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Abstract

Face retouching is to beautify a face image, while preserv-
ing the image content as much as possible. It is a promis-
ing yet challenging task to remove face imperfections and
fill with normal skin. Generic image enhancement methods
are hampered by the lack of imperfection localization, which
typically results in incomplete removal of blemishes at large
scales. To address this issue, we propose a transformer-based
approach, RetouchFormer, which simultaneously identifies
imperfections and synthesizes realistic content in the corre-
sponding regions. Specifically, we learn a latent dictionary to
capture clean face priors, and predict the imperfection regions
via a reconstruction-oriented localization module. Also based
on this, we can realize face retouching by explicitly sup-
pressing imperfections in selective self-attention computa-
tion, such that local content will be synthesized from normal
skin. On the other hand, multi-scale feature tokens lead to in-
creased flexibility in dealing with the imperfections at various
scales. The design elements bring greater effectiveness and
efficiency. RetouchFormer outperforms the advanced face re-
touching methods and synthesizes clean face images with
high fidelity in our list of extensive experiments performed.

Introduction
Face retouching aims at beautifying a face image that has
suffered from numerous types of imperfections. It is promis-
ing to automatically create a flawless skin tone, while pro-
fessional retouchers may take a few hours to edit the photo.
A key challenge of face retouching lies in how to automati-
cally recognize face imperfections, which are diverse in the
real world. On the other hand, it is also challenging to fill
realistic details, especially for moderate-to-severe acne re-
gions, while at the same time preserving the structures of
essential facial features.

The traditional face retouching methods apply local
smoothing operators for blemish removal (Arakawa 2004;
Batool and Chellappa 2014). Recently, significant progress
has been made in generic image-to-image translation, such
as style transfer (Isola et al. 2017; Kim et al. 2017; Liu,
Breuel, and Kautz 2017; Zhu et al. 2017; Wu et al. 2019;
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Figure 1: The main idea behind RetouchFormer is to replace
the features of the imperfections with those of normal skin
via selective self-attention.

Ling et al. 2021), image enhancement (Zamir et al. 2021;
Yang et al. 2021; Wang et al. 2022), and so on. AutoRe-
touch (Shafaei, Little, and Schmidt 2021) and ABPN (Lei
et al. 2022) start to focus on face retouching. However,
these methods only consider image-level transformations by
global convolution filters, and the imperfection regions can-
not be adaptively completed. In addition, these methods typ-
ically need pairwise retouching data for model training.

In this work, we treat face retouching as a generalized
‘soft’ version of face image inpainting, and train a trans-
former with selective self-attention mechanism on partially
paired data to synthesize clean face with high realism and
fidelity as shown in Figure 1. More specifically, we apply
the encoder-transformer-decoder design as shown in Figure
2, and the proposed model is referred to as RetouchFormer,
which approximately predicts imperfections to indicate the
regions to be filled and simultaneously synthesize realistic
details. Toward this end, we learn the clean face prior in
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Figure 2: The workflow of RetouchFormer, which is designed to simultaneously predict imperfections and complete the corre-
sponding regions in the encoder feature space. Toward this end, a feature dictionary P is learnt to capture clean face priors, and
is then used for imperfection prediction. Based on the resulting weights fH(x), we perform selective self-attention computation
by limiting the spatial interactions between imperfections and normal skin, and thus the features of the normal skin regions
can be transformed to fill the imperfection regions. By further injecting the masks H(x) into a discriminator, more attention is
applied to the imperfection regions in real-fake prediction, which in turn improves the synthesized retouching results.

terms of a feature dictionary from retouching images by vec-
tor quantization (van den Oord, Vinyals, and Kavukcuoglu
2017). Under the assumption that the skin with imperfec-
tions cannot be well reconstructed by the dictionary, the dif-
ferences before and after feature reconstruction indicate the
spatial information related to imperfections to a certain ex-
tent. RetouchFormer can conveniently leverage the informa-
tion for precise correction of face imperfections. Consider-
ing that the targets can vary substantially in scale, we adopt
a multi-scale encoding scheme in the transformer to hierar-
chically represent the content in local regions, rather than
setting the tokens to a fixed scale. To fill the imperfection
regions, the transformer searches contextually coherent con-
tents, and the most relevant patches are identified and trans-
formed by aggregating the attended features. Another key
design element of RetouchFormer is its self-attention mech-
anism with imperfection suppression, based on leveraging
the spatial interactions between queries and key-value pairs.
The main idea is to softly limit the connections among the
tokens associated with imperfection regions, such that the
features can be replaced with those associated with normal
skin regions. We perform extensive experiments to verify the
advantages of RetouchFormer. In summary, the main contri-
bution of this work are as follows: (a) We propose a semi-
supervised face retouching transformer to reduce the depen-
dence on paired retouching data for model training. (b) The
proposed model, RetouchFormer, is characterized by formu-
lating face retouching as a ‘soft inpainting’ task and realized
by joint approximate imperfection prediction and local con-
tent synthesis. (c) Based on clean face priors, the spatial in-
formation on imperfections is applied to perform selective
self-attention computation, through which the spatial inter-
actions between the queries of imperfections and the key-
value pairs of normal skin are strengthened.

Related Work
CNN-based Image Translation
Convolutional Neural Networks (CNNs) are the mainstream
network architectures in the field of computer vision. The
performance of CNN-based image translation has witnessed
a rapid progress due to the Generative Adversarial Network
(GAN)’s capability of high-fidelity image synthesis (Good-
fellow et al. 2014). As a conditional GAN, Pix2Pix (Isola
et al. 2017) learnt a mapping to minimize the distribution
discrepancy to the target domain data as well as pixel-wise
discrepancy to the ground truth. Pix2Pix was trained on the
pairwise training data, which impedes its application to the
scenarios in which paired data collection is expensive and
time-consuming. To overcome this limitation, a number of
unpaired image translation methods (Liu, Breuel, and Kautz
2017; Zhu et al. 2017; Kim et al. 2017) performed data dis-
tribution alignment between source and target domains or
two-way mapping to impose cycle consistency regulariza-
tion. On the other hand, GPEN (Yang et al. 2021) combined
a U-shaped CNN with a GAN to ensure high-quality im-
age generation. MPRNet (Zamir et al. 2021) was designed
for multi-stage image translation, which benefits from high-
level contextual information and spatial details.

Additionally, the latent space of a pre-trained GAN was
observed to possess semantic organization, which allowed
semantic editing on images (Goetschalckx et al. 2019; Ja-
hanian, Chai, and Isola 2019; Collins et al. 2020; Shen and
Zhou 2021; Wu, Lischinski, and Shechtman 2021). By lever-
aging high-fidelity GAN inversion methods (Gu, Shen, and
Zhou 2020; Richardson et al. 2021; Tov et al. 2021) to
project images back to the latent space, semantic manipula-
tion was performed by imposing attribute-associated trans-
formations on the resulting latent vectors. However, these
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methods perform global latent transformation for semantic
image translation, without taking the variation in input im-
ages into consideration. In contrast, StyleFlow (Abdal et al.
2021) employed a continuous normalizing flow model to
learn a non-linear transformation, conditioned on the start-
ing points in the latent space. By using natural language to
express a wide range of visual concepts, StyleGAN-based
image editing could benefit from the language-vision pre-
training (Patashnik et al. 2021).

Vision Transformer
Transformer (Devlin et al. 2018; Vaswani et al. 2017) is a
network architecture designed for modeling long-range de-
pendencies encapsulated in data via attention. Due to its suc-
cess in the field of natural language processing, transformer
has attracted extensive attention and been applied to com-
puter vision. For example, Vision Transformer (ViT) (Doso-
vitskiy et al. 2021; Wu et al. 2021) showed superior perfor-
mance in representation learning. To address the high image
resolutions and large variations in the scale of visual objects,
SwinTransformer (Liu et al. 2021) learnt a hierarchical rep-
resentation with shifted windows. For low-level computer
vision tasks, the Image Processing Transformer (IPT) (Chen
et al. 2021) adopted a pre-trained large scale model to per-
form denoising, deraining, and super-resolution. Different
from the self-attention computation in ViT, RestoreFormer
(Wang et al. 2022) performed cross-attention with the priors
in terms of high-quality key-value pairs to improve the per-
formance of blind face restoration. Apart from the above, the
transformer-based methods were also applied to image edit-
ing (Hu et al. 2022), object detection (Carion et al. 2020;
Zhu et al. 2021), and so on.

Face Retouching
As a specific image translation task, face retouching aims at
synthesizing clean and pleasant face images from the ones
with imperfections. The traditional methods typically were
based on various image processing techniques, and focused
more on a single kind of imperfection, such as spots with
small scales (Arakawa 2004; Batool and Chellappa 2014;
Lipowezky and Cahen 2008; Leyvand et al. 2008). When
applying smoothing filters to remove wrinkles and spots, a
wavelet-based skin texture restoration method was adopted
to restore the lost fine-grained details (Velusamy et al. 2020).
AutoRetouch (Shafaei, Little, and Schmidt 2021) was an ef-
fective attempt to perform deep image translation for the
task, and the retouching performance benefited from the
GAN-based framework. To address blemishes at large scale,
BPFRe (Xie et al. 2023) adopted a two-stage retouching
strategy to progressively restore clean face. ABPN (Lei et al.
2022) propose an adaptive blend pyramid network, which
achieved fast local retouching on high-resolution photos.

Different from the above methods, this work explores the
adaptation of transformer to face retouching, and is most re-
lated to the state-of-the-art methods RestoreFormer (Wang
et al. 2022) and BPFRe. The similarity between Retouch-
Former and RestoreFormer mainly lies in that the prior
learnt from the training data is in terms of a dictionary:
RetouchFormer leverages priors to detect imperfections and

then perform selective self-attention computation, while Re-
storeFormer restores degraded images conditioned on pri-
ors. Compared with BPFRe, RetouchFormer has two ad-
vantages: First, BPFRe performs image-level transforma-
tions by global convolution filters, while RetouchFormer
adaptively incorporates useful contents via selective self-
attention to synthesize the content in imperfection regions.
Second, BPFRe is a two-stage retouching method, while Re-
touchFormer adopts a simpler structure and achieves better
retouching performance.

Proposed Approach
Overview
In this section, We elaborate on the proposed approach for
synthesizing high-fidelity retouching images in the semi-
supervised setting. Let X = Xa

⋃
Xu denote the set of

training data, and we have ∥Xa∥ ≪ ∥Xu∥, where Xa =
{(xa, ya)} represents the subset of paired raw-retouching
images, and the remaining images belong to the subset Xu =
{xu, yu}. Note that the raw image xu and the retouching
image yu may correspond to different identities, and are not
paired. This significantly reduces the requirement of training
data collection in most practical scenarios.

We formulate face retouching as a ‘soft inpainting’ task to
jointly detect and complete imperfection regions. As shown
in Figure 2, we adopt an encoder-transformer-decoder ar-
chitecture. The encoder E extracts multi-scale features from
the input, which are then split into non-overlapping patches
as tokens. The transformer T aims to learn a transforma-
tion from soft-masked features to attended features, such
that the imperfections can be transformed into normal skin
in the feature space. Toward this end, a feature dictionary
is learnt to capture clean face priors, and the imperfections
are approximately predicted by measuring the difference be-
fore and after the dictionary-based reconstruction. More im-
portantly, we propose a selective self-attention mechanism
to substitute the standard one in each transformer block,
through which the interactions between tokens associated
with imperfection regions are suppressed. A decoder G syn-
thesizes a clean face image from the attended features. The
components {E, T,G} compete with a discriminator D in
an adversarial training scheme to ensure that the synthesized
retouching images can match the statistics of the real ones.

RetouchFormer
Clean Face Priors We aim to learn clean face priors in
terms of a feature dictionary, which offers rich details for
data reconstruction in the encoder feature space. Specifi-
cally, we perform Vector Quantization (VQ) (van den Oord,
Vinyals, and Kavukcuoglu 2017) by learning the dictionary
P = {ρ1, ρ2, . . . , ρK}, such that the feature vector at the
location (i, j) of E(y−) can be approximated as follows:

ρ∗|(i,j) = arg min
ρk∈P

∥E(y−)|(i,j) − ρk∥22. (1)

where y− ∈ {ya, yu}, and ρ∗ denotes the nearest elements
that we search for in P . Let Ẽρ(y−) denote the quantized
feature map at each pixel location, and the decoder learns to
reconstruct the image y− from it.
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Soft Mask Generation How to effectively generate a
mask to indicate the imperfection regions is important for
improving face retouching performance. We consider that a
raw image cannot be well reconstructed by the clean face
prior, and the difference before and after reconstruction pro-
vides a clue as to the imperfections. In order to fully use the
partially paired training data, we adopt a U-Net with a two-
stream structure to generate a mask for our ‘soft inpainting’
task. The raw image x− ∈ {xa, xu} and the reconstructed
one x̃− = R(Ẽρ(x−)) from quantized feature map by us-
ing a decoder R are concatenated and passed through the
streams denoted by H and H , and the output mask has the
same spatial resolution of x−.

For the paired data, the retouching regions can be com-
puted directly, and the output of H is evaluated as follows:

LH = E(xa,ya)∥H(xa, x̃a)− ϕ(xa, ya)∥22, (2)

where the function ϕ(·, ·) measures the image difference at
each pixel location, such as the Euclidean distance. For both
paired and unpaired data, the output of H is expected to be
confident, and the corresponding loss is defined as follows:

LH =E(xa,ya)[−I{ϕ(xa,ya)>0} log σ(H(xa, x̃a))]

+ λExu [−σ(H(xu, x̃u)) log σ(H(xu, x̃u))],
(3)

where the function I{·} returns 1 if the input is true otherwise
0, σ(·) denotes an activation function to map an input into
the range (0, 1), e.g., Sigmoid, and λ is a weighting factor
for controlling the impact of unpaired training data. H aims
to enforce the imperfection prediction to align the view of
H . Therefore, we stop the gradient of H , and update it by
using the Exponential Moving Average (EMA) (Tarvainen
and Valpola 2017) as follows:

θH ← µθH + (1− µ)θH , (4)

where θ− ∈ {θH , θH} denotes the parameters of the two
streams, and µ represents a momentum coefficient to con-
trol the effect of moving average. The gradients from the
loss functions LH in Eq.(2) and LH in Eq.(3) are propa-
gated back to update H . Compared to H , H typically pro-
duces more reliable predictions for the raw images xu from
Xu, and the resulting imperfection masks are fed into the
selective self-attention-based transformer blocks.

Selective Self-attention The self-attention mechanism
used in most of the previous transformer-based method tends
to globally attend to contents in terms of the intermediate
features of the input image, which will be unsuitable for the
face retouching task requiring imperfection removal, since
these regions typically have higher similarities with each
other. Our transformer T is designed to search suitable con-
tents via a selective self-attention mechanism. We first ex-
tract spatial patches from the feature maps of the input im-
age at multiple intermediate layers of the encoder E. The
multi-scale patch-based image representation denoted by fE
can effectively address the imperfections of different scales.
All the patches are further reshaped into 512-dim vectors.
The selective self-attention computation focuses on the im-
perfection regions indicated by the weighting map fH(x−),

and the queries Q, keys K, and values V are formulated as
follows:

Q = Wq(fE(x−)⊗ fH(x−)) + bq,

K = Wk(fE(x−)⊗ (1− fH(x−))) + bk,

V = Wv(fE(x−)⊗ (1− fH(x−))) + bv,

(5)

where Wq/k/v and bq/k/v denote learnable model parame-
ters, fH(·) is learnt from the mask H(·) via a learnable con-
volutional layer, and⊗ is the Hadamard product. The tokens
associated with the imperfections serve as queries, while the
those playing the parts of keys and values are selected by
1 − fH(x−). The attended feature map is obtained as fol-
lows:

∆fE = softmax(QKT /
√
Λ)V, (6)

where Λ denotes the channel number of the features. The
relevant tokens associated with the normal skin regions are
selected and transformed. ∆fE is regarded as residual, and is
added with fE before feeding the result into the subsequent
transformer block as follows:

f̂E(x−) = fE(x−)⊗ (1−fH(x−))+∆fE ⊗fH(x−). (7)

The above equation indicates that our selective self-attention
mechanism aims for suppressing the information from the
imperfection regions and replacing it with that from the nor-
mal skin regions. Finally, we piece all tokens together, and
the resulting feature maps are passed through the decoder G
to synthesize high-quality retouching images.

Model Training
We now provide the details of the training loss functions
of RetouchFormer, which involve three aspects: the prior-
based reconstruction, imperfection prediction, and retouch-
ing evaluation.

To capture high-quality clean face priors, the encoder E
and the dictionary P are optimized to reconstruct the fea-
tures of the retouching images y− ∈ {ya, yu} as follows:

Lprior = Ey−

[∑
(i,j)

∥E(y−)|(i,j) − ρ∗|(i,j)∥22
]
. (8)

We adopt the VQ algorithm (van den Oord, Vinyals, and
Kavukcuoglu 2017) to iteratively optimize the encoder and
dictionary. To ensure high-quality reconstruction, we apply
the following consistency loss to the synthesized image:

Lrec
con = Ey− [η∥y− − ỹ−∥1 + ∥V (y−)− V (ỹ−)∥22], (9)

where ỹ− = R(Ẽρ(y−)), η is a weighting factor, and V(·)
denotes the features extracted from a pre-trained VGG-19.

Let ŷx− = G(f̂E(x−)) denote the retouching image syn-
thesized by RetouchFormer from the raw image x−. For the
paired training data, the results are evaluated by measuring
the degree of consistency with the ground truth as follows:

Lx2y
con = E(xa,ya)[ζ∥ya− ŷxa∥1+∥V (ya)−V (ŷxa)∥22], (10)

where ζ denotes a weighting factor. High-fidelity content
synthesis can also benefit from adversarial training, and we

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5906



thus adopt the discrimination loss formulated as follows:

Lsyn
adv = Ex− [ log(1−D(ŷx−, H(x−)))],

Ldisc
adv = Ey− [ logD(y−, H(y−))]

+ Ex− [ log(1−D(ŷx−, H(x−)))

+ log(1−D(x−, H(x−)))],

(11)

where D(·, ·) represents the predicted probability of an in-
put image being real. The imperfection region may be very
small, and generic image-level discriminators tend to be de-
ceived in this case, since the pixels on the outside are un-
changed. To address this issue, the raw image x− is also
fed into D as fake examples. Further, our discriminator per-
forms pixel-level real-fake identification and can pay more
attention by injecting the features of H(·) into multiple in-
termediate layers of the discriminator.

We integrate the above three aspects, and express the op-
timization formulation of the proposed approach as follows:

min
P,R

Lprior + Lrec
con,

min
H

LH + LH ,

min
E,T,G

Lprior + Lrec
con + Lx2y

con + Lsyn
adv ,

max
D

Ldisc
adv .

(12)

Please note that the constituent networks are optimized with
different loss terms. Only the encoder E is tasked to both
clean face prior learning and image synthesis, and the other
constituent networks are exclusive for individual tasks.

Experiments
We perform extensive experiments to assess the effective-
ness of the proposed approach in face retouching. In the
following, we first introduce the datasets and experimen-
tal settings. Next, we perform a comparison between Re-
touchFormer and previous state-of-the-arts quantitatively
and qualitatively. More insights are provided via further
analysis of the RetouchFormer’s design elements.

Datasets
We perform face retouching experiments on the FFHQR
dataset (Shafaei, Little, and Schmidt 2021), in which there
are 70k pairs of raw-retouching images and the raw data
are from the Flickr-Face-HQ (FFHQ) dataset (Karras, Laine,
and Aila 2019). According to the setting of (Shafaei, Little,
and Schmidt 2021), the training/validation/test data consists
of 56k/7k/7k image pairs, respectively. We further evalu-
ate the RetouchFormer and competing methods on FR-wild,
which contains 1,000 in-the-wild face images with differ-
ent types of facial blemishes. Due to the unavailability of
retouching ground truth, the FR-wild images are used for
qualitative evaluation.

Experimental Settings
Semi-supervised Settings. The existing image translation
methods rarely take the levels of supervision into consid-
eration. To demonstrate the stability of our RetouchFormer

0 100k 200k 300k
Training iteration

10

20

30

40

50

PS
N

R
↑

6X Efficiency 1.3X PSNR

Base model
RetouchFormer

Figure 3: Convergence properties of RetouchFormer and the
base model on FFHQR (γ=0.1).

to this factor, we define the proportion of paired training
data as γ = ∥Xa∥

∥X∥ , where the paired training images are
randomly sampled from the dataset, and the remaining im-
ages are used as the unpaired training data. We perform the
experiments of face retouching with γ limited in the range
{0.01, 0.1, 0.2, 1}.

Implementation Details. To perform fair comparison
with the competing methods, both training and testing im-
ages are resized to 512 × 512 unless noted otherwise. The
feature dictionary P contains K = 1024 elements. The
weighting factors: λ in Eq.(3), µ in Eq.(4), η in Eq.(9) and
ζ in Eq.(10), are set to 0.5, 0.99, 10 and 10, respectively.
During training, the parameters of the proposed model are
updated by the Adam optimizer (Kingma and Ba 2015). The
learning rate is initially set to 2e−4 and modified by using
a cosine decay schedule. There are a total of 300k training
iterations, and each batch contains a single image.

Metrics. To measure the retouching quality, we report
the quantitative results by three widely used metrics: Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM) and the Learned Perceptual Image Patch
Similarity (LPIPS) (Zhang et al. 2018), between the synthe-
sized retouching image and the ground truth.

Comparison with State-of-the-arts
We build the base model by disabling soft mask generation,
substituting global self-attention for selective self-attention
in transformer blocks, and discarding unpaired training data
in RetouchFormer. We plot the PSNR scores of the base
model and RetouchFormer during training in Figure 3. We
find that RetouchFormer is able to converge to a higher
PSNR than the base model, and match its best result up to 6
times faster. To demonstrate the advantage of the proposed
RetouchFormer on face retouching, we perform a compari-
son with a wide range of state-of-the-art methods, including
CNN-based methods: Pix2PixHD (Isola et al. 2017), MPR-
Net (Zamir et al. 2021), GPEN (Yang et al. 2021), AutoRe-
touch (Shafaei, Little, and Schmidt 2021), ABPN (Lei et al.
2022) and BPFRe (Xie et al. 2023), and transformer-based
methods: SwinTransformer (Liu et al. 2021) and Restore-
Former (Wang et al. 2022). Pix2PixHD is a generic image
translation method serving as baseline. MPRNet, GPEN and
RestoreFormer focus on image restoration. AutoRetouch,
ABPN and BPFRe is designed for face retouching.
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Methods FFHQR (γ=0.01) FFHQR (γ=0.1) FFHQR (γ=0.2) FFHQR (γ=1)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Pix2PixHD 25.59 0.7711 0.1585 27.13 0.8008 0.1427 28.88 0.8526 0.1054 29.38 0.9181 0.0766
GPEN 42.70 0.9872 0.0311 42.98 0.9895 0.0169 43.04 0.9901 0.0143 43.12 0.9903 0.0141
SwinTransformer 41.92 0.9840 0.0353 42.29 0.9851 0.0235 42.53 0.9863 0.0199 43.19 0.9878 0.0130
AutoRetouch 38.49 0.9728 0.0161 41.11 0.9791 0.0140 42.22 0.9801 0.0135 44.18 0.9804 0.0133
MPRNet 42.12 0.9874 0.0311 43.29 0.9901 0.0144 43.52 0.9901 0.0137 44.35 0.9907 0.0129
RestoreFormer 39.87 0.9791 0.0178 42.47 0.9879 0.0155 42.86 0.9900 0.0132 42.95 0.9904 0.0129
ABPN 42.09 0.9862 0.0329 43.28 0.9895 0.0234 43.66 0.9903 0.0121 44.41 0.9918 0.0169
BPFRe 43.73 0.9889 0.0127 44.57 0.9901 0.0106 45.06 0.9906 0.0110 45.29 0.9935 0.0092

RetouchFormer 44.44 0.9891 0.0116 45.13 0.9905 0.0093 45.43 0.9913 0.0088 45.72 0.9936 0.0078

Table 1: Quantitative comparison with competing methods on FFHQR.

Source AutoRetouchGPEN MPRNet RestoreFormer RetouchFormerABPN BPFRe

Figure 4: Visual comparison with competing methods on FR-wild images.

Quantitative Results on FFHQR We begin by perform-
ing a quantitative comparison between RetouchFormer and
the state-of-the-art methods due to the availability of the
groundtruth for face retouching on FFHQR. We evaluate the
methods by computing the average PSNR, SSIM and LPIPS
scores between the synthesized images and the ground truth,
and the results are summarized in Table 1. Pix2PixHD pro-
vides a lower bound for this task. On FFHQR (γ=0.1), MPR-
Net, GPEN and ABPN achieve similar performance. BPFRe
outperforms all the other comparing motheds while our Re-
touchFormer achieves a higher PSNR score by 0.56 dB. Re-
lated to the transformer-based methods, we observe the su-
periority of RetouchFormer over RestoreFormer/SwinTrans-
former with a significant PSNR gain of 2.66/2.84 dB. Re-
touchFormer can also achieve better results than the com-
peting methods in terms of SSIM and LPIPS. In particular,
the proposed approach achieves the lowest LPIPS score of
0.0093, which is lower than the second best method BPFRe
by a significant improvement of about 12 percentage points.

Qualitative Results on FR-wild To highlight the superi-
ority of RetouchFormer, we further perform visual compar-
ison with the competing methods. In particular, we evalu-
ate the generalization capability of the methods on the real-
world data from FR-wild. Note that both RetouchFormer
and other models are trained on FFHQR without seeing any
FR-wild images in the training process. All the retouching
results are produced by using the trained models. Figure 4

shows a number of retouching images synthesized from the
ones with moderate-to-severe acne, pockmarks and dark ci-
cles. One can find that BPFRe and RestoreFormer produce
slightly better results than the other existing methods. How-
ever, they fail to remove the blemishes at large scales. In
accordance with the significant quantitative improvements,
the retouching images synthesized by our RetouchFormer
are significantly pleasant. Figure 5 shows additional high-
quality retouching results of RetouchFormer in removing
acne, erasing dark circles and smoothing skin.

Figure 5: Representative high-quality retouching results of
RetouchFormer on FR-wild.
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Analysis of Design Elements
According to the quantitative and qualitative comparisons
above, we consider that the superior performance of Re-
touchFormer is due to more accurate imperfection pre-
diction, and adoption of multi-scale tokens, selective self-
attention and unpaired data regularization. In this subsec-
tion, we ablate the important design elements, and report the
results of ablative models in Tables 2-3 and Figures 6-7.

Does the clean face prior make sense? We learn a fea-
ture dictionary P on the retouching images {ya, yu} for face
imperfection prediction. To verify the effectiveness of the
prior, we disable P and obtain a variant ‘w/o P’, in which
the network H generates an imperfection mask from the raw
image only. The results shown in Table 2 suggest that P
brings about 17.9% gains in terms of Soft-IoU. As to the
visual results in Figure 6, we can observe that P is helpful
for discovering more imperfections.

Are the multi-scale tokens important? We adopt the
transformer T to learn feature transformations over the spa-
tial patches extracted from the feature maps at multiple in-
termediate layers of the encoder E. To verify the effective-
ness of multi-scale tokens, we build a variant ‘w/ SPS’ by
using the encoder output with Single Patch Size (SPS). Ta-
ble 3 shows that SPS leads to a performance drop of 4.93
dB in terms of PSNR. The visual results in Figure 7 confirm
that multi-scale tokens allow us to handle the imperfections
with different scales.

Are the selective self-attention meaningful? We build
the third variant by substituting Global Self-Attention (GSA)
for selective self-attention, and the resulting model is re-
ferred to as ‘w/ GSA’. Without explicit imperfection predic-
tion and suppression, we can observe that the performance
drops significantly. In particular, the PSNR of the variant is
44.07 dB, which is worse than that of RetouchFormer by
1.06 dB. The variant fails to neutralize pockmarks and erase
dark circles under the eyes in Figure 7. This indicates that
RetouchFormer can utilize the spatial information of imper-
fections and synthesizes the content from the contextual fea-
tures of normal skin.

Method PSNR↑ SSIM↑ Soft-IoU↑
w/o P 12.35 0.7970 0.2833
RetouchFormer 13.21 0.8052 0.3341

Table 2: Quantitative results of RetouchFormer with and
without the priors P in soft mask generation.

Method PSNR↑ SSIM↑ LPIPS↓
w/ SPS 40.20 0.9764 0.0423
w/ GSA 44.07 0.9882 0.0237
w/o Xu 44.42 0.9891 0.0162
RetouchFormer 45.13 0.9901 0.0093

Table 3: Results of RetouchFormer and ablative models on
FFHQR (γ=0.1).

Source w/o 𝒫 RetouchFormer Ground truth

Figure 6: The soft masks generated by RetouchFormer with
and without the prior P .

Source w/ SPS w/o 𝕏! RetouchFormerw/ GSA

Figure 7: Representative retouching images synthesized by
RetouchFormer and ablative models on FR-wild images.

Are the unpaired training data helpful? We also ana-
lyze the effect of the unpaired training data Xu. The results
in Table 3 suggest that the variant ‘w/o Xu’ underperforms
the full model by about 74% in terms of LPIPS. We con-
sider that both P and the discriminator D can benefit from
Xu, and face retouching is in turn improved. With a decrease
in the amount of paired data, the task of face retouching be-
comes highly challenging, and Xu is important for stabiliz-
ing the performance of RetouchFormer.

Conclusion
This work focuses on face retouching with a transformer-
based approach. We formulate face retouching as ‘soft in-
painting’. RetouchFormer learn clean face priors in terms
of a feature dictionary for face imperfection prediction,
and further explore prior-based selective self-attention to
suppress face imperfections. Furthermore, unpaired training
data are utilized to stabilize the performance of Retouch-
Former in semi-supervised settings. Extensive comparisons
demonstrate the superior capability of RetouchFormer.
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