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Abstract

Spiking neural networks (SNNs) have revolutionized neural
learning and are making remarkable strides in image analy-
sis and robot control tasks with ultra-low power consumption
advantages. Inspired by this success, we investigate the appli-
cation of spiking neural networks to 3D point cloud process-
ing. We present a point-to-spike residual learning network for
point cloud classification, which operates on points with bina-
ry spikes rather than floating-point numbers. Specifically, we
first design a spatial-aware kernel point spiking neuron to re-
late spiking generation to point position in 3D space. On this
basis, we then design a 3D spiking residual block for effective
feature learning based on spike sequences. By stacking the
3D spiking residual blocks, we build the point-to-spike resid-
ual classification network, which achieves low computation
cost and low accuracy loss on two benchmark datasets, Mod-
elNet40 and ScanObjectNN. Moreover, the classifier strikes
a good balance between classification accuracy and biologi-
cal characteristics, allowing us to explore the deployment of
3D processing to neuromorphic chips for developing energy-
efficient 3D robotic perception systems.

Introduction
3D point clouds have become a popular representation for-
m of physical entities in the last few years, and have a
wide range of applications in computer vision and robotic-
s. Among various 3D point cloud processing researches,
the classification of 3D point clouds is of great importance.
Over the past decade, 3D point cloud classification method-
s based on deep learning have demonstrated high and rela-
tively stable classification accuracy on benchmark dataset-
s (Thomas et al. 2019; Choy, Gwak, and Savarese 2019).
However, these methods require a large number of multiply-
accumulate (MAC) operations, resulting in high computa-
tional cost and high energy consumption, which also limits
the usage of these methods in embedded systems of robots.

Spiking neural networks, as the third generation of neural
networks, simulate the information encoding and transmit-
ting of biological neurons, which have achieved extreme-
ly high computing efficiency on neuromorphic hardwares,
e.g., Loihi (Davies et al. 2018). Therefore, it would be natu-
ral to consider designing SNNs for 3D point cloud process-
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ing. SNNs are composed of spiking neurons and each neu-
ron provides spike signals only when its membrane poten-
tial exceeds a certain threshold. The generated spike signals
would be propagated to the neurons in the next layer, con-
tributing to the membrane potential charging. Based on this,
the communication between neurons occurs through sparse
spike signals, and the process of input spikes in neurons on-
ly involves simple accumulate (AC) operations on the mem-
brane potential. Compared with traditional artificial neural
networks (ANNs), which require abundant MAC operations
among real-value signals, SNNs show excellent energy con-
sumption advantages (Kim et al. 2020).

To date, SNNs have been successfully applied to a vari-
ety of areas in the field of neuromorphic computing, such as
visual image classification and tracking, robot decision con-
trol (Oikonomou, Kansizoglou, and Gasteratos 2023), etc.
In these applications, SNNs achieve performance compa-
rable to conventional ANNs with low power consumption
and high biological rationality. Following these successes, it
is desirable to extend SNNs to 3D point cloud processing
for advanced 3D vision tasks with embedded and energy-
saving requirements. To achieve the extension, two key is-
sues deserve much attention: (1) The generation of spike sig-
nals should be closely related to the geometry of 3D point
clouds. (2) Spike sequences in high-dimensional hidden s-
pace should have the ability to represent different geometric
contexts of 3D points.

In this paper, we focus on developing SNNs for energy-
efficient 3D point cloud classification. To address the first
issue, we exploit the spatial localization property that kernel
point convolutions (Thomas et al. 2019) maintain and the
spiking processing mechanism of Integrate-Fire (IF) neuron-
s (Bulsara et al. 1996). We define spatial-aware kernel point
spiking neurons to relate spiking generation to point posi-
tion in 3D space. The neurons take spike sequences from
local structures as inputs and replace abundant MAC oper-
ations in kernel point convolutions (KPConv) with simple
kernel weight AC operations for membrane potential charg-
ing. Driven by the sparse nature of spiking inputs and the AC
replacement, the proposed neurons present impressive pow-
er efficiency compared to conventional KPConv (Thomas
et al. 2019) and are promising for the implementation in
neuromorphic architectures. For the second issue, we de-
sign 3D spiking residual blocks by integrating our kernel
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point spiking neurons into residual blocks. The proposed
residual blocks contrive different cross-layer connections
for improving information flow efficiency and feature rep-
resentation. Eventually, we stack the 3D spiking residual
blocks to further improve the nonlinear representation abil-
ity, and combine fully connected layers to build a point-to-
spike residual learning network for 3D classification called
P2SResLNet. The main contributions are as follows:

• We define spatial-aware kernel point spiking neurons for
3D local structure perception, which realizes the combi-
nation of spiking neurons and conventional point convo-
lutions for the first time. The neurons operate on sparse
spike signals and replace a large number of MAC with
AC, which significantly reduces the energy consumption
of convolution computation for 3D point clouds.
• We design 3D spiking residual blocks with differen-

t cross-layer connections for improving the information
flow efficiency and the information expression capability
of spike sequences in high-dimensional hidden spaces.
• We build a deep point-to-spike residual learning network

for 3D point cloud classification, which can significantly
reduce energy consumption while maintaining high accu-
racy on two benchmark datasets, ModelNet40 (Wu et al.
2015) and ScanObjectNN (Uy et al. 2019).

Related Work
Feature Learning on Point Clouds
Existing researches on deep learning methods for point
clouds fall into two broad categories. One is about learn-
ing on the basis of structured grids, which requires con-
verting unstructured point clouds into a structured form.
These methods can be further divided into two types, i.e.,
view-based methods (Tatarchenko et al. 2018) and voxel-
based methods (Choy, Gwak, and Savarese 2019). View-
based methods project 3D points into 2D images from dif-
ferent views, and then some well-designed 2D convolution-
al neural networks can be exploited to extract features from
these images. However, the projection brings extensive oc-
clusions, which may result in severe performance degrada-
tions. Voxel-based methods project 3D points into 3D voxel-
s, and then design 3D convolutional neural networks to pro-
cess these voxels. These methods have shown great point
cloud processing performances. However, the voxel resolu-
tion limitation of some computing configurations restricts
the processing precision and scale of point clouds.

The other category is about learning on the basis of un-
structured inputs, including graph-based learning and di-
rect point-based learning. Graph-based learning general-
ly constructs graphs based on input point clouds followed
by proposing graph neural networks for feature extrac-
tion (Zhang et al. 2023). These methods learn based on
edge relationships, which can easily ignore the local de-
formation in Euclidean space. In addition, constructing a
graph with all the points as graph nodes requires consid-
erable computations. In this paper, we focus on the point-
based learning, which designs various multi-layer percep-
trons (MLPs) or convolutions for point feature learning. The

pioneering works are PointNet (Qi et al. 2017a) and Point-
Net++ (Qi et al. 2017b). PointNet learns point-by-point fea-
tures through MLPs and extracts global features through
a maximum pooling, where abundant local structure in-
formation is ignored. On this basis, PointNet++ is devel-
oped to hierarchically extract features at different scales.
PointMLP (Ma et al. 2022) and PointStack (Wijaya, Paek,
and Kong 2022) are latest point cloud processing meth-
ods, which follow the design philosophy of PointNet++.
PointMLP uses a feedforward residual MLP network to
learn point cloud representation, which transmits informa-
tion and extracts features through multiple fully connect-
ed layers. PointStack designs multi-resolution learning and
learnable pooling for extracting high-semantic and high-
resolution point features. On the other hand, PointCNN (Li
et al. 2018) propose a χ-Conv operator to weight and per-
mute input points, and then apply typical convolutions to
the χ-transformed features. KPConv (Thomas et al. 2019)
designs kernel point convolutions with variable number and
position of kernel points, which presents more flexibility
than standard convolutions and inspires our work.

Spiking Neural Networks
Compared to conventional artificial neural networks, spiking
neural networks possess great potentials in mimicking bio-
logical neuron dynamics to achieve high performances with
low power consumptions. Spiking neurons are the key com-
ponents of SNNs and the commonly used spiking neurons
in SNNs (Kim et al. 2020; Fang et al. 2021) are Integrate-
Fire (IF) (Bulsara et al. 1996) and Leaky-Integrate-Fire
(LIF) (Gerstner and Kistler 2002). Both types of neurons
accumulate membrane potentials by receiving synthesized
currents and generate spikes when the membrane potential
exceeds a threshold. IF neurons can be regarded as ideal
integrators, maintaining a constant voltage in the absence
of spike inputs, while LIF neurons gradually decay in volt-
age in the absence of inputs. Compared to LIF, IF requires
less memory access and energy consumption. Some other
spiking neurons, such as the second-order dynamic neuron-
s (Zhang et al. 2022) and the multi-compartment spiking
neurons (Sun et al. 2023), can better represent dynamic char-
acteristics of biological neurons than IF but with several pre-
defined hyper-parameters.

There are two main schemes to obtain deep spiking neu-
ral networks: one based on an ANN-to-SNN conversion, and
the other based on backpropagation. The ANN-to-SNN con-
version scheme firstly trains a ANN-based baseline, and then
converts the baseline to a SNN-based model by directly sub-
stitute ReLU activations for spiking neurons with some nor-
malization and threshold strategies (Cao, Chen, and Khosla
2015). However, models based on the conversion usually re-
quire a large number of time steps to approximate the perfor-
mance of original ANN-based baselines, inevitably result-
ing in massive delays. Essentially, the ANN-to-SNN con-
version scheme avoids the difficulty of training SNNs di-
rectly, which results from the non-differentiable of spiking
neurons in SNNs. In the second scheme, researchers direct-
ly train SNNs from scratch by designing surrogate gradients
for backpropagation (Lee et al. 2020), or using the gradients
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with respect to the membrane potentials (Zhou et al. 2021).
Models based on direct training present a clear advantage in
reducing spiking time latency and are more suitable to prac-
tical applications. Considering the above, we use the direct
training scheme to get our point-to-spike residual learning
network in this paper.

Methods
We propose a deep point-to-spike residual learning network
for 3D point cloud classification. We first combine spiking
neurons with conventional kernel point convolution opera-
tions and define spatial-aware kernel point spiking neurons
for capturing local geometric structures. Then, we integrate
the spiking neurons into conventional residual blocks to de-
sign 3D spiking residual blocks, improving 3D point feature
learning based on spike sequences. Finally, we stack sever-
al 3D spiking residual blocks and fully connected layers to
build our classifier.

Kernel Point Spiking Neurons
Inspired by the combination of spiking neurons and convo-
lutions in 2D image processing (Zhou et al. 2023), we first
define spatial-aware kernel point spiking neurons to com-
bine spiking neurons (Bulsara et al. 1996) with kernel point
convolutions (Thomas et al. 2019) in point cloud processing.

Integrate-fire spiking neurons. We choose the Integrate
Fire (IF) spiking neuron (Bulsara et al. 1996) in this paper,
which is the simplest neuron type. The dynamic model of a
IF neuron can be described as:

ut = Vt−1 + Int (1)

St = Θ(ut − Vth) (2)

Vt = ut(1− St) + VresetSt (3)

Where ut represents the membrane potential of the neu-
ron that has undergone neuron dynamics at time step t.
t ∈ [0, T ), where T , the time latency, is an important hyper-
parameter defined in IF neurons. Vt−1 represents the mem-
brane potential of the neuron that has undergone a spiking
triggering judgment at time step t−1, and Int represents the
input current at time step t. In Equation 2, Θ(·) is the spik-
ing triggering judgment at time step t . When the membrane
potential ut exceeds the firing threshold Vth, the neuron will
generate a spike. Therefore, Θ(v) is designed as the Heav-
iside step function. When v ≥ 0, its value is 1; otherwise,
it is 0. In Equation 3, Vt is the membrane potential of the
neuron that has undergone the spiking triggering judgment
at time step t. If no spike is generated, Vt ≡ ut; otherwise,
it is set to the reset potential Vreset.

Kernel point convolutions. The design of 3D kernel point
convolutions (Thomas et al. 2019) is inspired by image
convolutions, which captures local geometric structures by
building the the relations between kernel points and neigh-
borhood points. The 3D kernel point convolution is formu-
lated as:

(F ∗ g)(x) =
∑

xi∈Rx

g(xi − x)fi (4)

Where xi and fi denote the 3D position of point i and its
corresponding feature, respectively. Rx = {xi ∈ P |‖xi −

Input
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Σ
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x
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Figure 1: The dynamics of a spatial-aware kernel point spik-
ing neuron, denoted as KPS neuron.

x‖ ≤ r} is the set of all points in a sphere, which takes x
as the center and r as the radius. P ∈ RN∗3 is the input
point set and F ∈ RN∗D is the corresponding feature set.
The kernel function g takes the neighborhood centered at x
as input. We define yi = xi − x, and the domain of the
kernel function g is the sphere Sr = {y ∈ R3|‖y‖ ≤ r}.
KPConv selects K points {x̃k}Kk=1 ⊂ Sr as kernel points,
and {Wk}Kk=1 ⊂ RDin∗Dout as the associated weight matrix
set. For each yi, the kernel function is defined as:

g(yi) =

K∑
k=1

c(yi, x̃k)Wk (5)

Where c(·) is the correlation function, representing the con-
nection between x̃k and yi. The closer the two values are,
the higher the c(·) is. c(·) is defined as:

c(yi, x̃k) = max(0, 1− ‖yi − x̃k‖
σ

) (6)

Where σ is a hyper-parameter and KPConv sets it according
to the input density.

Kernel point spiking neurons. We combine the IF neuron
with the kernel point convolution to define a spatial-aware
kernel point spiking (KPS) neuron as:

ul
t(x) = V l

t−1(x) + Inl
t(x),

Inl
t(x) =

∑
xi∈Rx

gl(xi − x)Θ(u
(l−1)
t (xi)− Vth),

Sl
t(x) = Θ(ul

t(x)− Vth),

V l
t (x) = ul

t(x)(1− Sl
t(x)) + VresetS

l
t(x),

(7)

Where ult(x) denotes the membrane potential of the neu-
ron that has undergone neuron dynamics at the 3D position
x of the l-th layer at time step t. V l

t−1 represents the mem-
brane potential of the neuron that has undergone a spiking
triggering judgment at the position x of the l-th layer at time
step (t − 1). Inl

t(x) indicates the input current at the posi-
tion x of the l-th layer at time t. The kernel function gl(·)
is defined by the Equation 5 and when the number of kernel
points K is between 17 and 23, there is little performance
difference. We empirically set K to 20. ul−1t (x) represents
the membrane potential of the neuron that has undergone
neuron dynamics at the position x of the (l − 1)-th layer at
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Figure 2: 3D spiking residual blocks.

time step t. Θ(·) is the Heaviside step function. Hence, the
computation of Inl

t(x) can be converted to simple AC op-
erations and the weight accumulation occurs only when the
neighbor of x generate a spike in the (l− 1)-th layer. Name-
ly, the sparse AC operations here replaces a large number of
MAC operations in Equation 4, which significantly reduces
the computation cost. Figure 1 shows the dynamics of the
proposed kernel point spiking neuron. At the position x of
the l-th layer during the time latency T , after receiving the
spike input in the neighborhood Rx of the (l − 1)-th lay-
er, denoted as {Sl−1(xi)}|Rx|

i=1 , the neuron outputs a spike
sequence Sl(x) after the spiking triggering judgement Θ(·).

3D Spiking Residual Block
Spiking neural networks are based on binary spikes rather
than continuous floats, which causes great difficulties in
training deep SNNs. On the other hand, residual learning in
ANNs has been proved to be an effective technique, which
can alleviate the problems of gradient disappearance and
model degradation caused by network deepening. We there-
fore design a 3D spiking residual block based on the 3D
kernel point spiking neuron and the residual operation (He
et al. 2016). The basic l-th residual block is formulated as:

hl = B(M(hl−1),L(hl−1)) (8)

Where hl−1 and hl are both feature representations in high-
dimensional hidden space, and denote the input and out-
put of the l-th residual block, respectively. M(·) and L(·)
are both feature mapping structures, which are mainly com-
posed of convolution layers, batch normalization layers, ac-
tivation function layers. B(·) is the connection function,
which is the element-by-element addition operation in (He
et al. 2016). Inspired by the basic residual block, we design
a 3D spiking residual block in two forms as:

Sl
t = IF (Bs(Ms(Sl−1

t ),Ls(Sl−1
t ))) (9)

Sl
t = Bs(IF (Ms(Sl−1

t )), IF (Ls(Sl−1
t ))) (10)

Where Sl−1
t and Sl

t are both spike sequences in high-
dimensional hidden space at time t, and are the input and
output of the l-th 3D spiking residual block, respectively.
The structures of our 3D spiking residual blocks are shown
in Figure 2. The main difference is the combination of IF
neurons and feature mapping structures. We select the opti-
mal structure design in Figure 2 (b) based on the experiments

Bs Implementation
ADD IF (Ms(S

l−1
t )) + IF (Ls(S

l−1
t ))

AND IF (Ms(S
l−1
t )) ∧ IF (Ls(S

l−1
t ))

IAND ¬IF (Ms(S
l−1
t )) ∧ IF (Ls(S

l−1
t ))

Table 1: Three connection functions for Bs.

on the benchmark dataset in Sec. . Moreover, considering the
binary property of input spike sequences, we design three
connection functions for Bs as shown in Table 1 and eval-
uate their performances to choose the most appropriate one
(ADD) in Sec. .

Point-to-Spike Residual Learning Network
We build a point-to-spike residual learning network
(P2SResLNet) for 3D point cloud classification based on s-
tacking 13 proposed spiking residual blocks and fully con-
nected layers in Figure 3. The input is a 3D point set P ′ ∈
RT∗N∗4, where T represents the spiking time latency, N
denotes the number of points, and 4 represents the feature
dimension, including the 3D coordinates of points and the
constant 1 by following (Thomas et al. 2019). To convert
these real-valued features into spike-form, the first part of
P2SResLNet takes advantage of conventional KPConv in a
basic block to extract local features for each spatial point,
followed by using IF neurons to process each element of the
features to generate spike sequences during T time steps.
Taking the generated spike sequences as inputs, the second
part of P2SResLNet is stacked with four similar structures,
each consisting of a point cloud down-sampling operation as
in (Thomas et al. 2019), and three stacked 3D spiking residu-
al blocks. The third part, a classification head, is designed to
predict the category Y , which can be realized in four forms:

Y = AvgPooling(FC(OL)) (11)

Y = AvgPooling(FC(IF (OL))) (12)

Y = FC(AvgPooling(OL)) (13)

Y = FC(AvgPooling(IF (OL))) (14)

Where OL is the output of the L-th 3D spiking residual
block (i.e., the output of the second part of P2SResLNet),
which can be decoded in two forms: one based on the spike
sequences of the last spiking neurons in the L-th 3D spik-
ing residual block, and the other based on the accumulated
membrane potentials. AvgPooling after FC, in Equation 11
and 12, can be considered as classifying based on averaging
neuron dynamics, resulting in a large number of parameters
of FC. AvgPooling before FC, in Equation 13 and 14, can re-
duce the parameters of FC. We mainly adopt the accumulat-
ed membrane potentials for OL and the head in Equation 13
based on the experimental analysis in Sec. .

We update the parameters of P2SResLNet via cross en-
tropy loss and gradient back-propagation. Note that the
derivative of the Heaviside step function in Equation 7 is
equal to the Dirac delta function, and its direct use for gra-
dient descent will make the training process extremely un-
stable. Following (Fang et al. 2020), we use the surrogate
function, Θ′(v) , σ′(v), in the gradient back-propagation
process, where σ(v) is a smooth and continuous function
with a shape similar to Θ(v). The arctan is used here.
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Figure 3: The architecture of P2SResLNet, which consists
of three parts. P2SResLNet takes as input a 3D point set and
finally predicts a category of the point set.

Experiments and Results
Experimental Settings
We evaluate the performance of 3D point cloud classifica-
tion on both the synthetic dataset ModelNet40 (Wu et al.
2015) and the real dataset ScanObjectNN (Uy et al. 2019).
ModelNet40 contains 40 different object categories, each of
which contains a large number of 3D object instances. The
training set contains 9, 843 instances, and the testing set con-
tains 2, 468 instances. ScanObjectNN is constructed based
on real-world scanning, which is characterised by varying
degrees of data missing and noise contamination. The entire
dataset contains 3D objects from 15 categories with 11, 416
samples as training set and 2, 882 samples as testing set. In
terms of the evaluation metrics, we use the point cloud clas-
sification overall accuracy (OA) and the category mean ac-
curacy (mAcc) by following (Wijaya, Paek, and Kong 2022).

The proposed network is designed based on the the bi-
ological plausibility and it is desirable to deploy it direct-
ly on neuromorphic hardwares. However, designing RC cir-
cuits on a neuromorphic hardware for 3D point kernel spik-
ing neurons requires extra engineering efforts, which is out
of the scope of this work. On the other hand, to maintain
high classification accuracy, there are still some MAC oper-
ations in the network, such as the first part of the network
and the kernel computation in Equation 5, which are diffi-
cult to implement on neuromorphic hardwares. Hence, our
experiments are conducted on a PC with the 11-th Gen In-
tel i7− 11700K 3.60GHz 16-core processor and a NVDIA
GeForce RTX 3070 GPU. Our implementation is based on
PyTorch and SpikingJelly (Fang et al. 2020). We update the
network parameters using the SGD optimizer and the learn-
ing rate is initialized to 10−3. The sampling radius of the
first point cloud down-sampling layer is an important hyper-
parameter. In follow-up experiments, we set it for Model-
Net40 to 0.15, for ScanObjectNN to 0.3 by default. For the
spiking neurons, we set the time latency T to 1 by default.

Ablation Study
We first conduct ablation experiments on ModelNet40 to de-
termine the final architecture of P2SResLNet.

Ablation on 3D spiking residual block designs. Figure 2
presents two types of spiking residual blocks with the ADD
connection function by default. We build two classification
networks based on the two blocks, denoted as P2SResLNet-
A and P2SResLNet-B, respectively. Table 2 reports the e-
valuation results on ModelNet40 testing set. P2SResLNet-

Model OA(%) mAcc(%)
P2SResLNet-A 89.4 87.4
P2SResLNet-B 90.6 89.2

Table 2: Ablation study on the spiking residual block designs
on the ModelNet40 dataset.

Connection OA(%) mAcc(%)
ADD 90.6 89.2
AND 89.2 88.2
IAND 89.0 87.5

Table 3: Ablation study on the connection functions on the
ModelNet40 dataset. P2SResLNet with the ADD connec-
tion function presents the highest classification accuracy.

B presents a 1.2% improvement in the OA and a 1.8%
improvement in the mAcc compared to P2SResLNet-A
(90.6% vs. 89.4% and 89.2% vs. 87.4%). Hence, we choose
the block structure in Figure 2 (b) for building our final clas-
sifier in follow-up experiments.

Ablation on connection functions. Table 1 presents three
types of connection functions for Bs(·), including ADD,
AND, and IAND. We build networks based on these func-
tions. As shown in Table 3, P2SResLNet with the ADD,
achieves the highest overall classification accuracy than oth-
ers. We also visualize the average firing rate of each block
in these networks. The firing rate of a block is defined as

ns

(T∗SN) , where ns is the total number of spikes of the block
during the default time latency T and SN represents the
number of spiking neurons in the block. We use the Spik-
ingJelly to obtain the average spike firing rate of each block.
We can see in Figure 4 that P2SResLNet with the IAND
provides much higher firing rates in majority of the block-
s. However, its classification performance in Table 3 is the
worst. The firing rate curve of P2SResLNet with the AND
is mostly below the other two curves, with a large variation
range. P2SResLNet-ADD has a moderation performance in
terms of both the average firing rate and the variation range.

Ablation on classification heads. The third part of our
classification network, i.e. the classification head, plays a
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Figure 4: Firing rate distribution with respect to residual
blocks for different connection functions on ModelNet40.
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Classification Head OA(%) mAcc(%)
FC-Avgpooling 90.0 88.5

IF-FC-Avgpooling 89.6 87.7
Avgpooling-FC 90.6 89.2

IF-Avgpooling-FC 89.6 87.8

Table 4: Ablation study on the classification heads on the
ModelNet40 dataset. P2SResLNet with the Avgpooling-FC
head presents the highest classification accuracies.

Decoding Scheme OA(%) mAcc(%)
Spiking Sequence 90.4 88.5

Membrane Potential 90.6 89.2

Table 5: Ablation study on the decoding schemes on the
ModelNet40 dataset. P2SResLNet using the membrane po-
tential decoding presents better classification accuracies.

significant role in the overall performance, which has four
forms as demonstrated in Equation 11-14. We provide the
ablation evaluation on classification heads in Table 4. Both
IF-Avgpooling-FC and IF-FC-Avgpooling use IF before oth-
er operations, and hence their FC are designed for spike se-
quences. Both Avgpooling-FC and FC-Avgpooling direct-
ly process the accumulated membrane potentials of the last
spiking neurons in the L-th 3D spiking residual block. The
results show that Avgpooling-FC with minimal parameters
outperforms other heads slightly.

Ablation on decoding schemes. We provide two decod-
ing schemes for OL in Sec. . The evaluation results on
the decoding schemes with the Avgpooling-FC classification
head by default are presented in Table 5. We observe that the
accumulated membrane potential for decoding outperform-
s the spiking sequence output scheme. It is considered that
the membrane potentials, as floating-point numbers, contain
more useful information for classification, resulting in more
precise interpreting.

Ablation on time latency. The time latency T is an im-
portant hyper-parameter in SNNs and our evaluation results
on the time latency are presented in Table 6. We observe
that our network has the highest accuracy at one time step,
and the classification performance difference is slight, when
T is between 4 and 8. The results are inconsistent with the
conclusion in SNN-based image classification (Fang et al.
2021), where longer time latency brings better classification
accuracy. We consider there are two reasons for this. One is
related to the dataset. 3D classification benchmark dataset-
s usually lack temporal information compared to the DVS-
based datasets in (Fang et al. 2021). Therefore, a larger T
in our work may mean more redundancy rather than more
useful information. The other is related to the latency set-
ting. The latency setting of SNN-based image classification
is invariably within a wide range, e.g., between 1 and 2000.
However, it is difficult to set T greater than 10 in 3D training
due to the system configuration limitation. Hence, the pos-
sibility of better performance with a large T cannot be ruled
out in our network. In fact, a smaller T is more in line with

Latency OA(%) mAcc(%)
1 90.6 89.2
4 88.7 86.6
6 88.6 86.5
8 88.9 86.5

Table 6: Ablation study on the time latency on the Model-
Net40 dataset. P2SResLNet with T = 1 presents the highest
classification accuracies.

some real application requirements.

Comparison with SOTAs
Table 7 presents the comparison results from three types
of classification networks on two benchmark datasets, in-
cluding ANN-based networks, a ANN-to-SNN network, and
a SNN-based network. PointNet (Qi et al. 2017a), Point-
Net++ (Qi et al. 2017b), PointCNN (Li et al. 2018), KP-
Conv (Thomas et al. 2019), PointStack (Wijaya, Paek, and
Kong 2022), and PointMLP (Ma et al. 2022) are represen-
tative ANN-based networks here. For the ANN-to-SNN net-
work, we follow (Cao, Chen, and Khosla 2015) to convert an
ANN-based method into SNN-form. We choose KPConv, s-
ince our work is directly inspired by it. For the conversion,
we first set the bias used in KPConv to 0 and then replace
the activation function, LeakyReLU, with IF neurons. In ad-
dition, we use average pooling instead of max pooling to
get the final SNN architecture, denoted as KPConv-SNN.
Note that we do not train KPConv-SNN from scratch. In-
stead, we directly apply the pretrained parameters of KP-
Conv (Thomas et al. 2019) to KPConv-SNN with the time
latency T = 40, which is set based on a large number of ex-
periments. Different from the above, SNN-based networks
require training from scratch. The representative SNN-based
network is our work with the time latency T = 1.

It is not surprising that ANN-based networks, e.g., KP-
Conv, PointStack, and PointMLP, consistently outperform
our SNN-based network, since floating-point numbers in
ANNs can transfer more meaningful information than bina-
ry spikes in SNNs. The goal of this work is exploring effec-
tive ways to reduce the energy consumption during 3D point
cloud processing while maintaining high classification accu-
racy. The proposed network achieves the overall accuracies
of 90.6% and 81.2% on two benchmark datasets, respec-
tively, which are very close to the performances of KPCon-
v (Thomas et al. 2019) (our ANN-based baseline). We also
provide their energy consumption comparison theoretically
in Sec. , which demonstrates our network has the advantage
of ultra-low energy consumption. In addition, the compari-
son between KPConv-SNN and ours indicates that the pro-
posed point-to-spike residual learning network can provide
a proper balance between classification accuracy and spike-
based biological characteristics.

Theoretical Energy Consumption Calculation
In this section, we investigate energy efficiency of our
SNN-based network compared to the ANN-based base-
line (Thomas et al. 2019). We consider computing ener-
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Model Type ModelNet40 ScanObjectNN
OA/mAcc(%) OA/mAcc(%)

PointNet ANN 89.2/86.0 68.2/63.4
PointNet++ ANN 92.0/89.1 77.9/75.4
PointCNN ANN 92.5/88.1 78.1/75.1
KPConv ANN 92.1/90.7 85.3/83.7

PointStack ANN 93.3/89.6 86.9/85.8
PointMLP ANN 94.1/91.5 85.4/83.9

KPConv-SNN ANN-to-SNN 70.5/67.6 43.9/38.7
P2SResLNet SNN 90.6/89.2 81.2/79.4

Table 7: Comparison of various models on ModelNet40 and
ScanObjectNN.

gy consumptions of the proposed kernel point spiking lay-
er of our network and the conventional kernel point convo-
lution layer of the baseline, where accumulate (AC) oper-
ations and multiply-accumulate (MAC) operations are pri-
marily responsible. According to the research in (Horowitz
2014), a 32-bit floating-point (FL) consumes 4.6pJ for a
MAC operation and 0.9pJ for an AC operation, namely
EMAC = 4.6pJ and EAC = 0.9pJ . Therefore, the theo-
retical energy consumptions of the l-th kernel point spiking
layer and the l-th conventional kernel point convolution lay-
er can be formulated as follows:

El
P2SResLNet = El

kenel + FLslP2SResLNet × EAC (15)

El
KPConv = El

kenel + FLslKPConv × EMAC (16)

Where El
kenel denotes the kernel computation energy con-

sumption, which is currently based on floating-point oper-
ations. There is no difference for El

kenel between the two
Equations. FLsl∗ represents the number of floating points in
the feature computation of layer l. Assuming that in the l-
th layer, the input number of 3D points is I; the number of
neighboring points for each point is n; the size of each k-
ernel weight is Din ×Dout; F l−1

r is the firing rate of layer
(l − 1). We calculate FLsl∗ as follows:

FLslP2SResLNet = I × n×Din ×Dout × F l−1
r (17)

FLslKPConv = I × n×Din ×Dout (18)

According to the theoretical calculation above, we estimate
the main energy consumptions of our network and KPCon-
v (Thomas et al. 2019) regardless of point cloud down-
sampling and normalization operations in Figure 5, both
with 6, 597 3D points as inputs. Our network demonstrates
great energy efficiency, over 30 times better than KPConv
due to the sparse nature of spikes and the AC replacement.

Features Learned by KPS Neurons
To understand the learning mechanism of our network, we
visualize the features learned by the KPS neurons in the third
spiking residual block. We color the points based on their ac-
tivation for some features in Figure 6. In the first row, points
with activated 6-th feature are colored in red, while the rest
are colored in blue. Here activated 6-th feature means the
6-th KPS neuron of a 3D point produce a spike at the time
step t = 1. We can observe that red points are generally dis-
tributed on load-bearing plates, which indicate the 6-th KPS
neuron in the third spiking residual block may extract the
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Figure 5: Normalized energy consumption comparison of
KPConv and our network.

27-th2-th 13-th31-th

6-th 6-th 6-th

Figure 6: Features learned by KPS neurons in the third spik-
ing residual block. The number below each object represents
the dimension from which the extracted feature come from.
We color an activation with a spike in red, and otherwise in
blue. All activations are projected to the 3D input points.

load-bearing property of some objects. In the second row,
we observe that the 2-th KPS neuron can learn the chair leg
characteristics, the 31-th KPS neuron can learn the book-
shelf top characteristics, the 27-th KPS neuron can learn the
aircraft wing characteristics, the 13-th KPS neuron can learn
the human limb characteristics.

Conclusion

In this paper, we propose the point-to-spike residual learn-
ing network for 3D point cloud classification that reaches a
favourable balance between accuracy and bioinspired ener-
gy efficiency on two benchmark datasets, ModelNet40 and
ScanObjectNN. In the future, we will focus on the deploy-
ment of 3D processing on neuromorphic chips and maintain-
ing the high accuracy as some 3D processing SOTAs.
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