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Abstract

This work is oriented toward the task of open-set Human Ob-
ject Interaction (HOI) detection. The challenge lies in iden-
tifying completely new, out-of-domain relationships, as op-
posed to in-domain ones which have seen improvements in
zero-shot HOI detection. To address this challenge, we intro-
duce a simple Disentangled HOI Detection (DHD) model for
detecting novel relationships by integrating an open-set ob-
ject detector with a Visual Language Model (VLM). We uti-
lize a disentangled image-text contrastive learning metric for
training and connect the bottom-up visual features to text em-
beddings through lightweight unary and pair-wise adapters.
Our model can benefit from the open-set object detector and
the VLM to detect novel action categories and combine ac-
tions with novel object categories. We further present the
VG-HOI dataset, a comprehensive benchmark with over 17k
HOI relationships for open-set scenarios. Experimental re-
sults show that our model can detect unknown action classes
and combine unknown object classes. Furthermore, it can
generalize to over 17k HOI classes while being trained on
just 600 HOI classes.

Introduction
Human-Object Interaction (HOI) detection is a pivotal task
in computer vision and artificial intelligence that facilitates
the understanding of visual scenes. It involves pinpointing
humans and objects within an image and understanding their
interactions. While significant strides have been made in tra-
ditional HOI detection, these advancements are primarily
in closed-set scenarios, with predefined and limited action
and object categories, e.g., the COCO (Lin et al. 2014) 80
object categories and 117 action categories in the HICO-
DET (Chao et al. 2018) dataset. However, open-set HOI
detection, where novel object and action categories are not
explicitly known beforehand, remains an underexplored do-
main. This necessitates a shift from the traditional closed-set
mindset to a more adaptable and scalable paradigm.

Most current approaches (Hou et al. 2020, 2021b; Bansal
et al. 2020; Liao et al. 2022; Ning et al. 2023)are tailored
for zero-shot HOI detection, working on unseen but simi-
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lar intra-domain relationships, especially within the HICO-
DET dataset. This leaves a gap in models truly adaptable
to real-world, open-set conditions. In response to the cur-
rent gaps, we present VG-HOI, a comprehensive evaluation
benchmark that features over 17k relationships, covering a
broad spectrum of unfamiliar actions and objects. Our aim
is to mimic real-world scenarios as closely as possible with
a plethora of open-set interactions. The distinction between
zero-shot and open-set HOI detection is shown in Figure 1.

Most of the existing methods cannot be directly evalu-
ated on VG-HOI due to their limited focus either on spe-
cific actions or restricted object categories. Current main-
stream zero-shot HOI detection paradigms (Liao et al. 2022;
Ning et al. 2023) primarily function within closed-set ob-
ject scenarios, involving the fine-tuning of object detectors
and interaction classifiers in a tightly integrated, end-to-
end manner. This often limits their scalability to new ob-
ject categories. Conversely, emerging bottom-up HOI de-
tection methods (Zhang, Campbell, and Gould 2022; Park,
Park, and Lee 2023) highlight the significance of powerful
bottom-up representations. Regrettably, these methods tend
to concentrate on closed-set scenarios, either with bottom-
up features focusing on object distinction or with the back-
bone fitting the long-tail pattern of the specified dataset, in-
evitably hampering their open-set detection and interactive
classification capabilities.

The recent merger of image-text contrastive learning with
the CLIP model (Radford et al. 2021) has significantly ad-
vanced open-set object detection (Liu et al. 2023). These
new methods excel at identifying various new object cat-
egories with precise bounding boxes. Alongside this, the
CLIP model, refined through training on extensive web-
scale data, is skilled at capturing strong visual representa-
tions. This juncture offers a promising chance to merge these
powerful models, propelling us toward open-set HOI detec-
tion. So, do we really need to repurpose these powerful ob-
ject detectors or VLM backbone for HOI detection?

In light of this, we introduce the Disentangled HOI Detec-
tion (DHD) model, a straightforward bottom-up framework
that includes an open-set object detector, a visual and lan-
guage model, and an interaction head. We extract bottom-up
features from VLM visual encoder with the bounding boxes
from the openset object detector. Then we attach lightweight
unary and pair-wise adapters to establish connections be-
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Figure 1: The comparision between the zero-shot HOI and open-set HOI detection. The zero-shot HOI detection (top) generalize
to unseen classes in intra-domain. The open-set HOI detection (bottom) detect the unknown classes in out-of-domain. The seen
actions or objects are shown in blue color, and the unseen or unknown classes are shown in red or green color.

tween the bottom-up visual features and the text embeddings
of labels. By exclusively training the adapters using a disen-
tangled image-text contrastive learning metric, we can retain
the learned knowledge of pretrained model. This approach
enables our model to leverage the capabilities of the open-
set object detector and the VLM, aiding in the detection of
new action categories and the combination of actions with
new object categories.

To summarize, our contributions are:

• We introduce the VG-HOI dataset, a comprehensive eval-
uation benchmark comprising over 17k relationships de-
signed for open-set scenarios.

• We present a simple disentangled bottom-up paradigm,
by training the unary and pair-wise adapters with dis-
entagled image-text contrastive learning, to achieve the
open-set HOI detection.

• Our model demonstrates its success in evaluating over
17k HOI classes on the VG-HOI dataset, despite being
trained on a modest 600 classes. This underscores its po-
tential to detect a wide spectrum of HOI classes.

Related Works
Human-Object Interaction Detection
Current mainstream HOI detection method can be catego-
rized into two main frameworks, bottom-up models (Chao
et al. 2018; Zhang, Campbell, and Gould 2022; Park, Park,
and Lee 2023) and end-to-end models (Tamura, Ohashi, and
Yoshinaga 2021; Liao et al. 2022; Ning et al. 2023; Kim,
Jung, and Cho 2023). Bottom-up approaches typically use a
detector to detect all people and objects in the image, and
then an interaction classifier to implement HOI classifica-
tion. And the end-to-end models perform object detection
and interaction classification simultaneously. However, the
end-to-end models are more suitable for closed-set scenar-
ios. Thus, in this work, we construct our model based on the
bottom-up paradigm.

Open-set Detection
Open-set detection aims to detect the categories which can-
not be known in advance. Recently, great progress has been
made in the field of open-set object detection (Li et al. 2022;
Liu et al. 2023). GLIP (Li et al. 2022) implements region-
level language-image pre-training by considering object de-
tection as a phrase grounding task. Grounding DINO (Liu
et al. 2023) pushes it by combining the end-to-end object
detector and making visual language modalities fully inter-
active. RefCOD (Zhang et al. 2023) achieve open camou-
flaged object detection based on visual reference. There has
been a lot of research focused on the zero-shot HOI detec-
tion (Hou et al. 2020, 2021b; Bansal et al. 2020; Liao et al.
2022; Ning et al. 2023; Wang et al. 2020, 2021, 2022; Wu
et al. 2023). However, these methods either only recognize
seen actions, or only can process limited objects. Benefiting
from advances in open-set object detection, we combine the
existing open-set object detectors e.g. (Liu et al. 2023) into
a decoupled bottom-up structure to realize a more general
open-set HOI detection.

Image-text Contrastive Learning
Inspired by CLIP’s breakthrough by contrastive learning
with web-scale image-text pairs, a surge of research (Li et al.
2022; Liu et al. 2023; Wang et al. 2023) is now enhanc-
ing representations and open generalization through image-
text contrastive learning. Meanwhile, in the field of HOI
detection, UNIVRD (Zhao et al. 2023) begin to use con-
trastive learning for joint training on multi-source heteroge-
neously labeled HOI datasets. However, UNIVRD finetunes
the VLM visual backbone to fit the object detector, which
makes the bottom-up features focus on object discrimina-
tion and migrates the general representation of the VLM vi-
sual encoder. In contrast to UNIVRD, we make full use of
the powerful generalization of the VLM visual encoder by
freezing it and propose a disentangled image-text contrastive
learning metric for towarding the open-set HOI detection.
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Figure 2: Overview of our method. We begin by utilizing a pre-trained open-set object detector and a frozen VLM visual
backbone to extract the bottom-up features. Subsequently, we engage in relationship contrastive learning, where the encoded
pair-wise tokens are contrasted with relationship text embeddings. Additionally, we conduct verb contrastive learning between
the encoded human tokens with action text embeddings.

Preliminary
Problem Formulation: Denote Ca as a set of the known ac-
tion categories, Co as a set of the known object categories,
and Crel as a set of the known HOI relationship categories,
in which the known HOI relationship categories consist of
the known action and object categories.

Given an input image I , the human-object interaction de-
tection aims to predict a set of ⟨bh, bo, ca⟩ triplets, in which
bh denotes the bounding-box of human, bo is the bounding-
box of object co, and the action ca. For open-set human-
object interaction detection, the model is tasked not only
with detecting relationships within Crel, but also with iden-
tifying relationships outside of this set during the inference
stage. This includes novel actions beyond Ca and novel ob-
jects beyond Co.

Method
Overall Architecture
Our model is a simple bottom-up approach that classifies
the bottom-up features by image-text matching, as shown in
Figure 2. Given an image I , we first use a frozen open-set
object detector to get a set of bounding boxes, and a frozen
VLM visual encoder as the backbone to get the global-level
features and the patch-level features of the image I . Further,
the bottom-up visual features of humans and objects are ex-
tracted via ROI-Align. Then, these bottom-up visual features
paired with global features are encoded by a learnable inter-
action head to get the result of the relationship classification.
Specifically, this process can be divided into three decoupled
steps, extracting bounding boxes, extracting bottom-up fea-
tures, and classification with interaction head.

Extracting Bounding-boxes. In this work, we apply a
pre-trained GroundingDINO (Liu et al. 2023) for extracting
bounding boxes. GroundingDINO gets the output bound-
ing box in a grounding-liked method. Given Co object cat-
egories, we first combine them into a text query in the form
of ‘O1.O2. · · · .OCo ’. Then passing the image I and the text
query to get a set of bounding boxes with corresponding
labels and scores. After filtering by applying an instance
thresholding on the score of instances, there are N bounding
boxes with corresponding object labels and scores retained.

Extracting Bottom-up Features. Unlike traditional
bottom-up methods extracting bottom-up features di-
rectly from the object detector, we equip with VLM
CLIP (Radford et al. 2021) visual encoder, a standard
Vision Transformer (ViT), as the backbone for extracting
bottom-up features. This allows us to obtain a more general
representation and retain the open-set image-text matching
ability of the VLM. After passing the image I into the
ViT, we can get a CLS token embedding and a sequence of
patch embeddings. We consider the CLS token embedding
as the global-level feature G. Different from conventional
bottom-up methods, we extract the instance embeddings
Z = {zi}Ni=1 with 7x7 ROI-Align by applying the extracted
bounding-boxes B = {bi}Ni=1 on the patch embeddings.

Classification with Interaction Head. For general pur-
poses, we do not specifically design the interaction head.
We apply a simple interaction classifier like the one in
UPT (Zhang, Campbell, and Gould 2022). We first flatten
the N instance embeddings Z and convert them into a set
of unary tokens by a feed-forward network (FFN). And the
bounding box spatial positional encodings are injected into
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Figure 3: The PCA analysis of relationship label space and action label space. The middle column displays the visualization
of the embedding space, where embeddings are represented with deeper colors for closer distances to the target relationship.
The left column provides the zoomed view of the embeddings in box. The right column showcases the top closely related
relationships, sorted by cosine distance to the target relationship.

unary tokens by a unary adapter layer. To this, we get the
unary tokens of humans H = {hi}Ki=1 and the unary tokens
of objects O = {oi}Ni=1 according to the corresponding box
labels, note that objects can also be human because there
exist the relation between the humans. Then the pairs can
be formed by combining the human and objects. By fusing
the unary tokens and positional encodings of the pairs, the
pairwise tokens are obtained. For considering context out-
side the bottom-up features, the global-level feature G is
combined into pairwise tokens and then passing a pair-wise
adapter to get the final pairwise tokens P = {pi}K×N

i=1 for
relationship classification.

Training with Disentangled Contrastive Learning
Most of the close-set HOI detectors fit a linear classifica-
tion layer to a specific dataset, which lacks generality in the
open-set world. In order to achieve open-set HOI detection,
we apply the image-text contrastive learning for training,
which has been widely used in open-set object detection(Li
et al. 2022; Liu et al. 2023; Wang et al. 2023).

We begin by applying pair-wise relationship contrastive
learning, in which the contrastive happened between the nor-
malized pair-wise tokens and the normalized relationship
text embeddings. To do this, we have to first form relation-
ship prompts by feeding a series of textual relationship de-

scriptions, e.g. ‘person riding bicycle’, into a prompt ‘a pic-
ture of person ⟨action⟩-ing ⟨object⟩’. Then these prompts
are passed through the VLM text encoder to get a set of
relationship text embeddings T = {ti}Crel

i=1 . We compute
the image-text relationship contrastive loss between the pair-
wise tokens P and the relationship text embeddings T ,
which can be formulated as,

Lrel =
K×N∑
i=1

LBCE(ei/τ,yi), (1)

where ei = [sim(pi, t1), sim(pi, t2), · · · , sim(pi, tCrel
)],

yi is matched multi-hot ground-truth relationship label, τ
is a learnable temperature, and LBCE is a sigmoid-based fo-
cal binary cross-entropy vloss (Lin et al. 2017). By train-
ing with pair-wise relationship contrastive loss, the open-set
capability of VLM is reawakened. However, we found that
relationship-label semantic embeddings tend to be indistin-
guishable when the action is combined with the specific ob-
ject category. As shown in Figure 3(a), the relationship ‘a
picture of person riding bicycle’ has the cosine distances
are close to the relationships with the same object ‘bicycle’,
which means that there is a stronger discriminability of the
object relative to the relation. This is very disadvantageous,
after combining specific object categories, the classification
of relations is fine-grained, which may have very similar vi-
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Methods Source Dataset Target Dataset Full Known Novel

Ours HICO-DET (class=600) VG-HOI (class=17421) 9.20 16.74 9.08
w/o Neg-pair Debias HICO-DET (class=600) VG-HOI (class=17421) 9.11 16.38 9.00
w/o Verb Contrastive HICO-DET (class=600) VG-HOI (class=17421) 8.85 16.41 8.73

Table 1: Open-set test on VG-HOI dataset with the models training on HICO-DET dataset. The Known and Novel refer to
whether the relationships occurred in the HICO-DET dataset or not.

sual representations between the different relations.
So what happens if the actions are not combined with the

specific object categories? We try to combine the actions
with ‘something’ instead of the specific objects. As shown
in Figure 3(b), in the action label space, there is a significant
discriminability between action embeddings. So, perform-
ing verb contrastive learning is on the agenda. However, it
is not feasible to directly replace pair-wise contrastive learn-
ing with verb contrastive learning, because the pair-wise fea-
tures of the same action combined with different objects will
tend to be consistent, which will excessively change the vi-
sual features of VLM and affect its open-set general ability.
At the same time, we note that person-centric features tend
to be consistent when encountering functionally similar ob-
jects (Shen et al. 2018; Bansal et al. 2020). This inspires us
to perform a verb contrastive learning between the human
tokens and the actions, which can be formulated as,

Lverb =
K∑
i=1

LBCE(ei/τ,yi), (2)

where ei = [sim(hi, t1), sim(hi, t2), · · · , sim(hi, tCa
)],

yi is matched multi-hot ground-truth action label. Such a
verb contrastive learning can better focus on person-centric
action features, without having to consider the specific ob-
jects. This helps the model generalize to unseen object
scenes by learning from the seen objects.

In addition, we revisit the currently widely used HOI de-
tection dataset, such as HICO-DET (Chao et al. 2018). We
found that there are subjective bias inherent in annotators in
the dataset, e.g., the annotations bias toward the the signif-
icant relationship in the picture, and the non-significant re-
lationship is left out, as shown in Figure 4 (a). This leads to
a large number of false negative samples in the data, which
in turn affects the open set performance of the model. We
deal with this problem through negative pair debias, which
simply sets a smaller loss weight for negative samples that
do not match the ground-truth pairs.

Inference
We can use two forms for the model inference, includ-
ing multi-label contrastive classification and one-shot query.
The multi-label contrastive classification is mainly used in
our experiments. During inference time, we need to first as-
sign the relationship triplets we want as queries, and then
split the triplets into related actions and objects, so the rela-
tionships outside the queries will be ignored. We compute a
set of similarity scores s between the output tokens (human
tokens or pair-wise tokens) of the interaction head and the

Figure 4: The visualization examples of annotation bias.

text embeddings (verb embeddings or relationship embed-
dings) of the queries. Then we incorporate the object scores
so, verb similarity scores sa, and relationship scores sr into
the final scores of each human-object pair, which can be for-
mulated as,

s = so · σ(sa) · σ(sr), (3)

where the σ is the sigmoid function.

Experiments
Experimental Setup
Datasets and Evaluation Metrics: We perform our ex-
periments on HICO-DET (Chao et al. 2018) and Visual
Genome (VG) (Krishna et al. 2017). The HICO-DET dataset
consists of 37,536 training images and 9,658 test images.
It contains 600 HOI classes which are combined by 80 ob-
ject classes as MS-COCO (Lin et al. 2014) and 117 action
classes. VG dataset contains 108, 077 images with a scene-
graph generation (SGG) task, which has 100, 298 object
classes and 36, 515 relation classes. We extract a subset from
VG to form a VG-HOI dataset with 43118 images, which
includes 17421 HOI categories (combined with 3542 action
classes and 5385 object classes). Following the default set-
ting on HOI detection, we report the mean average precision
(mAP) on all datasets. A detected HOI triplet is considered
matched with the grounding truth pair when both the pre-
dicted human and object bounding boxes have intersection-
over-union (IoU) with a ground truth greater than 0.5. For
the matched HOI triplets, the one is considered as a true pos-
itive if the predicted HOI category is correct.

Open-set Setups: We conduct open-set experiments on
the HICO-DET and VG-HOI datasets. On HICO-Det,
we split some HOIs as unseen setting following the
previous works: including Rare-first unseen combina-
tion scenario (RF-UC) (Hou et al. 2020), Non-rare-first
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UC (NF-UC) (Hou et al. 2020), unseen action scenario
(UA) (Liu, Yuan, and Chen 2020) and unseen object sce-
nario (UO) (Bansal et al. 2020). For the UC scenario, each
of the action classes and object classes is seen in at least one
HOI action-object pair during the training time. Note that
there is a UC (Bansal et al. 2020) setting applying the 5 sets
of 120 unseen HOI classes, but we found different results
in different previous works. In order to avoid confusion, we
did not use this setting because RF-UC and NF-UC settings
play the same role. For the UO scenario, the HOIs includ-
ing the same 12 objects as Functional (Bansal et al. 2020)
are selected as unseen. For the UA scenario, the HOIs in-
cluding the same 22 unseen actions as ConsNet (Liu, Yuan,
and Chen 2020) selected as unseen, and there is a UV (Liao
et al. 2022) scenario which same as UA, we follow the ear-
liest UA (Liu, Yuan, and Chen 2020) setting. For the HICO-
DET zero-shot scenario, we remove the images including
the unseen HOIs, train the model on the remaining images
and evaluate on the full test set.

On VG-HOI, we train the model with all HICO-DET
training images and inference on all the VG-HOI data to
simulate the open-set HOI detection. We consider the HOIs
occurred in HICO-DET as known relationships and the oth-
ers as novel HOIs. So there are about 17145 novel relation-
ships, which is large enough to simulate the open-set HOI
detection environment to some extent.

Implementations: We benchmark on the UPT (Zhang,
Campbell, and Gould 2022) and apply the same settings
for all models, unless explicitly specified. In the interac-
tion head, the number of unary adapter layers is 2 and
the pair-wise adapter layer is 1. For the open-set object
detector, we use the GroundingDINO (Liu et al. 2023)
with Swin-B backbone which is pre-trained on COCO,
O365 (Shao et al. 2019), GoldG (Kamath et al. 2021),
Cap4M, OpenImage (Kuznetsova et al. 2020), ODinW-35
and RefCOCO (Kazemzadeh et al. 2014). For VLM, we use
the public pre-trained model CLIP 1 with VIT-B/32 back-
bone, with an input size of 224 × 224. We feed prompt-
engineered texts to the text encoder of CLIP with a prompt
template a picture of person {verb} {object}. We apply the
same data augmentation techniques as used in UPT, along
with additional CLIP preprocessing to adapt the input image
to the pre-trained CLIP visual encoder. The interaction head
is trained for 20 epochs with about 7 hours on 2 NVIDIA
GTX3090 GPUs, with a batch size of 4 per GPU.

Open-set HOI Detection
We present the results of open-set HOI detection by training
with HICO-DET 600 relationship classes and testing on the
VG-HOI dataset with 17421 relationships. And comparing
the models under HICO-DET zero-shot settings.

From HICO-DET to VG-HOI. We first report the re-
sults of the models generalizing from the 37k HICO-DET
dataset to the 43k VG-HOI dataset in Table 1. We clarify
that GroundingDINO has two problems with this implemen-
tation. It cannot ground the excessively large vocabulary

1https://github.com/openai/CLIP.

Method Type Unseen Seen Full

End-to-End methods
GEN-VLKT NF-UC 25.05 23.38 23.71
HOICLIP NF-UC 25.71 27.18 26.88
HOICLIP* NF-UC 26.39 28.10 27.75
GEN-VLKT RF-UC 21.36 32.91 30.56
HOICLIP RF-UC 23.48 34.47 32.26
HOICLIP* RF-UC 25.53 34.85 32.99
GEN-VLKT UV 20.96 30.23 28.74
HOICLIP UV 23.37 31.65 30.49
HOICLIP* UV 24.30 32.19 31.09
GEN-VLKT UO 10.51 28.92 25.63
HOICLIP UO 9.36 30.32 26.82
HOICLIP* UO 16.20 30.99 28.53

Bottom-up methods
VCL NF-UC 16.22 18.52 18.06
ATL NF-UC 18.25 18.78 18.67
FCL NF-UC 18.66 19.55 19.37
Ours NF-UC 27.35 22.09 23.14
VCL RF-UC 10.06 24.28 21.43
ATL RF-UC 9.18 24.67 21.57
FCL RF-UC 13.16 24.23 22.01
Ours RF-UC 23.32 30.09 28.53
ConsNet UA 14.12 20.02 19.04
Ours UA 17.92 28.13 26.43
Functional UO 11.22 14.36 13.84
FCL UO 15.54 20.74 19.87
ConsNet UO 19.27 20.99 20.71
Ours UO 27.05 27.87 27.73

Table 2: Zero-shot HOI Detection results on HICO-DET
dataset. Denote UO and UA(UV) as unseen objects and
unseen action scenarios, RF-UC and NF-UC as rare-
first and non-rare-first unseen combination scenarios. The
HOICLIP* applies a training-free enhancement, which is or-
thogonal to our model. We primarily focus on presenting re-
sults for unseen HOIs, which are most related to open-set
HOI detection. The seen and full results are for reference
only, and colored with gray.

of categories. So we consider a known objects setting, we
only feed the set of object classes present in the images into
the query of GroundingDINO during inference on VG-HOI.
This reduces the difficulty of the problem and better simu-
lates the open-set detection because the class vocabulary is
large enough, but the user usually needs to get the ones who
want. In addition, we found that GroundingDINO fails to
detect about 1455 object categories on VG-HOI even though
pre-trained on 7 datasets due to bias toward common objects
like the COCO 80 classes, which leads to 0 AP on some rela-
tionships. Despite these difficulties, our model still achieves
9.20 mAP on VG-HOI with over 17k HOIs and 9.08 mAP
on the unknown relationships which has never been seen be-
fore. In addition, we found that reducing the impact of the
false negative on HICO-DET improves the 0.09 mAP, which
is significant because a total of over 0.26 × 17000 = 4420
AP has been improved. And the proposed verb contrastive
learning improves the model by 0.26 mAP. The results illus-
trate the ability of our model to generalize to open-set HOIs.
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Ablation Full Rare Non-rare

UPT 31.65 26.52 33.18

Frozen VLM Backbone 31.49 28.23 32.46
+Frozen GroundingDINO 29.30 29.29 29.30

Pair-wise Contrastive 28.98 26.19 29.82
+Verb Contrastive 29.85 27.38 30.59
+Neg-pair Debias 29.91 28.42 30.35

Table 3: Ablation study on HICO-DET dataset under full-
supervised setting. The Rare and Non-rare denote the low-
frequency and high-frequency relationships respectively.

As far as we know, none of the existing methods have the
ability to detect over 17k HOI relationships.

Zero-shot HOI Detection on HICO-DET. We compare
the model with existing zero-shot HOI detection methods.
The compared methods include the end-to-end methods
and bottom-up methods. The end-to-end methods including
GEN-VLKT (Liao et al. 2022) and HOICLIP (Ning et al.
2023), in which the GEN-VLKT distills the visual features
from CLIP and the HOICLIP aggregates features from CLIP
and DETR (Carion et al. 2020), they are all finetune the ob-
ject detector on the seen pairs. The bottom-up methods in-
cluding VCL (Hou et al. 2020), ATL (Hou et al. 2021a),
FCL (Hou et al. 2021b), Functional (Bansal et al. 2020), and
ConsNet (Liu, Yuan, and Chen 2020), in which the VCL,
FCL, ATL, and Functional are all holding a novel idea that
the actions can compositional to functional similar objects,
but also limited to the seen actions.

We list the results in Table 2. Our model outperforms pre-
vious works on NF-UC and UO settings by a large margin,
with 27.35 mAP and 27.05 mAP, which shows the general-
ize to combine the actions with seen or novel objects. And
the model also shows the ability to detect novel actions com-
pared to previous bottom-up methods.

Ablation Study
We perform ablation studies in this subsection. The experi-
ments are based on a full-supervised setting, in which there
are 138 low-frequency classes (Rare) and 462 classes (Non-
rare) with more training instances. We first analyze the ef-
fect of the frozen VLM backbone and the frozen Ground-
ingDINO, then we verify the validity of the proposed disen-
tangled contrastive learning and neg-pair debias metric.

The results are shown in Table 3. We first extract the
bottom-up features from the CLIP visual backbone, using
only the bounding boxes from DETR. As shown in Ta-
ble 3 line 3, this leads to better performance on rare classes,
illustrating more general and balanced representations of
the VLM. Then, we extract bounding boxes from a frozen
GroundingDINO, which results in a balanced performance
on both rare and nonrare classes , as shown in line 4. But
the nonrare performance decreases by about 3% mAP, this
is potential because the DETR finetuning on HICO-DET
shows a dataset biased detection. Such as, the person can be

detected inside the car although the person is completely in-
visible, as shown in Figure 4 (b). However, this bias will in-
evitably be hindered when encountering the open-set scene.

In order to achieve the open-set HOI detection, we replace
the linear classifier with a pair-wise relation contrastive
head. As shown in line 5, this makes the rare performance
decrease by about 3 mAP due to the pair-wise relation con-
trastive learning fitting the long-tail pattern of HICO-DET
to some extent. Further, we add proposed verb contrastive
learning, which brings a significant performance improve-
ment in both rare and non-rare classes, as shown in line 6.
When the neg-pair debias is added, as shown in line 7, there
is an improvement in rare classes, which shows the idea re-
duces the bias from significant head relationships.

Limitations: The performance of our model is currently
constrained by the open-set capabilities of open-set object
detectors and VLMs. We found that the pretrained VLM has
difficult in some relationships with ambiguity or some inap-
propriate relationship prompts, such as “a photo of person
jumping car” which actually means the car jumping away
the road in the dataset. Using more diverse unstructured data
to reconstruct the representation (Yuan et al. 2022; Zheng,
Xu, and Jin 2023) of the basic model for focusing on rela-
tionship classification, and the fine-grained person-centered
features (Li et al. 2020) could be beneficial in this regard. In
addition, we did not explicitly design the interaction head, so
a well-designed interaction head could significantly enhance
the open set capability of model.

Conclusions
In this work, we present a simple disentangled bottom-up
method for open-set human object interaction detection by
leveraging the open-set object detector and the visual and
language model. Our model can recognize novel actions and
combine the actions with novel objects by training unary and
pair-wise adapaters only with a novel disentangled image-
text contrastive learning method. Experiments show the ef-
fectiveness of the model on open-set human object interac-
tion detection, and the general to over 17k relationships by
training on 600 known relationships. We hope this work can
bring new insight and inspire future works on the open-set
human object interaction detection community.
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