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Abstract

In 3D Referring Expression Segmentation (3D-RES), the ear-
lier approach adopts a two-stage paradigm, extracting seg-
mentation proposals and then matching them with referring
expressions. However, this conventional paradigm encounters
significant challenges, most notably in terms of the genera-
tion of lackluster initial proposals and a pronounced decelera-
tion in inference speed. Recognizing these limitations, we in-
troduce an innovative end-to-end Superpoint-Text Matching
Network (3D-STMN) that is enriched by dependency-driven
insights. One of the keystones of our model is the Superpoint-
Text Matching (STM) mechanism. Unlike traditional meth-
ods that navigate through instance proposals, STM directly
correlates linguistic indications with their respective super-
points, clusters of semantically related points. This archi-
tectural decision empowers our model to efficiently har-
ness cross-modal semantic relationships, primarily leverag-
ing densely annotated superpoint-text pairs, as opposed to the
more sparse instance-text pairs. In pursuit of enhancing the
role of text in guiding the segmentation process, we further
incorporate the Dependency-Driven Interaction (DDI) mod-
ule to deepen the network’s semantic comprehension of refer-
ring expressions. Using the dependency trees as a beacon, this
module discerns the intricate relationships between primary
terms and their associated descriptors in expressions, thereby
elevating both the localization and segmentation capacities.
Comprehensive experiments on the ScanRefer benchmark re-
veal that our model not only sets new performance standards,
registering an mIoU gain of 11.7 points but also achieves a
staggering enhancement in inference speed, surpassing tradi-
tional methods by 95.7 times. The code and models are avail-
able at https://github.com/sosppxo/3D-STMN.

1 Introduction
The goal of 3D visual grounding is to locate instances
within a 3D scene based on given natural language descrip-
tions (Chen, Chang, and Nießner 2020). In recent years,
it has become a hot topic in academic research due to its
wide-ranging application scenarios, including autonomous
robotics, human-machine interaction, and self-driving sys-
tems, among others. Within this field, the task of 3D Re-
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Figure 1: A comparison among (a) traditional two-stage
paradigm, (b) point-level end-to-end paradigm, and (c)
superpoint-level end-to-end paradigm.

ferring Expression Segmentation (3D-RES) emerges as a
formidable challenge. Compared to 3D visual detection
tasks (Wang et al. 2022; He et al. 2022; Chen, Chang, and
Nießner 2020; Achlioptas et al. 2020; Zhao et al. 2021; Luo
et al. 2022; Huang et al. 2023), which merely locate the tar-
get objects with bounding boxes, 3D-RES demands a more
complex understanding. It not only requires the identifica-
tion of target instances within sparse point clouds, but it also
requires the provision of precise 3D masks that correspond
to each identified target instance.
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At present, the only existing method referred to as
TGNN (Huang et al. 2021), operates in a two-stage man-
ner. In the initial stage, an independent text-agnostic seg-
mentation model is trained to generate instance proposals.
Then, in the second stage, a graph neural network is em-
ployed to forge links between the generated proposals and
textual descriptions, as shown in Fig. 1-(a). Despite achiev-
ing good results, this two-stage paradigm still suffers from
three primary issues: (1) The decoupling of segmentation
from matching creates an over-reliance on the preliminary
text-independent segmentation outcomes. Any inaccuracies
or omissions in the first phase can insurmountably compro-
mise the accuracy of the subsequent matching phase, irre-
spective of its intrinsic efficacy. (2) The model overlooks
the inherent hierarchical and dependency structures within
the referring sentence. Its linear language modeling strat-
egy falls short in capturing intricate semantic nuances, lead-
ing to missteps in both localization and segmentation. (3)
To amplify the recall efficiency in the secondary phase, the
first stage extracts dense candidate masks through iterative
clustering over several stages. This iterative process consid-
erably decelerates the model’s inference speed. Hence, de-
spite its merits, the two-stage paradigm employed by TGNN
leaves room for substantial improvement in both accuracy
and efficiency.

A natural approach would be to employ an end-to-end
method that directly matches textual features with points in
the 3D point cloud, as shown in Fig. 1-(b). This approach
has been widely proven effective in 2D-RES tasks (Ye et al.
2019; Liu et al. 2019; Ding et al. 2021; Yang et al. 2022).
However, it has not been translated well to sparse, irregular
3D point cloud data, as it results in a low recall rate. As a
solution, 3D-SPS (Luo et al. 2022) in 3D visual detection
has suggested a method that progressively selects keypoints
guided by language and regresses boxes using this keypoint
information. However, this approach disrupts the continuity
of the 3D mask in 3D-RES tasks, thereby deteriorating the
segmentation results.

To tackle the aforementioned challenges, we present a
dependency-driven Superpoint-Text Matching Network for
an end-to-end 3D-RES. The idea of our approach is the
matching of the expressions with over-segmented super-
points (Landrieu and Simonovsky 2018). As illustrated in
Fig. 1-(c), these superpoints are initially aggregated through
a clustering algorithm, thus attaining fine-grained semantic
units. These superpoints, embodying semantics and being
significantly fewer compared to the unordered points in a
3D point cloud, offer advantages in performance and speed
during the matching process. In contrast to the proposals in
TGNN, superpoints are fine-grained units derived from over-
segmentation, capable of covering the entire scene, thereby
averting the issues of inaccurate segmentation or missing
instances. In light of this, we introduce a new Superpoint-
Text Matching (STM) mechanism for 3D-RES, leveraging
the aggregation of text features from superpoints to acquire
the mask of the target instance. To bolster semantic pars-
ing from the textual perspective, we devise a Dependency-
Driven Interaction (DDI) module, achieving token-level in-
teractions. This module exploits the prior information from

the dependency syntax tree to steer the flow of text informa-
tion. This structure further enhances inference on relation-
ships among different instances via the network architecture,
thus markedly improving the model’s segmentation ability.
We have conducted extensive quantitative and qualitative ex-
periments on the classic ScanRefer dataset for investigation.
It’s noteworthy that our method achieves a remarkable 95.7-
fold increase in inference speed while outperforming TGNN
by an impressive 11.7 points.

To summarize, our main contributions are as follows:
• We propose a novel efficient end-to-end framework

3D-STMN based on Superpoint-Text Matching (STM)
mechanism for aligning superpoint with textual modality,
making superpoint a highly competitive player in multi-
modal representation.

• We design a Dependency-Driven Interaction (DDI) mod-
ule to exploit the prior information from the dependency
syntax tree to steer the flow of text information, markedly
improving the model’s segmentation ability.

• Extensive experiments show that our method signifi-
cantly outperforms the previous two-stage baseline in the
ScanRefer benchmark, registering a mIoU gain of 11.7
points but also achieving a staggering enhancement in
inference speed.

2 Related Work
2.1 2D Referring Expression Comprehension and

Segmentation
Vision and language play a crucial role in human under-
standing of the environment (Ma et al. 2022; Ji et al. 2022;
Ma et al. 2023; He et al. 2021; Wu et al. 2023a; Zhao
et al. 2023; Zhang et al. 2023). In the context of 2D-REC
tasks, the objective is to predict a bounding box corre-
sponding to the object described in a given referring expres-
sion (Nagaraja, Morariu, and Davis 2016; Yu et al. 2016;
Hu et al. 2017; Yu et al. 2017; Deng et al. 2018; Zhuang
et al. 2018; Sadhu, Chen, and Nevatia 2019; Yang, Li, and
Yu 2020; Luo et al. 2020b). Conversely, in 2D-RES tasks,
the aim is to accurately predict a segmentation mask delin-
eating the referred object for more precise localization (Hu,
Rohrbach, and Darrell 2016; Yu et al. 2018; Ye et al. 2019;
Shi et al. 2018). Many existing approaches adopt a two-
stage paradigm involving segmentation followed by match-
ing (Li et al. 2018; Margffoy-Tuay et al. 2018). To over-
come the limitation of the quality of segmentation models,
some methods have been proposed that refine segmentation
masks using single-stage networks (Ye et al. 2019; Liu et al.
2019; Luo et al. 2020a). While these approaches have shown
promise in 2D tasks, their direct application to 3D point
cloud scenes is hindered by the inherent challenges posed
by the sparse and irregular nature of 3D point clouds.

2.2 3D Referring Expression Comprehension and
Segmentation

Recently, 3D REC has garnered significant attention, aim-
ing to localize objects within a 3D scene based on referring
expressions. ScanRefer (Chen, Chang, and Nießner 2020)
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Figure 2: Overview of our 3D Superpoint-Text Matching Network (3D-STMN).

provides a dataset based on ScanNetv2 (Dai et al. 2017) for
the Referring 3D Instance Localization task. Additionally,
ReferIt3D (Achlioptas et al. 2020) proposes two datasets,
Sr3D and Nr3D. Most existing methods (Chen, Chang, and
Nießner 2020; Achlioptas et al. 2020; Zhao et al. 2021;
Yuan et al. 2021; Yang et al. 2021; Huang et al. 2021; Feng
et al. 2021) adopt a two-stage paradigm. Meanwhile, some
methods have adopted an single-stage framework (Luo et al.
2022; Jain et al. 2022; Wu et al. 2023b). To address 3D-
RES tasks, TGNN (Huang et al. 2021) proposed a two-stage
model. However, both the accuracy and inference speed
of TGNN exhibit inherent limitations of the segmentation
model. To circumvent these challenges, we propose an end-
to-end Superpoint-Text Matching Network in this paper.

2.3 Superpoint based 3D Scene Understanding
Similar to superpixels (Achanta et al. 2012; Tu et al.
2018), superpoints have been used for point cloud segmen-
tation (Papon et al. 2013; Lin et al. 2018; Landrieu and Si-
monovsky 2018; Robert, Raguet, and Landrieu 2023) and
object detection (Han et al. 2020; Engelmann et al. 2020).
For 3D instance segmentation, superpoints have also demon-
strated incredible potential (Liang et al. 2021; Sun et al.
2023). However, these works only applied superpoint to pure
visual tasks and did not explore the ability of superpoint to
align with text. In this paper, we first propose a framework
for aligning superpoint with text, making superpoint a highly
competitive player in multimodal representations.

3 Method
In this section, we provide a comprehensive overview of the
3D-STMN. The framework is illustrated in Fig. 2.

3.1 Feature Extraction
Visual Modality Given a point cloud scene with Np

points, it can be represented as Pcloud ∈ RNp×(3+F ). Here,
each point comes with 3D coordinates along with an F-
dimensional auxiliary feature that includes RGB, normal

vectors, among others. Building on TGNN (Huang et al.
2021), we employ a singular Sparse 3D U-Net (Graham, En-
gelcke, and Van Der Maaten 2018) to extract point-wise fea-
tures, represented as P′ ∈ RNp×Cp .

Linguistic Modality Given a free-form plain text descrip-
tion of the target object with Nw words {ci}Nw

i=1, we fol-
low (Huang et al. 2021) to adopt a pre-trained BERT (De-
vlin et al. 2018) to extract the Ct-dimensional word-level
embeddings Ew ∈ RNw×Ct , and description-level embed-
ding d0 ∈ RCt which is the embeddings of [CLS] token.

3.2 Superpoint-Text Matching
Superpoints and Dependency-Driven Text After ex-
tracting the features, we perform over-segmentation to
Pcloud to obtain Ns superpoints {Ki}Ns

i=1(Landrieu and Si-
monovsky 2018).

To obtain the superpoint-level features S ∈ RNs×Cp , we
directly feed point-wise features P′ into superpoint pooling
layer based on {Ki}Ns

i=1, which can be formulated as:

Si = AvgPool(P′,Ki), (1)

where Si denotes the feature of the i-th superpoint, Ki de-
notes the set of indices of points contained in the i-th super-
point, AvgPool(·) is superpoint average pooling operation.

To the text end, we feed the expression with word-level
embeddings Ew into the proposed DDI module which aims
to construct a description-dependency graph and outputs the
dependency-driven feature E0, which is formulated as:

Ê0 = (Eroot ∥ Ew)Wt, (2)

E1 = DDI(Ê0), (3)

where Wt ∈ RCt×D is a learnable parameter, Ew ∈
RNw×Ct , E1 ∈ R(Nw+1)×D, Eroot is the randomly initialized
ROOT node feature, ∥ denotes the concatenation operation.
More details about DDI are presented in Sec. 3.3.

To enhance the efficiency of subsequent processing, we
adopt a filtering approach on S after linear projection, which
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is widely used in multimodal segmentation tasks (Ding et al.
2022; Luo et al. 2022). Specifically, we acquire the krel su-
perpoints based on the relevance score sr between the su-
perpoints and their corresponding descriptions. The filtering
process can be given by:

Ŝ = SWs, (4)

A = softmax
( ŜQs · (EwKt)

T

√
D

)
, (5)

sir =

Nw∑
j=1

Aij , (6)

Ŝrel = Ŝ[ArgTopk(sr, krel)] ∥ AvgPool(Ŝ), (7)

where Ws ∈ RCp×D,Qs ∈ RD×D,Kt ∈ RCt×D denote
learnable parameters. AvgPool(Ŝ) plays the role of golobal
features, and ∥ denotes concatenation. Ŝrel ∈ R(krel+1)×D

denotes features of description-relevant superpoints.

Superpoint-Text Matching Process To perform
Superpoint-Text matching, we initially project the su-
perpoint features S to a D-dimensional subspace that
corresponds to the text embedding E . After a description-
guided sampling of superpoints, we update the embedding
of each text token using Superpoints-Word Aggregation
(SWA) with adaptive attention weights. We design it as a
multi-round refinement process:

Eℓ+1 = DDI(Êℓ), (8)

Êℓ+1 = SWA(Eℓ+1, Ŝrel), ℓ = 0, 1, ..., L− 1, (9)

where Êℓ, Êℓ+1 ∈ R(Nw+1)×D and L is the number of mul-
tiple rounds. The details about SWA are presented in the fol-
lowing subsection.

Next, we perform matrix multiplication between Ŝ and
Ê to obtain the response maps that capture the relationship
between all superpoints and word tokens. This computation
can be described as follows:

Mℓ+1 = σ(Êℓ+1Ŝ
T ), (10)

where ŜT ∈ RD×Ns is the transpose of Ŝ, Mℓ+1 ∈
R(Nw+1)×Ns is the response maps, and σ(·) denotes sig-
moid function. In particular, Mn

ℓ+1 ∈ RNs is the response
map of the n-th token, based on which we can generate the
segmentation result and attention mask An

ℓ+1 ∈ RNs corre-
sponding to the n-th token.

To obtain the final mask, we choose the response map
Mℓ+1 ∈ RNs associated with the word token that has the
highest correlation score with all description-relevant super-
points:

Av,ℓ+1 = softmax
( Êℓ+1Q

ℓ+1
t · (ŜrelK

ℓ+1
s )T√

D

)
,(11)

siv =

krel+1∑
j=1

Aij
v,ℓ+1, (12)

Mℓ+1 = Mℓ+1[ArgMax(sv)], (13)

where ArgMax(·) returns the index corresponding to the
maximum value. Qℓ+1

t ,Kℓ+1
s ∈ RD×D are learnable pa-

rameters. Aij
v,ℓ means the attention score between the i-th

word and the j-th description-relevant superpoint, and siv de-
notes the visual correlation score of the i-th word.

Superpoint-Word Aggregation To enhance the discrim-
inative power of the textual segmentation kernel, we in-
troduce a Superpoint-Word Aggregation module, which is
designed to refine the multi-round modality interaction be-
tween superpoints and textual descriptions.

At the ℓ-th layer, SWA adaptively aggregates the super-
point features to enables each word to absorb the visual in-
formation of the related superpoint features.

As depicted in Fig. 2, the adaptive superpoint-word cross-
attention block utilizes the dependency-driven feature E to
refine the word features by incorporating information from
the related superpoints:

Êℓ+1 = softmax
(Eℓ+1Qℓ+1 · (ŜrelKℓ+1)

T

√
D

+Aℓ

)
· ŜrelVℓ+1,

(14)
where Êℓ+1 ∈ R(Nw+1)×Dis the output of superpoint-word

cross-attention. Qℓ+1,Kℓ+1,Vℓ+1 ∈ RD×D are learnable
parameters. Aℓ ∈ R(Nw+1)×(krel+1) is superpoint attention
masks. Given the predicted superpoint masks Mℓ from the
prediction head, superpoint attention masks Aℓ filter super-
point with a threshold τ , as

Aij
ℓ =

{
0 if Mij

ℓ ≥ τ

−∞ otherwise
. (15)

Aij
ℓ indicates i-th word token attending to j-th superpoint

where Mij
ℓ is higher than τ . Empirically, we set τ to 0.5.

With transformer decoder layer stacking, superpoint atten-
tion masks Aℓ adaptively constrain cross-attention within
the target instance.

3.3 Dependency-Driven Interaction
To explicitly decouple the textual description and effec-
tively capture the dependency between words, we propose
the Dependency-Driven Interaction module.

Description-Dependency Graph Given a free-form plain
text description of the target object consisting of Nt sen-
tences and a total of Nw words, we first use the Stanford
CoreNLP (Manning et al. 2014) toolkit to obtain Nt de-
pendency trees. Then we merge these Nt dependency trees
into one graph by combining their ROOT nodes, as shown
in Fig 2. Thus, for every description, the dependency graph
has Nw + 1 nodes {u} with Nw edges {e}. Each node rep-
resents a word including the special token “ROOT”, while
each edge represents a type of dependency relationship.

Graph Transformer Layer with edge features Inspired
by (Dwivedi and Bresson 2020), we adopt a Graph Trans-
former Layer with edge features to more effectively leverage
the abundant feature information available in Description-
Dependency Graphs, which is stored in the form of edge
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attributes including dependency relationship. Given the tex-
tual features Ê0 = {Ê0

0 , Ê1
0 , · · · , Ê

Nw+1
0 }, we directly de-

rive the node features ĥ0
i = {ĥ0

0, ĥ
0
1, · · · , ĥ0

Nw+1} based on
their corresponding indices. For the edge features{βij}, we
assign a unique ID to each dependency relationship which is
passed via a linear projection to obtain D-dimensional hid-
den features e0ij .

ĥ0
i = Ê i

0, (16)

e0ij = βijB
0 + b0, (17)

where B0 ∈ R1×D and b0 ∈ RD are the parame-
ters of the linear projection layers. We also add the pre-
computed node positional encodings to the node features
following (Dwivedi and Bresson 2020).

Next, we proceed to define the update equations for the
ℓ-th layer.

hℓ
i = Ê i

ℓ , (18)

ŵℓ
ij =

(hℓ
iQ

ℓ
h · hℓ

jK
ℓ
h√

D

)
· eℓijEℓ

e, (19)

wℓ
ij = softmaxj(ŵℓ

ij), (20)

ĥℓ+1
i =

( ∑
j∈Ni

wℓ
ij(h

ℓ
jV

ℓ
h)
)
Oℓ

h, (21)

êℓ+1
ij = ŵℓ

ijO
ℓ
e, (22)

where Qℓ
h,K

ℓ
h,V

ℓ
h,E

ℓ
e,O

ℓ
h,O

ℓ
e ∈ RD×D denote learnable

parameters.
Considering the lack of long-range connections in depen-

dency graph structures, we introduce self-attention mecha-
nism and combine it with graph attention in parallel. The
outputs ĥℓ+1

i are added by a self-attention outputs of hℓ
i and

succeeded by residual connections and normalization layers
to get the outputs h̃ℓ+1

i . h̃ℓ+1
i and êℓ+1

ij are then passed to
separate Feed Forward Networks preceded and succeeded
by residual connections and normalization layers, as:

h̃ℓ+1
i = Norm

(
hℓ
i + SA(hℓ

i) + ĥℓ+1
i

)
, (23)

h
ℓ+1

i = GeLU(h̃ℓ+1
i Wℓ

h1)W
ℓ
h2, (24)

hℓ+1
i = Norm

(
h̃ℓ+1
i + h

ℓ+1

i

)
, (25)

ẽℓ+1
ij = Norm

(
eℓij + êℓ+1

ij

)
, (26)

eℓ+1
ij = ReLU(ẽℓ+1

ij Wℓ
e1)W

ℓ
e2, (27)

eℓ+1
ij = Norm

(
ẽℓ+1
ij + eℓ+1

ij

)
, (28)

where Wℓ
h1 ∈ RD×2D, Wℓ

h2 ∈ R2D×D, Wℓ
e1 ∈ RD×2D,

Wℓ
e2 ∈ R2D×D are learnable parameters, h̃ℓ+1

i ,h
ℓ+1

i , ẽℓ+1
ij ,

eℓ+1
ij denote intermediate representations, SA(hℓ

i) means the
i-th outputs of self-attention of Êℓ.

Finally, the textual output of ℓ-th layer DDI is obtained by
concatenation of {hℓ+1

i }Nw+1
i=1 .

Eℓ+1 = hℓ+1
1 ∥ hℓ+1

2 ∥ . . . ∥ hℓ+1
Nw+1. (29)

3.4 Training Objective
It is straight-forward to train a superpoint-referring expres-
sion matching network: given ground-truth binary mask of
the referring expression Y ∈ RNp , we first get the corre-
sponding superpoint mask Ys ∈ RNs by superpoint pooling
follewed by a 0.5-threshold binarization, and then we apply
the binary cross-entropy (BCE) loss on the final response
map M. The operation can be written as:

Lbce(M,Ys) = BCE(M,Ys), (30)

Yi
s = I(σ(AvgPool(Y,Ki))), (31)

where AvgPool(·) denotes superpoint average pooling op-
eration, Yi

s denotes binarized mask value of the i-th super-
point Ki. I(·) indicates whether the value is higher than 50%.

While BCE loss treats each superpoint separately, it falls
short in addressing the issue of foreground-background sam-
ple imbalance. To tackle this problem, we can use Dice
loss (Milletari, Navab, and Ahmadi 2016):

Ldice(M,Ys) = 1−
2
∑Ns

i=1 MiYi
s∑Ns

i=1 Mi +
∑Ns

i=1 Y
i
s

. (32)

In the STM module, we apply Lrel following (Luo et al.
2022) to supervise the description relevance score sr with
cross-entropy (BCE) loss. The supervision of sr is based on
whether the point belongs to a mentioned category.

In addition, we add a simple auxiliary score loss Lscore

for proposal quality prediction following (Sun et al. 2023).
Overall, the final training loss function L can be formu-

lated as:
L = λbceLbce+λdiceLdice+λrelLrel+λscoreLscore, (33)

where λbce, λdice, λrel and λscore are hyperparameters used
to balance these four losses. Empirically, we set λbce =
λdice = 1, λrel = 5, λscore = 0.5.

4 Experiments
4.1 Experiment Settings
We use the pre-trained Sparse 3D U-Net to extract point-
wise features (Sun et al. 2023). Meanwhile, we adopt the
pre-trained BERT (Devlin et al. 2018) as text encoder fol-
lowing the settings in (Huang et al. 2021). The rest of the
network is trained from scratch. The initial learning rate is
0.0001. We apply learning rate decay at epoch {26, 34, 40}
with a rate of 0.5. The number krel of Ŝrel in STM is set
to 512. The default number of multiple rounds L is 6. The
batch size is 64, and the maximum sentence length is 80.
All experiments are implemented with PyTorch, trained on
a single NVIDIA Tesla A100 GPU.

4.2 Dataset
We evaluate our method using the recent 3D referring
dataset ScanRefer (Chen, Chang, and Nießner 2020; Huang
et al. 2021) which comprises 51,583 natural language ex-
pressions that refer to 11,046 objects in 800 ScanNet (Dai
et al. 2017) scenes. The evaluation metric is the mean IoU
(mIoU) and Acc@kIoU, which means the fraction of de-
scriptions whose predicted mask overlaps the ground truth
with IoU> k, where k ∈ {0.25, 0.5}.
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Unique (∼19%) Multiple (∼81%) Overall Inference TimeMethod 0.25 0.5 mIoU 0.25 0.5 mIoU 0.25 0.5 mIoU Stage-1 Stage-2 All

TGNN (GRU) - - - - - - 35.0 29.0 26.1 - - -
TGNN (GRU) † 67.2 54.1 48.7 29.1 23.9 21.8 36.5 29.8 27.0 26139ms 125ms 26264ms

3D-STMN(GRU) 88.3 82.8 73.0 45.5 25.8 29.5 53.8 36.8 38.0 - - 277ms

TGNN (BERT) - - - - - - 37.5 31.4 27.8 - - -
TGNN (BERT) † 69.3 57.8 50.7 31.2 26.6 23.6 38.6 32.7 28.8 26862ms 235ms 27097ms

3D-STMN 89.3 84.0 74.5 46.2 29.2 31.1 54.6 39.8 39.5 - - 283ms

Table 1: The 3D-RES results on ScanRefer, including mIoU and accuracy evaluated by IoU 0.25 and IoU 0.5. † The mIoU and
accuracy are reevaluated on our machine.
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mahogany square.

(b) This is a gray
shelf. It is in a corn-
er next to a black
couch.ssssssxsssss

(c) The officer chair
is in front of the
desk at the center of
the room in front of
the entrance. The
chair is black and
has a round backrest.

Original Scene Ground Truth 3D-STMN / TGNN
3D-STMN TGNN

Attention Map 
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Figure 3: Visualization of the prediction results and attention maps of our 3D-STMN and TGNN. Zoom in for best view.

4.3 Quantitative Comparison
We report the results on the ScanRefer dataset in Tab. 1. Our
proposed 3D-STMN achieves state-of-the-art performance
by a substantial margin, with an overall improvement of
17.1%, 8.4%, 11.7% in terms of Acc@0.25, Acc@0.5 and
mIoU, respectively. In terms of speed, our 3D-STMN is 95.7
times faster than the two-stage TGNN (Huang et al. 2021).
With an average inference time of 0.3 seconds, our model
enables real-time applications of 3D-RES. Our 3D-STMN
consistently outperforms TGNN, whether using BERT or
GRU features, demonstrating its robustness and inference
power. In the “Unique” setting, our model boosts Acc@0.25
by 30 points, underscoring its precision with unique objects.

4.4 Ablation Study
STM Mechanism As shown in Tab. 2, under the same set-
tings, the second row (using superpoint-level features) out-
performs significantly in all metrics, demonstrating the ef-
fectiveness of using superpoints as representations.

Next, in rows 3-6, we added the DDI module. Regard-
less of the structure of the DDI module, it greatly enhances
the performance of the segmentation kernels, leading to sig-
nificant improvements in all metrics, demonstrating fine-
grained discriminability of dependency-driven features.

We also tested three distinct strategies of segmentation
kernel in STM: i) Root: This employs the embedding of the
root node to formulate the segmentation kernel; ii) Top1:
Leverages the word embedding with the highest score,
which is derived by averaging the word-superpoint atten-
tion map along the superpoint dimension; iii) Average: Uti-
lizes an embedding computed by averaging embeddings of
all words. Our findings, presented in Tab. 2, reveal that the
Top1 strategy emerges as the most effective due to its in-
nate ability to adapt visually. Consequently, we’ve chosen
this setup for subsequent experiments in our study.

Structure of DDI In Tab. 3, we explored four different
versions of the structure of DDI module: i) GA (graph-
attention only), ii) SA - GA (series of self-attention fol-
lowed by graph-attention), iii) GA - SA (series of graph-
attention followed by self-attention), and iv) GA ∥ SA
(graph-attention and self-attention running in parallel).

Our findings reveal that the GA setting, when compared
to the absence of the DDI module, brings about a marked en-
hancement in performance. This underscores the pivotal role
of detailed dependency-driven interactions in our model.

After concatenating SA with dense connections on GA
(SA - GA and GA - SA), the “Overall” performance of
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Segmentation OverallMethod Superpoint Kernel 0.5 mIoU

w/o DDI CLS 22.0 25.6
w/o DDI ✓ CLS 32.9 33.1

3D-STMN ✓ Root 37.3 38.0
3D-STMN ✓ Avg 39.5 38.6
3D-STMN ✓ Top1 39.8 39.5

Table 2: Ablation study of STM, where “w/o DDI” denotes
directly using the [CLS] token to generate segmentation ker-
nel instead of using the proposed DDI module.

Unique Multiple OverallDDI Structure mIoU mIoU 0.25 0.5 mIoU

w/o DDI 66.2 25.1 46.8 32.9 33.1

GA 72.8 27.6 51.0 36.7 36.4
SA - GA 72.6 29.1 51.0 38.3 37.5
GA - SA 72.7 29.1 50.9 38.9 37.6
GA ∥ SA 74.5 31.1 54.6 39.8 39.5

Table 3: Ablation study of DDI module, where “w/o DDI”
denotes not using the proposed DDI module.

Unique Multiple OverallEdge Type mIoU mIoU 0.25 0.5 mIoU

Bi-directional 72.7 29.4 51.3 38.7 37.8
Forward 74.2 30.8 54.2 39.3 39.2
Reverse 74.5 31.1 54.6 39.8 39.5

Table 4: Analyzing the edge direction of Dependency Graph.

the model has improved due to the addition of long-range
connections, demonstrating the complementary role of SA
in enhancing the effectiveness of the GA structure. Finally,
by incorporating parallel self-attention (GA ∥ SA), a no-
table boost in performance was achieved across all settings.
This highlights the efficacy of utilizing a parallel connec-
tion while simultaneously supplementing long-range con-
nections, which preserves the explicit modeling capability
of the dependency tree and maintains the ordered interaction
of information.

Edge Direction of Dependency Graph The ablation of
edge direction in the dependency graph is presented in
Tab. 4. The findings are as follows: i) the Bi-directional set-
ting may seem reasonable, but it doubles the number of edge
types and leads to overly chaotic information flow, signifi-
cantly increasing the difficulty of learning. ii) The Forward
direction setting outperforms the bidirectional one, but its
top-down information flow from the root node leads to in-
efficient updates in the upper-level nodes, which are often
more relevant to the target object. iii) The Reverse setting
is optimal because it facilitates bottom-up information flow
from leaf nodes to higher-level ones. This results in a pro-
gressive accumulation of richer information at each level,
mirroring the way humans comprehend complex sentences.

Sampling Unique Multiple Overall
Number mIoU mIoU 0.25 0.5 mIoU

64 71.7 28.0 50.9 35.7 36.5
128 72.5 27.9 51.7 36.2 36.6
256 71.9 29.0 50.6 38.3 37.3
512 74.5 31.1 54.6 39.8 39.5

1024 72.2 29.4 52.0 37.8 37.8

w/o sampling 72.6 29.4 50.8 39.0 37.8

Table 5: Ablation study of sampling number of superpoints,
where “w/o sampling” means using all superpoints.

Sampling Number of Superpoints Within the ScanRe-
fer dataset, the count of superpoints highlighted in the de-
scription varies. Investigating the optimal sampling number
in STM is vital. As displayed in Tab. 5, our model’s per-
formance initially rises with increased superpoints, peaking
at 512, then declines. Notably, using our sampling strategy
yields significantly better results than not sampling at all.

4.5 Qualitative Comparison
In this subsection, we compare our 3D-STMN to TGNN
qualitatively on the ScanRefer validation set. Fig. 3 visu-
ally shows that our 3D-STMN outperforms TGNN in ac-
curately localizing target objects on attention maps, regard-
less of the difficulty level of the test samples. The attention
generated by 3D-STMN is highly focused and precise. On
the other hand, TGNN struggles with discernment, as it as-
signs high attention values to multiple semantically similar
objects, as observed in cases (a), (b), and (c). Notably, when
faced with scenes containing multiple objects similar to the
target, accompanied by longer and more complex textual de-
scriptions as in cases (a) and (c), TGNN fails to distinguish
and accurately localize the target, performing no better than
random guessing. In contrast, our 3D-STMN can accurately
segment these challenging samples. Similar to humans, it fo-
cuses subtly but distinctly on objects closely adjacent to the
target, distinguishing them from the background.

5 Conclusion
We present 3D-STMN, an efficient and dense-aligned end-
to-end method for 3D-RES. By employing the Superpoint-
Text Matching (STM) mechanism, our model successfully
breaks free from the limitations of the traditional two-stage
paradigm. This liberates us to leverage end-to-end dense
supervision, harnessing the advantages of precise segmen-
tation and rapid inference speed. Specifically, our model
achieves an impressive inference speed of less than 1 sec-
ond per scene, rendering it well-suited for real-time ap-
plications and highly applicable in time-critical scenarios.
Furthermore, the proposed Dependency-Driven Interaction
(DDI) module substantially enhances our model’s compre-
hension of referring expressions. By explicitly modeling de-
pendency relationships, our model exhibits improved local-
ization and segmentation capabilities, demonstrating a sig-
nificant advancement in performance.
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