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Abstract

We study a new problem of semantic complete scene fore-
casting (SCSF) in this work. Given a 4D dynamic point cloud
sequence, our goal is to forecast the complete scene corre-
sponding to the future next frame along with its semantic la-
bels. To tackle this challenging problem, we properly model
the synergetic relationship between future forecasting and
semantic scene completion through a novel network named
SCSFNet. SCSFNet leverages a hybrid geometric representa-
tion for high-resolution complete scene forecasting. To lever-
age multi-frame observation as well as the understanding of
scene dynamics to ease the completion task, SCSFNet intro-
duces an attention-based skip connection scheme. To ease the
need to model occlusion variations and to better focus on the
occluded part, SCSFNet utilizes auxiliary visibility grids to
guide the forecasting task. To evaluate the effectiveness of
SCSFNet, we conduct experiments on various benchmarks
including two large-scale indoor benchmarks we contributed
and the outdoor SemanticKITTI benchmark. Extensive exper-
iments show SCSFNet outperforms baseline methods on mul-
tiple metrics by a large margin, and also prove the synergy
between future forecasting and semantic scene completion.
The project page with code is available at scsfnet.github.io.

1 Introduction
Visual forecasting has aroused a wide spectrum of inter-
ests in the computer vision community, especially for RGB
videos(Zhang et al. 2019; Hu and Wang 2019; Luc et al.
2020; Gao et al. 2019; Hu et al. 2020). Recently point cloud
sequence forecasting (Wen et al. 2022; Sun et al. 2020; Deng
and Zakhor 2020a; Weng et al. 2021; Mersch et al. 2022;
Wang and Tian 2022) has also obtained many attention.
Forecasting the future geometric observation can help an in-
telligent agent plan its behavior accordingly, which in turn
greatly benefits a wide range of downstream applications in
autonomous driving, robotics, and augmented reality.

Existing works on point cloud forecasting (Wen et al.
2022; Sun et al. 2020; Deng and Zakhor 2020a; Weng et al.
2021; Mersch et al. 2022) mostly focus on forecasting raw
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future observation. The observation only provides a par-
tial view of the dynamic scene, insufficient for a robot to
perform low-level tasks like grasping and obstacle avoid-
ance (Song et al. 2017) that require complete geometric un-
derstanding. Also, the raw future point cloud lacks seman-
tic meaning, crucial for high-level tasks like object retrieval.
Therefore, we propose a new task named Semantic Com-
plete Scene Forecasting (SCSF) in this work. Given previ-
ous N frames of an egocentric 4D dynamic point cloud se-
quence, the task is to predict the complete scene along with
its semantic labels corresponding to the next future frame.

The SCSF problem is challenging since it requires both
future forecasting and semantic scene completion(Song
et al.), or more intuitively, completing and segmenting some-
thing unknown. Previous works on point cloud forecast-
ing(Ilg et al.; Dosovitskiy et al.) formulate it as a flow pre-
diction problem where future frames are treated as the defor-
mation of earlier partial observations. They cannot provide
a complete scene understanding which is crucial for occlu-
sion inference or robot decision-making. On the other hand,
works on semantic scene completion(Roldao, De Charette,
and Verroust-Blondet) consider only static scenes. Previous
research treated forecasting and completion as two separate
problems and no works exploited their connections deeply.

Our key observation is that future forecasting and se-
mantic scene completion are synergetic to each other and
can lead to huge gains mutually if modeled properly. On
one hand, future forecasting models the underlying scene
dynamics and improves motion understanding. Such un-
derstanding allows aggregating multiple observations across
time for a more complete geometric understanding. On the
other hand, a complete scene understanding allows future
forecasting to focus on the object movements without both-
ering with sampling noise or occlusion variations faced by
traditional point cloud forecasting methods. Thus semantic
scene completion can greatly improve future forecasting and
provide a comprehensive understanding of the scene.

Based on the observation, we jointly solve the forecast-
ing and the semantic completion in 4D. We struggle to an-
swer three questions: How can we forecast the complete
future scene with high resolution? How can we leverage
the multi-frame partial observations to solve the comple-
tion task? How can we leverage the prior of empty and oc-
cluded space, which is usually ignored in point cloud fore-
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Frame 1 Frame 2 Frame 3 Future Frame Complete Scene  Semantic Complete Scene 

Figure 1: Semantic Complete Scene Forecasting. It is a simple interaction scene built from the iGibson (Xia et al. 2020)
simulator. Combined with observations from the first three frames, we can make reasonable forecasting that the robot is about
to walk behind a desk and is going to be occluded. The SCSF task enhances our comprehension of the complete scene.

casting problems, to tackle the forecasting task? We address
the above issues through a novel network named SCSFNet.

Specifically, to address the first issue, unlike traditional
semantic scene completion methods that use low-resolution
dense voxel representation, SCSFNet leverages a hybrid rep-
resentation combining the benefits of sparse voxels, dense
voxels, and implicit fields for high-resolution predictions. It
employs a 4D sparse voxel encoder for fine-grained input
information, uses dense voxels for flexible low-resolution
structure generation, and predicts an implicit field from the
low-resolution dense voxel grid for high-resolution predic-
tions. To address the second issue, we utilize 4D sparse con-
volutions to aggregate multi-frame observations in the past
and introduce attention-based skip connections in SCSFNet.
This innovative design improves information propagation
and occlusion inference for more precise future scene fore-
casting. To address the third issue, we introduce an auxiliary
task of forecasting a future visibility grid from past ones.
This is a much easier task than predicting an entire high-
resolution scene. The visibility grids’ ambient information
effectively aids in scene understanding.

To confirm the effectiveness of our method for intelligent
agents, we construct two large-scale SCSF benchmarks, IG-
PLAY focusing on robot interaction with indoor objects, and
IGNAV focusing on robot social navigation with other dy-
namic agents in scenes. Besides the two indoor datasets,
we also use SemanticKITTI (Behley et al. 2019) to verify
our method for outdoor scenarios. Extensive experiments
demonstrate that by jointly modeling geometry forecasting
and semantic completion, SCSFNet can outperform base-
line methods by a large margin (11.6% CD relative improve-
ments on the point cloud forecasting task and 10.8% mIoU
improvement on the SCSF task, on the IGPLAY dataset).

To summarize, our main contributions are fourfold: i) We
propose a new task of semantic complete scene forecasting
from a 4D dynamic point cloud sequence; ii) We present
SCSFNet to exploit the synergy between forecasting and
semantic scene completion to effectively solve such a new
task; iii) To evaluate our method, we introduce IGPLAY and
IGNAV, two large-scale 4D egocentric vision datasets with
complete geometry and semantic annotations covering abun-
dant indoor scenes and rich dynamics; iv) Our experiments
verify the effectiveness of our method and prove the synergy
between forecasting and semantic scene completion.

2 Related Work
4D Sequential Point cloud Forecasting. Point cloud fore-

casting is crucial for understanding scene geometry and
motion dynamics(Fan, Yang, and Kankanhalli 2021; Wen
et al. 2022). Various methods have been employed in dif-
ferent scenarios. TLFPAD (Deng and Zakhor 2020a) pro-
posed using scene stream embedding to model past point
cloud frames’ temporal relationships for future frame pre-
diction. Mersch et al.(2022) proposed to use 3D convolu-
tion to jointly learn the spatial-temporal features of the in-
put point cloud sequence. These approaches primarily em-
phasize visible surfaces rather than the entire scene. Oc-
clusion4d (Van Hoorick et al. 2022) introduced a frame-
work to estimate 4D visual representations from monocular
RGB-D video, which encodes point clouds into a continuous
high-resolution representation. Unlike Khurana et al.(2023),
whose work attained SOTA point cloud forecasting using
sensor extrinsics, our approach doesn’t rely on camera poses
or perfect odometry for scene alignment. Instead, we aim to
jointly solve forecasting and semantic completion in the ego-
centric view across both indoor and outdoor environments.

Semantic Scene Completion. Semantic Scene Comple-
tion (Song et al. 2017) has gained significant momentum in
the research community due to the unresolved challenges it
faces (Li et al.; Wang et al.; Liu et al.; Chen et al.; Cheng
et al.; Rist et al.). This task’s output is a 3D voxel grid with
a semantic label for each voxel. SISNet (Cai et al.) aims
to deduce detailed shape information and nearby objects of
similar categories. Without extra instance labels, SCSFNet
can also obtain detailed geometric data using the implicit
field based on the coarse voxel grid. Most works in this field
only aim to process 3D static scenes like NYU and SUNCG
(Silberman et al.; Firman et al.; Chang et al.) without any
temporal information. We contribute two 4D dynamic in-
door datasets IGPLAY and IGNAV. As for outdoor datasets,
SemanticKITTI is suitable for Point Cloud Forecasting and
3D Semantic Scene Completion, allowing direct use of the
former’s input and the latter’s ground truth for SCSF.

Hybrid Geometric Representations. Hybrid geomet-
ric representations (Ali et al.; Zhang et al.; Song, Song,
and Huang) has aroused great interest (Dourado, Guth, and
de Campos; Xu et al.; Peng et al.) for various downstream
tasks. Convolutional Occupancy Networks (Peng et al.)
combines convolutional encoders with implicit occupancy
decoders for 3D reconstruction. Our SCSFNet further uti-
lizes implicit fields for 4D complete forecasting. GRNet Xie
et al. and SCSFNet both leverage point cloud input and in-
termediate 3D voxel grids, but SCSFNet decodes infinite
implicit fields unlike GRNet converting the voxels back to
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Figure 2: The overview of SCSFNet. First, X will be transformed into 0.01m sparse voxels. The 4D sparse convolution encoder
then generates spatial-temporal features at different scales (0.08m, 0.16m, and 0.32m). They are filled into 3D dense voxel grids
and processed with attention-based skip connections at each scale. Finally, the model produces F based on E (0.08m), which
is then used to generate a high-resolution voxel output (0.02m) filtered by the visibility grid for evaluation.

point clouds explicitly with a limited resolution. While Liu
et al.(2020a) leverages self-pruning and sparse voxels while
overfitting a scene, we instead use dense voxels enriched
with skipped point cloud features.

3 Method
We first define the Semantic Complete Scene Forecasting
(SCSF) task formally. Let Pt ∈ RN×3 and Ft ∈ RN×C de-
note the coordinates and features of the t-th frame in a point
cloud sequence, where N and C denote the number of points
and feature channels. Given a point cloud sequence X =
([P1, F1], . . . , [PL, FL]) as input, the SCSFNet initially pro-
duces a low-resolution voxel feature grid E ∈ RX×Y×Z×D,
where D represents the feature dimensions, and X,Y, Z
denote the dimensions of the low-level grid. Subsequently,
Based on E, the SCSFNet then conducts interpolations and
yields an implicit field F : R3 → Z, describing the seman-
tic label at an arbitrary point in the next frame. For a specific
high-resolution voxel grid, we obtain semantic occupancy of
each voxel by querying central coordinates in F .

Our method, SCSFNet, uses an egocentric 4D point cloud
sequence with N frames to predict future scenes with se-
mantic information. It employs an encoder-decoder structure
and hybrid geometric representations for high-resolution
forecasting. Like U-Net (Ronneberger, Fischer, and Brox
2015), SCSFNet uses skip connections between the encoder
and decoder to retain high-resolution input information.
However, challenges arise in its design. Traditional scene
completion methods use dense voxel grids in the decoder, re-
sulting in a resolution limit. It is also complex to allow skip
connections between a partial input and a complete predic-
tion at different resolutions. Further, previous point cloud
forecasting methods solely operate on a point cloud repre-
sentation, making it difficult to utilize ambient information

such as empty or occlusion space distribution.
To address the three challenges mentioned above, we uti-

lize a hybrid geometric representation for high-resolution
generation, design attention-based skip connections for fea-
tures from partial to complete, and also introduce visibility
grids to leverage ambient information. In the following, we
will explain how we leverage a hybrid geometric represen-
tation to design SCSFNet in Section 3.1. Then we introduce
our attention-based skip connections and visibility grids in
Section 3.2 and Section 3.3 respectively.

3.1 SCSFNet with a Hybrid Geometric
Representation

Semantic complete scene forecasting involves predicting fu-
ture geometry and completing the scene. Traditional point
cloud forecasting methods focus on point cloud representa-
tion, making it difficult to recover complete scene geometry.
In semantic scene completion, the dense voxel grid is com-
monly used due to its ease in generating new structures, but
its resolution constraint limits its use for tasks requiring de-
tailed geometric understanding in large scenes. Hence, we
utilize a hybrid geometric representation that combines the
advantages of point clouds, sparse and dense voxels, and im-
plicit fields for high-resolution predictions.

We design SCSFNet, an encoder-decoder structure that
encodes the high-resolution point cloud sequence input and
decodes an implicit field with infinite resolution based on a
low-resolution voxel grid, as shown in Figure 2.

SCSFNet effectively processes input with minimal res-
olution loss by filling points into small voxels and utiliz-
ing Minkowski Engine (Choy, Gwak, and Savarese 2019)
for 4D sparse convolutions. By incrementally increasing the
convolution stride, we enlarge voxel sizes and obtain multi-
scale features. Compared with 4D point cloud encoders
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like P4Transformer (Fan, Yang, and Kankanhalli 2021), the
sparse voxel-based encoder aligns better with a dense voxel
decoder, which is commonly used for semantic scene com-
pletion and structure generation.

After our 4D sparse convolution encoder extracts spatial-
temporal features at different scales, we fill the aggregated
features of sparse voxels into a 3D dense voxel grid with the
same resolution at each scale. This information is fed to the
decoder through skip connections, similar to U-Net (Ron-
neberger, Fischer, and Brox 2015). More details about our
attention-based skip-connections are in Section 3.2.

The dense voxel exploited by our decoder makes it very
easy to generate new geometry through up-convolutions. We
leverage several 3D up-convolution layers to lift the reso-
lution of the voxel grid to a higher scale. However, due to
the restriction of memory, we cannot reach high resolution
with such a dense voxel representation. Inspired by Convo-
lutional Occupancy Networks (Peng et al. 2020), we further
convert such a dense voxel feature grid into a semantic occu-
pancy field to enable infinite resolution in the output. In par-
ticular, for an arbitrary point p ∈ R3, we obtain its feature
by conducting a trilinear interpolation using the features of
nearby voxels. Then the point feature goes through a Multi-
layer Perceptron (MLP) to reach a semantic occupancy pre-
diction where the label is either empty or a semantic class.

Combining a sparse voxel encoder, a dense voxel decoder,
and an implicit field, we can encode the high-resolution in-
put with little information loss while at the same time fore-
casting a complete scene with infinite resolution.

During the training phase, we use a loss based on the high-
resolution voxel ground truth. This ground truth has a higher
resolution compared with the dense voxel grid on which the
implicit field is based. We randomly sample 105 points from
all central coordinates of ground truth voxels on the fly dur-
ing training and evaluate the semantic occupancy values of
these points. We use a cross-entropy loss Lhigh to supervise.
During inference, we can forecast a high-resolution dense
voxel grid by simply querying the semantic occupancy of
the central coordinate of each voxel.

3.2 Attention-Based Skip Connection
The naive encoder-decoder structure struggles to transfer de-
tailed information in the bottleneck layer, making dense pre-
diction tasks tough. Researchers have suggested using skip
connections in a U-Net structure (Ronneberger, Fischer, and
Brox 2015) to shortcut high-resolution features, which has
improved tasks like semantic segmentation. However, the
modality gap between the point cloud input and the dense
voxel grid output presents a more significant challenge. This
can be partially addressed by voxelizing the input and using
a sparse voxel encoder, but transitioning from partial obser-
vations to complete predictions remains difficult.

To address the challenge, we introduce the attention-based
skip connections as shown in Figure 3. Given a set of sparse
voxels at a certain scale of our encoder and a dense voxel
grid at the corresponding scale of the decoder, our goal is
to feed the sparse voxel features to the dense voxels in a
similar fashion to traditional skip connections. An intuitive
approach would be to simply add sparse voxels from the en-

attention 1 attention 2 attention m...

sparse-to-dense
 feature filling

Dilated Conv

K

Q Q

K KV V  V  

Q

from the previous 
decoding scale

concatenation

Dilated-convolution Voxels

Up-convolution Voxels To the decoder

aggregated features
from the encoder

Figure 3: Illustration of attention-based skip connections.
Dilated-convolution voxels from the encoder form the key
and value. Up-convolution voxels from the previous scale
form the query. Finally, we concatenate voxel features from
multi-head cross attention and feed them to the decoder.

coder to dense voxels of the decoder. However, this method
provides no information to the majority of the voxels, which
are crucial for accurately forecasting a complete scene. Our
attention-based skip connections try to alleviate it.

Specifically, we obtain 3D sparse aggregated features in
the encoder, which has consolidated spatial-temporal details
at different scales. These features are then filled in dense
voxel grids, but only a limited subset of voxels contain in-
formation. To diffuse the encoded details efficiently, we uti-
lize dilated convolutions. The outcomes of this step are re-
ferred to as “dilated-convolution voxels” as shown in Fig-
ure 3. And we call the voxels produced through 3D up-
convolutions in the decoder as “up-convolution voxels”.

At the most coarse-grained scale, dilated-convolution
voxels are directly processed with up-convolutions to en-
ter the next scale. At other scales, we combine dilated-
convolution voxel features with positional embeddings, gen-
erating key-value pairs (Kj , Vj) for key and value matrices
K and V respectively. Positional embeddings are computed
using Fourier basis of voxel centroid positions through an
MLP. For the i-th up-convolution voxel at the previous scale,
a query Qi is derived from its voxel feature and positional
embedding. This allows us to compute the skipped feature
for the i-th up-convolution voxel using softmax(QiK

T

√
dk

)V ,
where dk is the dimension of Qi. In practice, we utilize
multi-head cross-attentions and concatenate them to the fi-
nal skipped features. Following U-Net’s common practice,
we combine skipped features with original up-convolution
voxel features, which are then forwarded to the decoder.

Such design allows feeding high-resolution features di-
rectly from the encoder to every voxel in the decoder, facili-
tating implicit geometry completion and scene forecasting.

3.3 Visibility Grid
There is a strong ambient space prior in a point cloud from
which we can extract the visible empty area: if we shoot a
ray from the depth camera to a depth point in the scene, the
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Figure 4: Illustration of the visibility grid. An iGibson robot
is nearing a table. Forecasting visible empty areas is much
easier than the whole empty areas. We specifically forecast
the future visibility grid to assist the SCSF task in predicting
the entire scene.

space between the camera and the point should be empty;
when we further extend this ray, it would reach the occluded
space. This information is critical for complete scene fore-
casting since our focus is to inpaint the occupied area but
not the visible empty space, as shown in Figure 4. This in-
formation is rarely used in traditional point cloud forecasting
tasks since with a point cloud representation, such ambient
information is hard to encode. The hybrid representation can
emphasize such important information for the SCSF task.

In particular, we introduce a dense visibility grid to model
the information. By voxelizing each frame of the input point
cloud sequence and projecting rays to identify visible vox-
els, we extract valuable visibility data. The size of the visi-
bility grid matches the high-resolution ground truth voxel di-
mensions. This visibility grid is intended to complement our
predicted results, but the challenge is that we know nothing
about the scene in the next frame.

To address this issue, we introduce an auxiliary task of
forecasting a future visibility voxel grid from past visibility
grids. This task is much easier than recovering a complete
scene with semantics in infinite resolution, so we can train
a relegated version of SCSFNet to obtain a high-resolution
visibility voxel grid with binary labels. Then we use the grid
as an additional mask to filter out visible empty areas for the
main SCSFNet output, which can ease the need to model oc-
clusion variations when solving the challenging SCSF task.

4 Datasets
In order to train and evaluate our model, and to demonstrate
the ability of our model for 4D completion and forecasting,
we require sequential point clouds with both 3D semantic
scene completion annotations and underlying dynamics that
can be used for forecasting. For this purpose, we contribute
two high-quality synthetic datasets IGPLAY and IGNAV us-
ing the Interactive Gibson Simulator (iGibson) (Xia et al.
2020) that runs on top of the pyBullet (Coumans and Bai
2016). To generate the simulated scenes suitable for our task,

we specify the desired configuration of the environment in
the logic language BDDL. With the BDDL description and
a list of scene names, the logic states implemented in iGib-
son 2.0 provide a mechanism that facilitates the generation
of simulated scenes with various objects. In our datasets, we
provide 2D pictures (RGB, normal and semantics), 3D point
clouds, 3D meshes, 3D visibility grids and 3D ground truth
voxel grids. The train/test split is 80%/20%. The time unit in
iGibson is “timestep” instead of “second”, so we just spec-
ify how far the robot and objects move in each timestep by
iGibson interfaces. We provide more statistics in the sup-
plementary. Besides the two indoor datasets we provide, the
outdoor SemanticKITTI dataset is also suitable for our task.

4.1 IGPLAY & IGNAV
We present the IGPLAY dataset by capturing 1,000 scenes
lasting 10 timesteps each, where a viewer interacts with var-
ious toys among the furniture. Each scene in IGPLAY con-
tains 10 semantic classes in a great variety. When the viewer
(an iGibson robot) moves and interacts with objects, partial
and complete occlusions happen between the furniture and
objects. This dataset supports effective learning for 4D dy-
namic scene completion and forecasting.

While IGPLAY already exhibits many features suitable
for 4D forecasting, the whole dynamics of the scene only
comes from the viewer’s movement and interaction with the
objects. To provide a new perspective of the underlying dy-
namics, we provide a new dataset called IGNAV with several
active robots navigating in the scene. Each scene in IGNAV
contains 9 semantic classes. We captured 600 scenes lasting
10 timesteps each, where several robots move around the
scene in random speeds, with another robot watching them.

4.2 SemanticKITTI
SemanticKITTI (Behley et al. 2019) is a very challenging
and well-known large-scale outdoor dataset collected by au-
tonomous cars. Various occlusions by trees or other cars
make the dataset suitable for evaluating our SCSF task.

5 Experiments
We evaluate our proposed methods on two indoor synthetic
datasets (IGPLAY and IGNAV) and one outdoor real-world
dataset (SemanticKITTI).

For IGPLAY and IGNAV, the dimensions of the 3D space
are 4.8m horizontally, 2.88m vertically, and 4.8m in depth.
We use 3 RGB frames (interval: 1 iGibison timestep) as the
input and a 240×144×240 volume with grid size 0.02m as
the ground truth, which is similar to (Song et al. 2017).

For SemanticKITTI, the dimensions of the 3D space are
51.2m ahead of the car, 25.6m to every side of the vehicle,
and 6.4m in height. We input three frames of point clouds
(0.2s interval) and use a 256×256×32 volume with a 0.2m
grid size as the ground truth, provided by SemanticKITTI
for the semantic scene completion benchmark.

The three datasets have distinct differences. IGPLAY and
IGNAV use a 480×640 image from a depth camera, convert-
ible to a point cloud, while SemanticKITTI uses a raw Li-
DAR point cloud with varying points. IGPLAY and IGNAV
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IGPLAY IGNAV SemanticKITTI
Method IoU mIoU IoU mIoU IoU mIoU
Occlusion4d Van Hoorick et al. (CSF) 39.7 - 45.0 - 16.4 -
Occlusion4d (Van Hoorick et al.) (SCSF) 40.8 23.8 46.1 24.6 17.1 6.4
TLFPAD (Deng and Zakhor) (CSF) 48.2 - 60.2 - 32.3 -
TLFPAD (Deng and Zakhor) (SCSF) 48.6 25.8 60.7 25.9 32.6 9.5
ST3DCNN (Mersch et al.) (CSF) 49.1 - 61.4 - 28.8 -
ST3DCNN (Mersch et al.) (SCSF) 49.4 25.5 62.9 26.1 29.5 9.6
SCSFNet (CSF) 53.9 - 63.6 - 33.7 -
SCSFNet (SCSF) 56.5 36.3 69.5 39.9 34.5 16.1

Table 1: SCSF Results on IGNAV, IGPLAY, and SemanticKITTI. We compare SCSFNet with baselines on both the CSF and
the SCSF task using IoU and mIoU (in percentages). Our method significantly outperforms baselines, especially in mIoU.

IGPLAY IGNAV SemanticKITTI
Method IoU(M) IoU(S) IoU(M) IoU(S) IoU(M) IoU(S)
Occlusion4d (SCSF) 6.3 28.2 4.4 27.1 3.4 7.8
TLFPAD (SCSF) 11.9 29.3 2.1 28.8 4.9 11.7
ST3DCNN (SCSF) 9.3 29.6 0.0 29.3 4.8 11.9
SCSFNet (SCSF) 28.2 38.4 18.3 42.6 12.4 17.8

Table 2: SCSF Results on dynamics of IGNAV, IGPLAY, and SemanticKITTI. In the same setting as Table 1, we compare
Movable IoU and Static IoU (in percentages) for the SCSF task. Our method outperforms baselines, especially in Movable IoU.

contain more dynamic objects, whereas SemanticKITTI fea-
tures larger spaces and complex real-world details. Well
managing these datasets shows the versatility of SCSFNet.

5.1 Evaluation Metrics
To evaluate forecasting results, we obtain high-resolution
voxels or point clouds from implicit fields. We evaluate
scene completion quality using voxel-level intersection over
union (IoU) between predicted and ground truth labels. If
labels contain semantics, we assess semantic scene comple-
tion quality using mean IoU across all classes (mIoU). For
point clouds, we use point-level Chamfer Distance (CD).

5.2 Evaluating SCSFNet on the (S)CSF Task
For the SCSF task defined above, we need to forecast the
semantic scene completion. We can also delegate SCSF into
the Complete Scene Forecasting (CSF) task, where we only
forecast the scene completion as a binary classification.

Baselines. Since this paper is pioneering the SCSF task,
there are no existing methods for comparison. We devise
baselines from existing modern methods. The input is a 3-
frame point cloud sequence and the output is the future com-
plete scene.(1) Occlusion4d (Van Hoorick et al. 2022) is
designed for estimating 4D visual representations and oc-
clusions from RGB-D video. It can be trained end-to-end
for the SCSF task. (2)TLFPAD (Deng and Zakhor 2020b),
a FlowNet3D-based point cloud forecasting method is used
for partial forecasting. Therefore we first forecast a par-
tial point cloud of the next frame using TLFPAD, and then
train a SCSFNet exclusively for (semantic) scene comple-
tion on the forecasted point cloud. (3) ST3DCNN (Mersch
et al. 2022), a CNN-based point cloud forecasting method
achieves SOTA (without sensor extrinsics) on the KITTI-

Odometry dataset (Geiger, Lenz, and Urtasun 2012). We fol-
low the same two-stage training approach as TLFPAD.

Comparison results between SCSFNet and baselines.
SCSFNet outperforms baselines on three different datasets
by a large margin as shown in Table 1. Thanks to the hybrid
geometric representation and the implicit field, SCSFNet
obtains high-resolution forecasting on both indoor and out-
door scenes. We observe Occlusion4d perform not well for
whole-scene forecasting. Compared with SCSFNet on IG-
PLAY (SemanticKITTI), ST3DCNN has a 7.1%(5%) re-
duction in IoU but a 10.8%(6.5%) reduction in mIoU. Sep-
arating forecasting and semantic completion into two stages
hampers completion and extraction of semantics, and since
semantics prediction is harder and requires more informa-
tion, the drop in mIoU is a bit larger. SCSFNet excels by
jointly incorporating semantic scene completion and fore-
casting. The results are visualized in Figure 5.

Comparison results between the CSF and SCSF Task.
Two Adjacent rows in Table 1 compare the performance of
the same method across the CSF task and SCSF task. No-
tably, SCSFNet displays improvements: a 2.6% enhance-
ment in IGPLAY, a 5.9% enhancement in IGNAV, and a
0.8% enhancement in SemanticKITTI. Baselines similarly
exhibit improved IoU scores. This underscores the value of
object semantic understanding for scene completion.

Comparison results between movable and static
classes. We also report IoU when evaluating movable or
static classes in Table 2. A class is labeled as movable if
the corresponding objects can move, such as robots in IG-
NAV or cars in SemanticKITTI. This distinction allows us
to emphasize a method’s ability to comprehend scene dy-
namics and forecast movable classes. In the SCSF task, we
categorize predicted voxels as either movable or static based
on their predicted semantic labels. This allows us to cal-
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Occlusion4d TLFPAD+SSC SCSFNet Ground Truth
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Figure 5: Visualization results in IGPLAY. In this sequence, an iGibson robot is approaching a panda toy on the ground and is
going to hit it. Occlusion4d predicts the fuzzy shape of the toy. TLFPAD predicts half of the toy as the pop class. In comparison,
SCSFNet can get relatively accurate geometry and semantics of the toy compared with the ground truth.

culate IoU for each category and subsequently determine
the Average Movable IoU and Average Static IoU. Com-
pared to ST3DCNN on the SCSF task, our SCSFNet leads to
18.9%(8.8%), 18.3%(13.3%), 7.6%(5.9%) improvements
in movable (static) IoU for IGPLAY, IGNAV, and Se-
manticKITTI respectively. Therefore, SCSFNet’s concur-
rent forecasting and completion harness the advantageous
interaction. This integrated approach improves the handling
of dynamic objects, a critical factor in accurate future fore-
casting. More details are provided in the supplementary.

5.3 Completion Helps Point Cloud Forecasting

We evaluate SCSFNet on point cloud forecasting task to
verify semantic scene completion helps forecasting. Using
iGibson’s intrinsic and extrinsic parameters, we project fore-
casted complete voxels onto partial ones in IGPLAY and IG-
NAV, from which we can extract a fine-grained point cloud.

Configurations. TLFPAD (Deng and Zakhor 2020b) and
ST3DCNN (Mersch et al. 2022) are tailored to predict the
point cloud of the future frame. We naturally train it end-to-
end, using the next frame’s point cloud as the ground truth.
In comparison, SCSFNet is trained as usual (on SCSF task),
and we use the above complete-to-partial projection to ob-
tain a partial point cloud from the predicted complete scene.

Methods IGPLAY IGNAV

TLFPAD (Deng and Zakhor 2020b) 0.045 0.043
ST3DCNN (Mersch et al. 2022) 0.043 0.037
SCSFNet (SCSF) 0.038 0.030

Table 3: Results on the point cloud forecasting of the next
frame. We report Chamfer Distance of the point cloud of the
next frame (lower is better, the unit is square meter).

Results. By jointly considering semantic completion and
forecasting, our SCSFNet outperforms ST3DCNN, improv-
ing CD from 0.043 to 0.038 in IGPLAY and from 0.037 to
0.030 in IGNAV, as shown in Table 3, showing that under-
standing the complete scene benefits future forecasting.

Methods IoU mIoU

SSC (from scratch) 60.1 39.5
SSC (finetuned by SCSF) 62.3 40.5

Table 4: Results on the Semantic Scene Completion task.
The two experiments are on IGPLAY.

5.4 Forecasting Helps Semantic Completion
We show that future forecasting benefits semantic scene
completion in the Semantic Scene Completion task.

Configurations. We conduct two IGPLAY experiments.
(1)Train a SCSFNet from scratch with 3 past frames to
predict the complete scene in the last frame. (2) Train a
SCSFNet for the SCSF task (using 3 past frames to predict
the scene in the future frame), and finetune it to predict the
complete scene in the last given frame.

Results. Finetuning from SCSF improves IoU by 2.1%
and mIoU by 1.0%, as shown in Table 4. This demonstrates
the critical role of additional forecasting knowledge in se-
mantic scene completion. We establish the synergy be-
tween completion and forecasting by proving both direc-
tions in 5.3 and 5.4.

5.5 More Experiments
We provide more experiments such as ablations and seman-
tic scene completion tasks at https://scsfnet.github.io/. The
complete paper, along with supplementary material, is avail-
able at https://arxiv.org/abs/2312.08054.

6 Conclusion
We introduce a new task of semantic complete scene fore-
casting from a 4D point cloud sequence and propose a new
backbone SCSFNet for 4D scene understanding, equipped
with hybrid representation, attention-based skip connec-
tions, and a visibility grid. Extensive experiments on our two
high-quality indoor datasets and the outdoor SemanticKITTI
benchmark not only confirm the significance of jointly mod-
eling geometry forecasting and semantic completion, but
also demonstrate the effectiveness of our method.
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