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Abstract

Pedestrian Attribute Recognition (PAR) involves identifying
the attributes of individuals in person images. Existing PAR
methods typically rely on CNNs as the backbone network to
extract pedestrian features. However, CNNs process only one
adjacent region at a time, leading to the loss of long-range
inter-relations between different attribute-specific regions. To
address this limitation, we leverage the Vision Transformer
(ViT) instead of CNNs as the backbone for PAR, aiming to
model long-range relations and extract more robust features.
However, PAR suffers from an inherent attribute imbalance
issue, causing ViT to naturally focus more on attributes that
appear frequently in the training set and ignore some pedes-
trian attributes that appear less. The native features extracted
by ViT are not able to tolerate the imbalance attribute distri-
bution issue. To tackle this issue, we propose two novel com-
ponents: the Selective Feature Activation Method (SFAM)
and the Orthogonal Feature Activation Loss. SFAM smartly
suppresses the more informative attribute-specific features,
compelling the PAR model to capture discriminative features
from regions that are easily overlooked. The proposed loss
enforces an orthogonal constraint on the original feature ex-
tracted by ViT and the suppressed features from SFAM, pro-
moting the complementarity of features in space. We con-
duct experiments on several benchmark PAR datasets, includ-
ing PETA, PA100K, RAPv1, and RAPv2, demonstrating the
effectiveness of our method. Specifically, our method out-
performs existing state-of-the-art approaches by GRL, IAA-
Caps, ALM, and SSC in terms of mA on the four datasets,
respectively.

Introduction
Pedestrian attribute recognition (PAR), as a multi-label clas-
sification problem, aims to predict a set of semantic at-
tributes (e.g., age, gender, hair style, etc.) (Wu et al. 2022a;
Tan et al. 2020). Due to its ubiquitous applications in surveil-
lance and public security, many efforts have been made to
promote its performance in real-world scenarios (Feris et al.
2014; Lin et al. 2019).

CNNs have demonstrated extraordinary capabilities in
various human-centric vision tasks (Wu et al. 2022b; Huang
et al. 2018, 2019b, 2021a; Zhang and Wang 2023; Zhang
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Figure 1: Visualization of heat maps: (a) Original Images,
(b) CNN-based method, (c) Transform-based method, and
(d) our SOFAFormer which captures more robust features.

et al. 2021), prompting numerous efforts in PAR (Sarfraz
et al. 2017; Lin et al. 2019; Zhao et al. 2018; Xiang et al.
2019; Yang et al. 2021). These PAR works employ CNN-
based architecture (e.g., the commonly used ResNet (He
et al. 2016) and InceptionNet (Szegedy et al. 2016)) to ex-
ploit attribute-related features from specific body regions.
Despite the promising performance achieved in PAR due
to the success of CNN architectures, the task is far from
being solved due to challenges posed by poor pedestrian
image quality (e.g., low resolution, human pose, and light-
ing changes). Furthermore, PAR differs from general single-
label image classification as it involves predicting the pres-
ence of multiple attributes in a single image, making the
contextual relationship between different attributes crucial.
For instance, when the model determines a high probabil-
ity of a person wearing a skirt, the contextual relation may
indicate a higher likelihood of attributes such as being fe-
male or having long hair, which are often associated with
wearing a skirt. However, exploiting the contextual relation
between attributes remains challenging for CNNs, as high-
lighted in existing works (He et al. 2021; Tan et al. 2020;
Zhao et al. 2018; Yang et al. 2021). This limitation primar-
ily arises from the fact that the convolutional and downsam-
pling operators process one adjacent region at a time (He
et al. 2021), hindering the learning of global context and
capturing the long-range dependencies between regions in
close proximity, even when they may contain attributes with
contextual relations.

Recently, the Vision Transformer (ViT) (Dosovitskiy et al.
2021) has gained popularity as a preferred choice for a va-
riety of computer vision tasks due to its impressive per-
formance and versatility. In contrast to CNNs, which rely
on convolutional and downsampling operators, ViT utilizes
multi-head self-attention modules to process different re-
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gions simultaneously. This allows ViT to capture long-range
dependencies and preserve fine-grained details. As depicted
in Fig. 1, CNNs tend to focus on learning local feature in-
formation across the entire image, while the feature extrac-
tion process of ViT can attend to different regions more ef-
fectively. Although ViT has the capability to establish the
contextual relations, it is still necessary to ensure that the
extracted features represent all attributes accurately.

Despite the capabilities of learning contextual relations
using ViT, achieving a comprehensive attribute representa-
tion for transformer-based PAR remains a challenging and
inadequate task. This is primarily due to the issue of im-
balanced attribute distribution, which adversely affects the
performance of PAR. Specifically, the PAR model may tend
to prioritize capturing the attributes that are annotated more
frequently, such as hair style, clothing type, etc. (referred to
as major-annotated attributes1), while the attributes that are
annotated less frequently such as glasses, backpack, etc. (re-
ferred to as minor-annotated attributes2), may receive less
attention or overlooked. In other words, major-annotated
attributes may be overemphasized, leading to overfitting,
while minor-annotated attributes may be neglected. Conse-
quently, another key problem in PAR is how to further mine
more comprehensive attribute representations based on ViT.

One intuitive solution to enhance feature robustness is to
incorporate body part information (Li et al. 2018a; Yang
et al. 2016; Huang et al. 2019c,a; Zhang, Ren, and Li 2020;
Liu et al. 2018; Zhang et al. 2014; Zhao et al. 2018) and ex-
tract corresponding fine-grained features. In previous meth-
ods, auxiliary body information extractors (e.g., key points
and human parsing) are introduced to divide a pedestrian
into different semantic regions. Subsequently, these differ-
ent body parts are aggregated to predict a series of attributes.
Although incorporating body part information has empiri-
cally proven to be effective in enhancing robustness against
appearance variations, the performance of PAR heavily re-
lies on accurate localization of body regions. However, these
body regions extractors are not specifically designed for
PAR, making it challenging to ensure precise localization
and requiring additional computational resources for sophis-
ticated part localization. Another solution is to introduce at-
tention mechanisms to enforce the PAR model to capture
more discriminative features (Guo et al. 2019; Sarafianos,
Xu, and Kakadiaris 2018; Jia, Chen, and Huang 2021). How-
ever, these attention modules introduce additional parame-
ters, which can potentially increase the risk of overfitting
(Wu et al. 2023a; Huang et al. 2021b).

In this paper, we propose a ViT framework with Selec-
tive and Orthogonal Feature Activation (SOFAFormer) to
address the limitations mentioned above and exploit more
robust representations from all attribute-specific regions. In
our SOFAFormer, we leverage ViT to capture the contextual
relations between different attribute-specific regions. How-
ever, relying solely on ViT may not provide sufficient robust-

1Attributes that must be present on the pedestrian, such as hair
style, clothing style, etc..

2Attributes that may be present on the pedestrian, such as
glasses, backpack, etc..

ness to represent all pedestrian attributes simultaneously due
to the imbalanced attribute distribution.

To address this issue, we propose a Selective Feature Ac-
tivation Method (SFAM) in order to prevent the model from
overfitting to major-annotated attributes and exploit minor-
annotated attribute features. SFAM calculates the feature ac-
tivation mapping of the final output and sorts it from mini-
mum to maximum. We then apply a threshold (referred to τ
in Eq. 7) to select the first few largest feature activations and
scale them using a suppression ratio (referred to α in Eq. 7).
This approach directs attention in the PAR model towards
the lower feature activations, which correspond to minor-
annotated attribute-specific regions. By combining the out-
put from ViT with the output from SFAM, we obtain two
features that complement each other, resulting in a more
comprehensive representation. In our SOFAFormer, both
features share a classifier layer, which promotes high cor-
relation to facilitate quick convergence. However, this high
correlation reduces the complementarity between the two
features. To address this issue, we propose an Orthogonal
Feature Activation Loss (LOFA) that aims to minimize the
feature correlation between the two features. LOFA encour-
ages the exploration of different feature spaces, potentially
leading to a more comprehensive attribute representation.

In summary, main contributions of this paper can be sum-
marized in four-fold:

• We propose a novel SOFAFormer method for PAR,
which enables the learning of more comprehensive fea-
ture representations. In contrast to previous CNN-based
methods, we leverage ViT as the backbone for PAR
to capture the contextual relations between different
attribute-specific regions.

• To obtain more robust representations, we introduce
SFAM to enable the model to focus on the lower in-
formative attribute-specific regions that contain minor-
annotated attributes. By combining the features extracted
from ViT with the features obtained from SFAM, we
achieve a comprehensive representation that captures
both major-annotated and minor-annotated attributes.
Features from ViT and SFAM can complement each
other to obtain a comprehensive representation.

• We design LOFA to decrease feature correlation. LOFA
encourages the PAR model to learn attribute represen-
tation from different feature spaces (i.e., from ViT and
SFAM), further enhancing the overall performance of the
PAR model.

• We perform conduct comprehensive experiments on sev-
eral PAR datasets, including PETA (Deng et al. 2014),
PA100K (Liu et al. 2017), RAPv1 (Li et al. 2016),
and RAPv2 (Li et al. 2018b). Our SOFAFormer outper-
forms existing methods and achieves a new state-of-the-
art (SOTA) performance.

Related Work
CNN-Based Methods for PAR
PAR has two key steps: obtaining a feature representation
and enhancing robustness of that representation. To extract
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the feature representation, many methods mainly rely on
CNNs as the backbone network. Among them, there are ap-
proaches that incorporate body region information or atten-
tion modules to capture more discriminative feature, which
is robust to multiple pedestrian variations.

CNN-Based Methods Embedded Body Information Li
et al. (Li et al. 2018a) proposed a pose guided deep model
(PGDM), which leverages a pre-trained pose estimate model
to localize body parts and extract corresponding body fea-
tures. Zhang et al. (Zhang, Ren, and Li 2020) used human
pose keypoints as auxiliary information to supervise a deep
template matching network, ensuring proper attribute spe-
cific region alignment. Yang et al. (Yang et al. 2016) in-
corporated key point estimation and PAR into a multi-task
training framework, using key point to obtain body parts
prior for feature learning. Zhang et al. (Zhang et al. 2014)
first detected the poselets and then employed CNNs to ex-
tract feature representations from local patches and the en-
tire pedestrian image. Liu et al. (Liu et al. 2018) introduced
EdgeBoxes (Zitnick and Dollár 2014) to localize attributed-
related regions and extract discriminative features from dif-
ferent body parts.

The aforementioned methods employ CNNs as the back-
bone network, which may lack the ability to capture long-
range contextual relations. Additionally, while incorporat-
ing body parts can reveal more fine-grained features, it often
requires additional computational resources. Moreover, the
robustness of the feature representation becomes dependent
on the accurate division of the body extractor, which is chal-
lenging to guarantee.

CNN-Based Methods Applied Attention Mechanism
Guo et al. (Guo et al. 2019) formulated a two-branch net-
work that takes an original image and its transformed ver-
sion as inputs. They introduced a new attention consistency
loss to measure the consistency of attention heat maps be-
tween the two branches. Tan et al. (Tan et al. 2019) proposed
three types of attention mechanisms (e.g., parsing attention,
label attention and spatial attention) to explore correlated
and complementary information. Sarafianos et al. (Sarafi-
anos, Xu, and Kakadiaris 2018) presented a visual atten-
tion mechanism that extracts and aggregates visual attention
masks at different scales. Jia et al. (Jia, Chen, and Huang
2021) designed a spatial and semantic consistency (SSC)
framework, which incorporates two complementary regular-
izations to explore inter-image relations from the perspec-
tives of spatial and semantic relations for each attribute.

The attention mechanisms mentioned above aim to guide
the PAR model to focus on attribute-specific regions and
enhance the overall representation of all attributes. How-
ever, these attention mechanisms may still struggle to cap-
ture long-range contextual relations and often introduce ad-
ditional training parameters. The inclusion of new parame-
ters not only requires increased computational resources but
also carries the risk of overfitting the model to the training
data.

In contrast to previous PAR methods, our SOFAFormer
framework takes a different approach by leveraging ViT as
the backbone network. This allows the network to effectively

capture long-range contextual relations between different
attribute-specific regions. To address the issue of neglect-
ing minor-annotated attributes, we introduce a parameter-
free SFAM module that encodes these attributes with more
fine-grained features, enhancing the overall representation.
Additionally, we incorporate a novel loss function called
LOFA, which encourages the features to be more compre-
hensive and discriminative.

Transformer in Vision
Transformers have gained significant attention from re-
searchers and have been widely studied in various com-
puter vision tasks, including image classification (Dosovit-
skiy et al. 2021), object tracking (Chen et al. 2021), and per-
son re-identification (He et al. 2021; Wu et al. 2023b). He et
al. (He et al. 2021) were the first to explore the use of trans-
formers as the backbone network for object re-identification
and demonstrated that transformers are more suitable for re-
trieval tasks compared to CNNs. Ma et al. (Ma, Zhao, and Li
2021) introduced transformers to capture part-aware long-
term correlations and extract robust feature representations
for occluded person re-identification. Lanchantin et al. (Lan-
chantin et al. 2021) utilized transformers to exploit complex
dependencies among visual features and labels for multi-
label image classification.

Inspired by these works, we propose utilizing trans-
formers to capture long-range contextual relations for the
PAR task. Transformers have shown their effectiveness in
modeling complex relationships, making them a promising
choice for capturing contextual information among attribute-
specific regions in PAR.

Architecture of SOFAFormer
Our SOFAFormer is proposed to learning robust feature rep-
resentations without introducing additional parameters, ex-
cept for the parameters of ViT. As shown in Fig. 2, our
SOFAFormer comprises three main modules: 1) Attribute
Feature Extraction Module, 2) Selective Feature Activation
Method (SFAM), and 3) Orthogonal Feature Activation Loss
(LOFA). We utilize ViT to extract pedestrian attributes from
input images, enabling the model to establish long-range
contextual relations between different attribute-specific re-
gions. To ensure that all attribute-specific regions are effec-
tively encoded, we propose a parameter-free SFAM that sup-
presses the largest feature activations in order to encode the
lower informative attribute-specific regions. Finally, we in-
troduce incorporate the LOFA to decrease the low correla-
tion between different features, thereby promoting a more
comprehensive feature space. This section will introduce
each module in detail. The detailed process of our SO-
FAFormer can be found in supplementary material.

Attribute Feature Extraction Module
Given a PAR dataset D = {(Xi, yi) | i = 1, 2, . . . , N},
PAR aims to predict a series of attributes yi ∈ {0, 1}M from
an image e.g., i-th pedestrian image in the dataset, where N ,
M represents the number of images and attributes, respec-
tively. As depicted in Fig. 2, the attribute feature extractor of
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Figure 2: Architecture of the proposed SOFAFormer. f represents the feature output of ViT. F is defined as converting f from
2D Sequence to 4D tensor. S represents the suppression tensor that is used to select which features should be suppressed and
which should not. F S is the output of SFAM, which is obtained by dot product F and S. MHA and MLP represent multi-head
self-attention and multi-layer perceptron, respectively. LPoFP represents linear projection of flattened patches.

our SOFAFormer follows the pure ViT architecture. Firstly,
we uniformly split the pedestrian image into Z fixed-sized
(P × P × C) patches denoted as

{
Xz

p | z = 1, 2, · · · , Z
}

, where Z = (H × W )/P 2. Then, an additional learnable
embedding token Xcls is introduced to the input sequences.
This embedding token collects from all patches to serves as
the final feature representation output f . The input sequence
Zin is fed into transformer encoded layer, which can be ex-
pressed as:

Zin =
[
Xcls;E

(
X1

p

)
;E

(
X2

p

)
; · · · ;E

(
XZ

p

)]
+Epos,

(1)
where Epos ∈ R(Z+1)×C represents position embedding.
All patches is mapped to C dimensions by a linear projection
E.

ViT consists of twelve transformer encoded layers to ex-
tract attribute feature representations. As illustrated in Fig. 2,
each transformer encoded layer includes a multi-head self-
attention module, a multi-layer perceptron module, and two
layerNorm layers. On top of ViT we introduce a classifica-
tion layer to predict the probability each attribute. Finally,
we use the binary cross-entropy loss (BCELoss) with sig-
moid function as the optimization target, which can be ex-
pressed as follows:

Lbce =
1

N

N∑
i=1

M∑
j=1

ωj(yi,j log(σ(ŷi,j))

+ (1− yi,j) log (1− σ(ŷi,j))),

(2)

where

σ(ŷi,j) =
1

1 + e−ŷi,j
, (3)

and ŷi,j is the prediction probability of the classification out-
put, representing the the prediction probability for j-th at-

tribute being present in image xi. ωj is a weight proposed
in (Li et al. 2018a), which is used to alleviate the distributed
imbalance between attributes. ωj can be expressed as fol-
lows:

ωj =

e1−rj yi,j = 1
,

erj yi,j = 0
(4)

where rj is positive sample ratio of j-th pedestrian attribute
in the training set.

The Proposed SFAM Method
PAR indeed involves recognizing a series of attributes from
pedestrian images, and due to varying attribute frequencies,
the task is prone to the common challenge of imbalanced
data. As a result, the recognition performance of minor-
annotated attributes may be unsatisfactory. To tackle this is-
sue, our SOFAFormer incorporates a parameter-free SFAM
method, which aims to learn more robust feature representa-
tions and effectively encode all attribute-specific regions in a
balanced way. By doing so, our model strives to improve at-
tribute recognition across all attributes, including those that
occur less frequently.

Given a training batch of B images, the final feature out-
put f ∈ RB×(Z+1)×C (refer to Fig. 2) from ViT is fed
into SFAM. In our SFAM, we first transform 2D sequences
feature f into a 4D tensor feature map F ∈ RB×C×H×W

(refer to Fig. 2), where C, H , and W indicate the channel,
height, and width of the feature map, respectively. Then, we
adopt the implicit assumption proposed by Zagoruyko et al.
(Zagoruyko and Komodakis 2017) to compute the feature
activation mapping. That is, the absolute value of a hidden
neuron activation can be used an indication of the impor-
tance of that neuron. Therefore, the activation mapping of F
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can be expressed as:

FA =
C∑
i=1

|F i|p , (5)

where F i = F (i, :, :). That is, FA is computed by squaring
each tensor slice (i.e., h × w) along the channel C of F ,
followed by a summation operation across the channel. Our
SFAM follows the definition of (Zagoruyko and Komodakis
2017), with the parameter p is set to 2.

Then, we calculate the average of the activation values rj
on j-th row, which is calculated by averaging the tensor (i.e.,
H × W ) obtained from Eq. 5 along H for each row. It can
be expressed as:

rj =

∑W
w=1 FA(j,w)

W
, (6)

When achieving Eq. 6, all rj are sorted from minimum to
maximum. A suppression range threshold τ is set to se-
lect the feature values with larger activation. That is, the top
(τ × H) largest ranked feature values are selected for sup-
pression. Next, we suppress these selected values by a factor
α, obtaining a suppressed feature F S.

To be specific, we create a suppression tensor S (refer to
Fig. 2) with the same size of F , S can be expressed as:

Si,j,w =

{
α rj > τ

,
1 rj < τ

(7)

where i ∈ (1, C), and w ∈ (1,W ). α denotes the suppres-
sion ratio. We apply the dot product between S and F to
obtain the suppressed feature F S (refer to Fig. 2). F S and
f share a linear classification layer to predict pedestrian at-
tributes.

Orthogonal Feature Activation Loss
Our SOFAFormer produces two features, one (f ) is the out-
put of the backbone network and the other (F S) is the output
after SFAM. These two features are sent to a linear classi-
fication layers for attribute probability prediction, and two
probability predictions are added together to obtain the final
prediction result.

We expect the two attribute predictions to complement
each other, meaning that f and F S can encode attributes
from more diverse feature spaces. Since f and F S share the
final classification layer, the PAR model may encourage the
same distribution of two features to quickly minimize the fi-
nal loss. We believe that two highly correlated features can-
not complement each other. Therefore, LOFA is proposed
to decrease the feature correlation, potentially making fea-
ture space more comprehensive. Our LOFA encourages the
maximization of the difference between two features while
also supervising them with BCELoss. In this way, it can pro-
mote the mutual enhancement of the two features, further
increasing their complementarity, and ultimately improving
the overall efficacy and adaptability of our SOFAFormer.

LOFA forces two features to be orthogonal to each other
and can be expressed as:

LOFA =
1

B

B∑
i=1

 1

C

C∑
j=1

〈
fij · Fsij

〉 (8)

where B and C represent training batch size and the dimen-
sion of the final feature, respectively.

The final loss of our SOFAFormer is the combination of
Lbce and LOFA, which can be expressed as follows:

L = Lbce + β ∗ LOFA (9)

where β controls contribution of LOFA.

Experiments
Comprehensive evaluations are conducted to verify the ef-
fectiveness of the proposed SOFAFormer. The experiments
are conducted on four PAR benchmark datasets, including
PETA (Deng et al. 2014), PA100K (Liu et al. 2017), RAPv1
(Li et al. 2016), and RAPv2 (Li et al. 2018b). Details about
these datasets and evaluation protocols can be found in the
supplementary material. As PA100K is the largest dataset in
PAR, we conduct exhaustive ablation studies on this dataset.
More ablation studies are shown in the supplementary mate-
rial for further analysis.

Comparison with State-of-the-Art PAR Methods
In Tab. 1, we show the performance comparison between our
SOFAFormer and several recently SOTA methods (Weng
et al. 2023; Cao et al. 2023; Wu et al. 2020; Zhao et al. 2019;
Li et al. 2019; Wang et al. 2017; Tang et al. 2019) on PETA,
PA100K, RAPv1, and RAPv2. It is evident that our method
achieves the best performance in terms of mA and accuracy
on four datasets, respectively. In mA, our SOFAFormer out-
performs the second-best performance by 0.4% (GRL (Zhao
et al. 2018)) on PETA, 1.2% (Label2Label (Li et al. 2022))
on PA100K, 1.3% (SSChard (Jia, Chen, and Huang 2021))
on RAPv1, and 1.9% (IAA-Caps (Wu et al. 2022a)) on
RAPV2, respectively. Some methods (e.g., VRKD (Li et al.
2019), JLAC (Tan et al. 2020), and IAA-Caps (Wu et al.
2022a)) introduce additional human semantic parsing or
complex attention modules to achieve performance improve-
ment, but this comes at the cost of requiring more computing
resources. In contrast, our SOFAFormer, excluding the back-
bone network, is a parameter-free method, which demon-
strates its efficiency in achieving superior performance with-
out the need for additional parameters.

It can be noticed that the proposed method substantially
outperforms JLAC on PETA (87.0% vs. 87.1%), PA100K
(82.3% vs. 83.4%), and RAPv2 (79.2% vs. 81.9%). JLAC
relies on the hypothesis that graph convolutional networks
(GCN) can explore all correlations among multiple at-
tributes. However, it relies on CNN to extract feature, and
the inherent convolutional and downsampling operations of
CNNs limit the ability of the extracted features to model
all correlations effectively. Additionally, GCN brings intro-
duces more parameters, which may and potentially increases
the risk of overfitting. In contrast, our SOFAFormer adopts
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Method PETA PA100K RAPv1 RAPv2
mA Accu Prec Rec F1 mA Accu Prec Rec F1 mA Accu Prec Rec F1 mA Accu Prec Rec F1

JRL 82.1 - 82.6 82.1 82.0 - - - - - 74.7 - 75.1 75.0 74.6 - - - - -
PGDM 83.0 78.1 86.9 84.7 85.8 75.0 73.1 84.4 82.2 83.3 74.3 64.6 78.9 75.9 77.4 - - - - -
GRL 86.7 - 84.3 88.8 86.5 - - - - - 81.2 - 77.7 80.9 79.3 - - - - -

MsVAA 84.6 78.6 86.8 86.1 86.5 - - - - - - - - - - 78.3 65.6 77.4 79.2 78.3
RA 86.1 - 84.7 88.5 86.6 - - - - - 81.2 - 79.5 79.2 79.3 - - - - -

VRKD 84.9 81.0 88.4 87.5 87.9 77.9 78.5 88.4 86.1 87.2 78.3 69.8 82.1 80.4 81.2 - - - - -
VAC - - - - - 79.2 79.4 89.0 86.3 87.6 - - - - - 79.2 64.5 75.8 79.4 77.1
ALM 86.3 79.5 85.6 88.1 86.9 80.7 77.1 84.2 88.8 86.5 81.9 68.2 74.7 86.5 80.2 79.8 64.8 73.9 82.0 77.8

Da-HA - - - - - 79.4 68.9 80.1 81.3 80.7 - - - - - - - - - -
SSChard 85.9 78.5 86.3 86.2 86.0 81.0 78.4 86.4 87.6 86.6 82.1 68.2 77.9 82.9 79.9 - - - - -

IAA-Caps 85.3 78.0 86.1 85.8 85.6 81.9 80.3 88.4 88.0 87.8 81.7 68.5 79.6 82.1 80.4 80.0 68.0 78.8 81.4 79.7
Label2Label - - - - - 82.2 79.2 86.4 88.6 87.1 - - - - - - - - - -
FEMDAR 84.7 78.5 86.8 85.7 85.9 81.0 79.7 88.0 87.5 87.3 79.7 66.9 79.1 79.2 78.8 - - - - -

EALCw.ACM 85.9 80.6 87.5 87.4 87.4 80.5 80.1 87.2 88.6 87.9 82.1 69.3 79.6 82.8 81.2 - - - - -
Baseline 85.3 78.7 86.9 85.9 86.4 81.4 79.1 87.0 87.9 87.4 81.1 68.3 78.6 81.9 80.2 79.6 67.5 78.6 80.6 79.6

SOFAFormer 87.1 81.1 87.8 88.4 87.8 83.4 81.1 88.4 89.0 88.3 83.4 70.0 80.0 83.0 81.2 81.9 68.6 78.0 83.1 80.2

Table 1: Performance comparison of SOTA methods on the PETA, PA100K, RAPv1, and RAPv2 datasets. Performance in five
metrics, including mean Accuracy (mA), accuracy (Accu), precision (Prec), Recall (Rec), and F1, is evaluated. The first and
second highest scores are represented by bold font and underline respectively.

Dataset Component mA Accu Prec Rec F1SFAM LOFA

PA100K
- - 81.4 79.1 87.0 84.8 87.9
✓ - 82.9 80.8 88.5 88.4 88.1
✓ ✓ 83.4 81.1 88.4 89.0 88.3

RAPv2
- - 79.6 67.5 78.6 80.6 79.6
✓ - 81.0 68.0 78.1 82.0 79.1
✓ ✓ 81.9 68.6 78.0 83.1 80.2

Table 2: Ablation study of each component of our method
on the PA100K and RAPv2 datasets.

ViT to capture attribute-specific features and maintain the
contextual relation between different regions. By leveraging
SFAM, we are able to exploit features from minor-annotated
regions without introducing any additional parameters. This
design allows the extracted features to cover all attribute-
specific regions comprehensively and leads to the superior
performance of our method compared to JLAC.

Ablation Study
In the ablation study, we observe notable improvements in
performance when incorporating SFAM and LOFA into our
SOFAFormer. The experiments are given in Tab. 2.

(1) It is observed that with SFAM, the performance in-
creases from 81.4% to 82.9% in term of mA on PA100K.
This demonstrates that the combination of SFAM enhances
the robustness of the extracted feature. For RAPv2, a clear
performance improvement (1.4%) is achieved by directly us-
ing SFAM. This is because that our SFAM suppresses major-
annotated attribute features to some extent and strengthens
the learning of minor-annotated attributes. As result, our
SOFAFormer with SFAM is better able to consider each
attribute-specific regions and exploits more discriminative
feature. (2) Introducing LOFA to make the feature space
more comprehensive leads to a significant performance im-

provement. The mA on the PA100K and RAPv2 datasets in-
creased from 82.9% to 83.4%, and 81.0% to 81.9%, respec-
tively. In our SOFAFormer, the output feature f of pure ViT
is fed into SFAM and gain a new feature F S. Both f and F S

share the final classifier layer for predicting attribute proba-
bilities. However, sharing the final classifier layer may cause
the model to force the two feature distributions to be similar,
limiting their complementarity. Therefore, LOFA is intro-
duced to encourage lower feature correlation between f and
F S. By doing so, LOFA pushes attribute-specific regions
in different feature spaces, thereby achieving better comple-
mentarity between them. This ultimately leads to improved
overall performance in attribute prediction.

Visualizations Analysis In Fig. 3, we leverage Grad-
CAM (Selvaraju et al. 2017) to generate heat maps, provid-
ing an intuitively analysis of the advantages of our method.
In Fig. 3 (b), it is evident that the pure ViT (without SFAM
and LOFA) can capture most of the attribute-specific re-
gions but tends to overlook certain attributes. This obser-
vation aligns consistent with our previous analysis, where
the imbalanced attribute distribution prevents the pure ViT
from adequately covering all attributes. However, with the
inclusion of SFAM, our SOFAFormer is able to extract fea-
tures from more attribute-specific regions. For instance, in
the sixth image, the pure ViT predominantly focuses on the
major-annotated attribute (e.g., clothing style) and neglects
the minor-annotated attribute (e.g., backpack). In contrast,
Fig. 3 (b) and Fig. 3 (c) demonstrate that SFAM contributes
to picking up the minor-annotated attribute (i.e., back-
pack) that was previously overlooked by the pure ViT. This
demonstrates that SFAM effectively enhances the model’s
ability to capture features from minor-annotated attribute-
specific regions, thereby addressing the issue of attribute im-
balance and improving the overall attribute recognition per-
formance.

LOFA is proposed to enhance the attributes’ representa-
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(b)  

(c)  

(d)  

(a)  

Figure 3: Visualization analysis. (a) original images from
PA100K, (b) w/o. SFAM and LOFA, (c) w. SFAM and w/.
LOFA, (d) w. SFAM and LOFA.

Dataset Method mA Accu Prec Rec F1

PETAzs

MsVAA 71.0 59.4 74.8 70.1 72.4
VAC 71.1 58.9 75.0 70.5 72.1
ALM 70.7 58.6 73.0 71.3 71.7

IAA-Caps 72.5 60.1 74.1 73.1 73.1
SOFAFormer 74.7 62.1 75.0 75.1 74.6

RAPv2zs

MsVAA 71.3 63.6 77.2 76.6 76.4
VAC 70.2 65.5 79.9 76.7 77.1
ALM 72.0 64.5 77.3 77.7 77.1

IAA-Caps 72.0 64.6 78.1 77.1 77.2
SOFAFormer 73.9 66.3 78.2 79.4 78.4

Table 3: Performance comparison of four methods on
PETAzs and RAPv2zs datasets.

tion by exploring different feature spaces. As shown in Fig. 3
(c), LOFA effectively promotes the robustness and com-
prehensiveness of attribute representations, allowing each
attribute region can be considered more effectively. With
LOFA, our SOFAFormer is capable of focusing on the entire
pedestrian region and extracting more robust features. The
heat maps in Fig. 3 illustrate that our SOFAFormer demon-
strates stronger representation ability in discovering more at-
tentive features, leading to more accurate attribute recogni-
tion.

Generalization Analysis on PETAzs and RAPv2zs The
newly proposed datasets, PETAzs and RAPv2zs, have non-
overlapping pedestrian IDs between the training and testing
sets, which align more closely with real-world scenarios and
provide a better measure of the model’s generalization abil-
ity. In Tab. 3, it is observed that our SOFAFormer achieves
the best performance in terms of mA, accuracy, recall, and
F1-score across both newly proposed datasets. For instance,
our method outperforms the best method IAA-Caps by 2.2%
and 1.9% in terms of mA on the two datasets, respectively.
The performance improvements on these datasets demon-
strate that the proposed SOFAFormer can be better applied
to real-world scenarios in the PAR task.

Figure 4: Sensitivity to α and τ on PA100K. Red, orange,
blue, pink, and purple line represent mA, Accu, Prec, Rec,
and F1, respectively. The maximum value is printed.

Parameter Analysis
In our SFAM, we generate a suppression tensor S with the
same size as F . We use S to suppress the selected largest
activation regions by dot product, which scales the selected
feature values using the suppression ratio α. The variation of
α can affect the performance of the PAR model. As shown
in Fig. 4 (a), the performance of our SOFAFormer improves
to varying degrees with different values of α. When α is set
to 0.0, it means that the largest activation attribute-specific
regions are directly erased. During the training process, with
the same parameter setting, the training loss becomes NaN.
This is likely due to the erased feature activations, which
leads to the inability to correspond with the attribute labels
and affects the convergence of the PAR model. The best per-
formance is achieved when α is set to 0.6 or 0.8. We lever-
age the mFive score proposed in (Yang et al. 2021) to choose
more appropriate parameter setting. we set α to 0.6 on the
PA100K dataset to yield the best performance

We investigate the effect of varying τ on the performance,
and the result is shown in Fig. 4 (b). It can be seen that
the performance decreases when τ ∈ (0.3, 0.6) or τ ∈
(0.6, 1.0). The best performance in term of mA is achieved
with τ = 0.3 or 0.6. We also use the mFive score to select the
best parameters (i.e., τ = 0.6).

Conclusion
This paper introduces SOFAFormer, a novel and effective
approach for the PAR task. Unlike existing PAR methods,
SOFAFormer leverages ViT to capture long-range contex-
tual relations between different attribute-specific regions.
We propose a parameter-free SFAM module that identi-
fies and focuses on the lower informative minor-annotated
attribute regions, complementing the features extracted by
ViT. Additionally, we introduce the LOFA loss to en-
hance the robustness and diversity of feature representations
from different feature spaces. Experimental results demon-
strate the superior performance of SOFAFormer on multi-
ple benchmark PAR datasets. The proposed method consis-
tently outperforms existing SOTA methods, showing its ef-
fectiveness in capturing comprehensive attribute represen-
tations. The combination of ViT, SFAM, and LOFA con-
tributes to substantial performance improvements, making
SOFAFormer a promising approach for real-world PAR ap-
plications.
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