and k-NN is only used for density calculation in
measuring feature similarity. Thus, varying k will not sig-

Method Avg. RV Myo LV P (M) GFLOPs
baseline 88.56 86.48 84.70 94.48 51.5 53.2
+ DViT 87.54 85.04 83.54 94.04 51.5 45.4
+ CTM 88.59 87.95 83.60 94.25 20.9 3.4
+ ATM 89.64 89.50 84.83 94.60 33.5 9.8

Table 6: Comparison with token sparsification methods on
SETR evaluated on ACDC. The best results are bolded.

k Avg. RV Myo LV
5 89.64 89.50 84.83 94.60
10 89.67 89.45 84.93 94.62
20 89.59 89.45 84.72 94.61
100 89.40 89.30 84.52 94.38

Table 7: Ablation study of k on ACDC measured in Dice.
The best results are bolded.

nificantly affect the overall performance of DTMFormer. As
summarized in Table 7, with the increase of k, density cal-
culation may be dominated by large-size objects, resulting
in wrongly-merged tokens of small-scale objects and perfor-
mance degradation. Additionally, using a larger k will bring
higher computational complexity. Thus, k shall be tuned
from a small value to balance performance and complexity.

5 Conclusion
In this paper, we propose to boost the segmentation per-
formance of transformers in medical image segmentation
through dynamic token merging and propose DTMFormer
working as a plug-n-play module for model efficiency and
segmentation performance improvement. By clustering to-
kens into fewer semantic tokens, DTMFormer has a bet-
ter convergence property, thus addressing attention collapse.
Experiments on multiple publicly available datasets demon-
strate the superiority of DTMFormer in achieving consistent
performance improvement across various baseline networks.
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