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Abstract

Video inpainting aims to fill in the missing regions of the
video frames with plausible content. Benefiting from the
outstanding long-range modeling capacity, the transformer-
based models have achieved unprecedented performance re-
garding inpainting quality. Essentially, coherent contents
from all the frames along both spatial and temporal di-
mensions are concerned by a patch-wise attention module,
and then the missing contents are generated based on the
attention-weighted summation. In this way, attention retrieval
accuracy has become the main bottleneck to improve the
video inpainting performance, where the factors affecting at-
tention calculation should be explored to maximize the ad-
vantages of transformer. Towards this end, in this paper, we
theoretically certificate that noise is the culprit that entan-
gles the process of attention calculation. Meanwhile, we pro-
pose a novel wavelet transformer network with noise robust-
ness for video inpainting, named WaveFormer. Unlike exist-
ing transformer-based methods that utilize the whole embed-
dings to calculate the attention, our WaveFormer first sepa-
rates the noise existing in the embedding into high-frequency
components by introducing the Discrete Wavelet Transform
(DWT), and then adopts clean low-frequency components to
calculate the attention. In this way, the impact of noise on at-
tention computation can be greatly mitigated and the missing
content regarding different frequencies can be generated by
sharing the calculated attention. Extensive experiments val-
idate the superior performance of our method over state-of-
the-art baselines both qualitatively and quantitatively.

Introduction
Video inpainting which aims to fill missing regions of videos
with plausible contents is a fundamental yet challenging task
in the computer vision field. It has great value in many
practical applications, such as scratch restoration (Chang
et al. 2019), undesired object removal (Seoung et al. 2019)
and autonomous driving (Liao et al. 2020). Unlike image
inpainting (Somani et al. 2023; Shukla et al. 2023; Bar
et al. 2022) that usually focuses on the spatial dimension,
video inpainting pays more attention to exploiting the tem-
poral information. Therefore, naively extending the image
inpainting algorithm on individual video frame will neglect
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the inter-frame motion continuity, resulting in flicker arti-
facts (Chang et al. 2019; Wu et al. 2023a).

Recently, several deep learning-based video inpainting
methods (Gao et al. 2020; Ji et al. 2022; Lee et al. 2019; Li
et al. 2022; Wu et al. 2021; Zeng et al. 2019; Liu et al. 2020)
have been proposed and achieved great progress in terms
of the quality and speed. However, due to the limited re-
ceptive field along the temporal domain, these methods still
suffer from limitations of blurry and misplacement artifacts
in the completed video (Ren et al. 2022; Wu et al. 2023b). To
address these issues, the state-of-the-art methods (Cai et al.
2022; Lee et al. 2019; Li et al. 2020; Liu et al. 2021; Ren
et al. 2022; Seoung et al. 2019; Wu et al. 2023c; Zhang, Wu,
and Yan 2023) resort to the attention mechanism to explore
the long-term correspondences between frames. In this way,
the available content at distant frames can also be globally
propagated into the missing regions. Notably, the represen-
tative technique transformer (Cai et al. 2022; Liu et al. 2021;
Ren et al. 2022; Zeng, Fu, and Chao 2020; Cai et al. 2022;
Zhang, Fu, and Liu 2022) has gained increasing attention
from researchers of video inpainting field due to its remark-
able advantage of long-range modeling capacity. Typically,
these transformer-based methods first search coherent con-
tents from all the frames along both spatial and temporal di-
mensions by a patch-wise attention mechanism, and then uti-
lize the attention-weighted summation to generate the miss-
ing contents. It means that the attention retrieval accuracy
has become the main bottleneck limiting the inpainting per-
formance. Inaccurate attention retrieval will ignore relevant
content that is essential in video inpainting and introduce
more irrelevant content in the missing regions, resulting in
generating blurry or compromised contents (Zhang et al.
2023; Zhang, Fu, and Liu 2022).

In fact, due to the limitations of transmission media and
recording equipment, digital images and videos will in-
evitably be polluted by noise during the transmission and
recording process (Geng et al. 2022). Correspondingly, the
learned embeddings always contain noise. Therefore, to im-
prove the performance of video inpainting, it is promising
and necessary to explore the impact of noise on attention
computation. For this purpose, we theoretically certificate
that noise-contained inputs are disadvantageous to trans-
formers’ attention calculation. Then, to address above disad-
vantages caused by ubiquitous noise in video inpainting, we
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propose a novel wavelet transformer network by introduc-
ing the Discrete Wavelet Transform (DWT) (Mallat 1989),
dubbed as WaveFormer.

Concretely, unlike existing transformer-based video in-
painting methods that utilize the whole embedding to cal-
culate attention (Cai et al. 2022; Liu et al. 2021; Ren et al.
2022; Zhang, Fu, and Liu 2022), our WaveFormer first
adopts DWT to decompose the embedding used for the at-
tention calculation into low-frequency and high-frequency
components. By doing this, the noise existing in the em-
bedding can be explicitly separated into the high-frequency
components, making the low-frequency ones contain rela-
tively clean basic features. In this way, the calculation of
attention weight is only based on the low-frequency compo-
nents and the missing content regarding different frequen-
cies can be generated by sharing such attentions. Finally, the
completed low-frequency and high-frequency components
are aggregated to yield the final inpainting result through
Inverse Discrete Wavelet Transform (IDWT).

Substantial experiments show that our WaveFormer out-
performs the state-of-the-arts by a significant margin in
terms of PSNR and Ewarp (flow warping error) with rela-
tive improvements of 7.45% and 9.48%, respectively. More-
over, thanks to the robustness to noise, our method is able to
fill missing regions using the visually-plausible and spatial-
temporal coherent contents with fine-grained details. To sum
up, our contributions are summarized as follows:

• We theoretically demonstrate that noise always cause in-
ferior effect when calculating attention. To the best of our
knowledge, this is the first attempt to explore the factors
that affect the transformers’ attention calculation in the
video inpainting.

• We propose a novel WaveFormer by introducing the
DWT. It can calculate the attention on low-frequency
components and share it with the high-frequency com-
ponents, greatly mitigating the impact of noise on the at-
tention calculation.

• Experiments on two benchmark datasets, including
Youtube-vos (Xu et al. 2018) and DAVIS (Perazzi et al.
2016), demonstrate the superiority of our proposed
method in both quantitative and qualitative views.

Related Work
Video Inpainting
With the rapid development of deep learning (Shang et al.
2023; Gu et al. 2023; Shang et al. 2022), several deep
learning-based video inpainting methods have been pro-
posed recently. For instance, Wang et al. (Wang et al. 2019),
Kim et al. (Kim et al. 2019), and Chang et al. (Chang et al.
2019) employed the 3D temporal convolution and directly
aggregate the temporal information of neighbor frames to
reconstruct the missing contents. However, compared with
2D CNN, 3D CNN has relatively higher computational com-
plexities, limiting the application of these methods in the
real scenarios (Wu et al. 2023b; Ji et al. 2022; Liu, Li, and
Zhu 2022). To alleviate this issue, treating the video inpaint-
ing as a pixel propagation problem has been explored by

some works (Gao et al. 2020; Kang, Oh, and Kim 2022; Ke,
Tai, and Tang 2021; Li et al. 2022; Xu et al. 2019; Zou et al.
2021). In particular, they first exploit a deep flow completion
network to restore the flow sequence. Such a restored flow
sequence is used to guide the relevant pixels of neighbor-
ing frames to fill in the missing regions. Overall, although
these methods have shown promising results, they fail to
capture the visible contents of long-distance frames, result-
ing in poor inpainting performance in the scene with large
objects or slowly moving objects.

To effectively model the long-distance correspondence,
recent methods (Cai et al. 2022; Li et al. 2020; Ren et al.
2022; Seoung et al. 2019; Srinivasan et al. 2021) introduced
the attention module to retrieve information from neighbor-
ing frames and adopted weighted summing operation to gen-
erate missing contents. Among these methods, benefiting
from the advantages of long-range feature capture capacity,
transformer has shed light to the video inpainting commu-
nity. For example, Zeng et al. (Zeng, Fu, and Chao 2020)
proposed the first transformer model for video inpainting
by designing a multi-layer multi-head transformer. To im-
prove the edge details of missing contents, Liu et al. (Liu
et al. 2021) devised a new transformer model by intro-
ducing soft split and soft composition operations. In addi-
tion, Ren et al. (Ren et al. 2022) developed a novel Dis-
crete Latent Transformer (DLFormer) by formulating video
inpainting task into the discrete latent space. Meanwhile,
Zhang (Zhang, Fu, and Liu 2022) leveraged the motion dis-
crepancy exposed by optical flows to instruct the attention
retrieval in the transformer for high-fidelity video inpainting.
At the same time, Cai (Cai et al. 2022) designed a new De-
formed Vision Transformer (DeViT) with emphasis on bet-
ter patch-wise alignment and matching in video inpainting.

It is worth noting that these transformer-based video in-
painting methods ignore the impact of noise on attention
calculation, which inevitably leads to inaccurate attention re-
trieval. In our work, we expect to explore the mechanism of
noise works in the attention calculation and propose a novel
wavelet transformer network with noise robustness to im-
prove the accuracy of attention retrieval.

Discrete Wavelet Transform (DWT)
Thanks to the powerful time-frequency analysis capabil-
ity of DWT, more and more researchers expect to com-
bine it with deep learning to solve various computer vision
tasks. For example, Liu et al. (Liu et al. 2018) presented
a novel multi-level wavelet CNN to enlarge the receptive
field for a better trade-off between efficiency and restora-
tion performance. To preserve the original image details
while reducing computational cost in self-attention learning,
Yao et al. (Yao et al. 2022) formulated a invertible down-
sampling for wavelet transforms. Yu et al. (Yu et al. 2021)
proposed a wavelet-based inpainting network that can sep-
arately fills the missing regions of each frequency band.
These works show that combining wavelets and CNNs is
promising. However, to the best of our knowledge, the po-
tential of using wavelets to mitigate the influence of noise
on the attention calculation of transformer has not been well
validated, which is the major concern of this paper.
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Motivation
In this paper, we argue that noise is disadvantageous to the
transformers’ attention calculation, which greatly limits the
performance of video inpainting. Using the noise-contained
embeddings to calculate the attention will disregard the con-
tents related with the missing regions and increases unre-
lated contents filled into the missing regions during video
completion, leading to blurred or compromised missing con-
tents and hence suffer from the inferior inpainting results.
Theorem: Given n noise-contained features f i, whose di-
mension is h × w × c and value range from 0 to 1. For-
mally, f i can be denoted as the summation of the clean fea-
ture ei ∈ [0, 1]h×w×c and the noise oi ∈ [0, 1]h×w×c (Cheng
et al. 2021; Jia, Wong, and Zeng 2021; Pang et al. 2021), i.e.,
f i = ei + oi. Let rfi,j stands for the attention between noise-
contained features f i and f j , and rei,j denotes the attention
between ei and ej , which can be obtained as follows,

rfi,j =
exp(sfi,j)∑n
t=1 exp(s

f
i,t)

, rei,j =
exp(sei,j)∑n
t=1 exp(s

e
i,t)

, (1)

where sfi,j =
fi·f

T
j√

h×w×c
, sei,j =

ei·eTj√
h×w×c

. Essentially, the
value of ri,j represents the correlation extent between two
features. The correlation reaches maximum when ri,j = 1,
representing i-th feature is completely related to the j-th fea-
ture, and vice versa.

Based on above theory regarding attention, the following
theoretical statements hold:
• if rei,j → 0, then rei,j<rfi,j , i.e., the noise increases the

attention between unrelated contents;
• if rei,j → 1, then rei,j>rfi,j , i.e., the noise decreases the

attention between related contents.
Proof: According to the definition of the rfi,j , we have:

rfi,j =
exp(sfi,j)∑n
t=1 exp(s

f
i,t)

=
exp(f i · fTj )∑n
t=1 exp(f i · fTt )

. (2)

Simple algebra computations enable us to have,

rei,j
rfi,j

= rei,j

(∑n
t=1,̸=j exp(f i · fTt )

exp(f i · fTj )
+ 1

)
. (3)

Besides, as exp(x) is a monotonically increasing function
and its value ranges from 0 to 1, we have,

1 ≤ exp(f i · fTt ) ≤ e,

⇒ n− 1 ≤
n∑

t=1,̸=j

exp(f i · fTt ) ≤ (n− 1)e,

⇒ n− 1

e
≤
∑n

t=1,̸=j exp(f i · fTt )

exp(f i · fTj )
≤ (n− 1)e.

(4)

Since n is a finite real number, n−1
e and (n− 1)e are both

finite real numbers. Considering the convenience of the ex-
pression, we denote

∑n
t=1,̸=j exp(f i · fTt )

/
exp(f i · fTj ) re-

vealed in Eq.(3) and (4) as Fijt. For each statement of above
theorem, we can prove it as follows,

1) if rei,j → 0, we have,

rei,j (Fijt + 1) → 0, ⇒
rei,j
rfi,j

→ 0<1, ⇒ rei,j<rfi,j , (5)

2) if rei,j → 1, we have,

rei,j (Fijt + 1)>1, ⇒
rei,j
rfi,j

>1, ⇒ rei,j>rfi,j . (6)

Methodology
Formulation and Overview
Let X = {x1, x2, · · · , xT } be a corrupted video sequence
consisting of T frames with height H and width W. The
corresponding frame-wise masks are denoted as M =
{m1,m2, · · · ,mT }. For each mask mi, “0” indicates that
corresponding pixel is valid, and “1” denotes that the pixel
is missing or corrupted. The goal of video inpainting is to
generate an inpainted video sequence Ŷ = {ŷ1, ŷ2, · · · , ŷT },
which are spatially and temporally consistent with the orig-
inal video sequence Y = {y1, y2, · · · , yT }.

Based on the fact that the contents of missing regions
in one frame may exist in neighboring frames, existing
transformer-based methods (Cai et al. 2022; Liu et al. 2021;
Ren et al. 2022; Zhang, Fu, and Liu 2022; Yu, Fan, and
Zhang 2023; Zhang et al. 2023) usually formulate the video
inpainting task as a “multi-to-multi” conditional distribution
prediction problem as follows,

p(Ŷ|X) =
T∏

t=1

p(Ŷ
t+n

t−n|Xt+n
t−n,Mt+n

t−n), (7)

where Xt+n
t−n = {xt−n, · · · , xt, · · · , xt+n} stands for a short

clip of neighboring frames with a center moment t and a
temporal radius n, Mt+n

t−n denotes the mask clip regarding
Xt+n
t−n. In practice, these transformer-based methods usually

generate the missing contents by aggregating coherent con-
tents, which are searched by patch-based attention module
from all the frames along both spatial and temporal dimen-
sions. Therefore, the attention retrieval accuracy is an criti-
cal factor affecting the final inpainting performance.

Inevitably, digital images and videos are polluted by noise
during the transmission and recording process (Geng et al.
2022), resulting in the learned embeddings always con-
tain noise. In Sect., we have also theoretically confirmed
that noise can also have an adverse effect on transformer-
based video inpainting. For this purpose, we propose a
novel wavelet transformer network with noise robustness
to mitigate this adverse effect. As shown in Fig.1, the pro-
posed WaveFormer mainly consists of three parts: a frame-
level encoder, wavelet spatial-temporal transformer and a
frame-level decoder. Specifically, the frame-level encoder is
built by stacking multiple convolutional layers and residual
blocks with ReLUs as activation functions, aiming to extract
deep features from low-level pixels of each frame. Similarly,
the frame-level decoder is designed to decode inpainted fea-
tures into frames.
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Figure 1: Illustration of the proposed WaveFormer, consisting of 1) a frame-level encoder, 2) the wavelet spatial-temporal
transformer and 3) a frame-level decoder. Instead of using queries (Q) and keys (K) to directly calculate attention in existing
transformer-based methods, our WaveFormer employs Discrete Wavelet Transform (DWT) to separate the embedding into high-
frequency and low-frequency components. These separated low-frequency components are relatively clean, which are used to
calculate attention for video inpainting. In this way, the impact of noise on the attention weight is greatly mitigated.

Wavelet Spatial-Temporal Transformer
As the core component of our WaveFormer, wavelet spatial-
temporal transformer is designed to search coherent con-
tents from all the input frames with the aim of learning
spatial-temporal transformations for all missing regions in
the wavelet domain of the deep encoding space. Specifi-
cally, in the process of attention calculation, we introduce
DWT to separate noise into high-frequency components,
and then use low-frequency components to calculate atten-
tion. Finally, the calculated attention is shared with high-
frequency components to generate the missing content with
different frequencies. In this way, the impact of noise on at-
tention computation can be greatly mitigated. Essentially,
our wavelet spatial-temporal transformer also follows the
general pipeline of transformer design, namely embedding,
matching, and aggregating. We will introduce more details
of each step one by one as below.

Embedding: Embedding aims to map deep features into
key and memory, so as to establish deep correspondences for
each region in different semantic spaces (Ren et al. 2022).
Let F = {f1, f2, · · · , fT } denote the deep features encoded
by the frame-level encoder, where f i ∈ Rh×w×c. The three
basic elements of the attention mechanism are extracted
by the 1 × 1 convolution, including Q(query), K(key), and
V(value):

Qi, (Ki,Vi) = Mq(f i), (Mk(f i),Mv(f i)), (8)

where 1 ≤ i ≤ T . Mq(·), Mk(·) and Mv(·) denote the
1× 1 2D convolution.

Matching: Having obtained these three basic elements,
the coherent contents are searched by calculating the similar-
ity between patches. Specifically, we first decompose Qi, Ki

and Vi into corresponding low-frequency components and
high-frequency components by DWT, individually,

QL
i ,QH

i ; KL
i ,KH

i ; VL
i ,VH

i = DWT (Qi,Ki,Vi), (9)

where QL
i ,KL

i ,VL
i ∈ Rh

2 ×
w
2 ×c denote the low-frequency

components corresponding to Qi, Ki and Vi, mainly record-
ing principal information including the basic structures.
Similarly, QH

i ,KH
i ,VH

i ∈ R3×h
2 ×

w
2 ×c denote the high-

frequency components in horizontal, vertical and diagonal
directions, containing a very large proportion of data noise.

After obtaining the low-frequency components QL
i and

KL
i , we extract spatial patches of shape p1 × p2 × c from

QL
i and KL

i of each frame, denoted as qLi and kLi . Then, the
patch-wise similarities can be calculated by matrix multipli-
cation, denoted as

si,j =
qLi · (kLj )T√
p1 × p2 × c

, (10)

where 1 ≤ i, j ≤ N and N = T × h
p1

× w
p2

. A softmax
function is introduced to obtain the attention weights of all
patches,

ri,j =


exp(si,j)/

N∑
t=1

exp(si,t), qL
i ∈ Ω,

0, qL
i ∈ Ω̄,

(11)

where Ω and Ω denote visible regions and missing regions,
respectively. Naturally, we only borrow features from visible
regions to fill missing regions.

Aggregating: After modeling the deep correspondences
of all spatial patches, we share the calculated attention on the
low-frequency components with the high-frequency compo-
nents. The output of the query for the low-frequency and
high-frequency components of each patch can be obtained
by the attention-weighted summation of the values of related
patches, separately,

v̂Li =
N∑
j=1

ri,jvLj , v̂Hi =

N∑
j=1

ri,jvHj , (12)

where vLj and vHj denote the value of the low-frequency and
high-frequency components of the j-th patch, respectively.
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Methods
YouTube-VOS (Xu et al. 2018) DAVIS (Perazzi et al. 2016)

PSNR↑ SSIM↑ Ewarp ↓ LPIPS↓ PSNR↑ SSIM↑ Ewarp ↓ LPIPS↓
TCCDS (Huang et al. 2016) 23.418 0.8119 0.3388 1.9372 28.146 0.8826 0.2409 1.0079

VINet (Kim et al. 2020) 26.174 0.8502 0.1694 1.0706 29.149 0.8965 0.1846 0.7262
DFVI (Xu et al. 2019) 28.672 0.8706 0.1479 0.6285 30.448 0.8961 0.1640 0.6857

FGVC (Gao et al. 2020) 24.244 0.8114 0.2484 1.5884 28.936 0.8852 0.2122 0.9598
CPVINet (Lee et al. 2019) 28.534 0.8798 0.1613 0.8126 30.234 0.8997 0.1892 0.6560
OPN (Seoung et al. 2019) 30.959 0.9142 0.1447 0.4145 32.281 0.9302 0.1661 0.3876

STTN (Zeng, Fu, and Chao 2020) 28.993 0.8761 0.1523 0.6965 28.891 0.8719 0.1844 0.8683
FuseFormer (Liu et al. 2021) 29.765 0.8876 0.1463 0.5481 29.627 0.8852 0.1767 0.6706

E2FGVI (Li et al. 2022) 30.064 0.9004 0.1490 0.5321 31.941 0.9188 0.4579 0.6344
FGT (Zhang, Fu, and Liu 2022) 30.811 0.9258 0.1308 0.4565 32.742 0.9272 0.1669 0.4240

WaveFormer 33.264 0.9435 0.1184 0.2933 34.169 0.9475 0.1504 0.3137

Table 1: Quantitative results of video inpainting on YouTube-VOS (Xu et al. 2018) and DAVIS (Perazzi et al. 2016) datasets.

We piece all patches together to acquire V̂
L

i ∈ Rh
2 ×

w
2 ×c and

V̂
H

i ∈ R3×h
2 ×

w
2 ×c, and then generate the completed feature

f̂ i by IDWT:

f̂ i = IDWT (V̂
L

i , V̂
H

i ). (13)

Note that the proposed wavelet spatial-temporal trans-
former adopts a multi-head design, where different heads
are employed to calculate the attention weights of patches
with various sizes. In this way, the patches with large size
can apply global features to complete semantic background,
while the patches with small size can utilize local features
to generate detailed texture, thereby achieving high-quality
video inpainting. Furthermore, to fully exploit the power of
the proposed transformer, our WaveFormer stacks multiple
layers of the wavelet spatial-temporal transformer. Such a
design can use the updated region features in a single feed-
forward process to improve the results of attention to miss-
ing regions. The final inpainted frame ŷi can be obtained by
decoding f̂ i with the frame-level decoder.

Loss Function
The total loss of our WaveFormer consists of three terms,
i.e., the reconstruction term of the hole regions Lhole (Zeng,
Fu, and Chao 2020), the reconstruction term of the valid
regions Lval (Zeng, Fu, and Chao 2020) and the ad-
versarial term Ladv by using Temporal PatchGAN (T-
PatchGAN) (Chang et al. 2019) as a discriminator:

L = λholeLhole + λvalLval + λadvLadv, (14)

where λhole, λval and λadv are the trade-off parameters. In
real implementation, we empirically set these three parame-
ters as 3, 5 and 0.01.

Experiments
Experimental Setting
Datasets and Evaluation Metrics. Two most commonly-
used datasets are taken to verify the effectiveness of the
proposed method, including Youtube-vos dataset (Xu et al.
2018) and DAVIS dataset (Perazzi et al. 2016). The for-
mer contains 3,471, 474 and 508 video clips in training,
validation and test set, respectively. The latter is composed

of 60 video clips for training and 90 video clips for test-
ing. Following previous works, we report quantitative re-
sults by four metrics, including PSNR (Haotian et al. 2019),
SSIM (Zhang et al. 2022), LPIPS (Zhang et al. 2018) and
flow warping error Ewarp (Lai et al. 2018).
Mask Settings. In the real world, the applications of video
inpainting mainly include undesired object removal, scratch
restoration, watermark removal, etc. To simulate these ap-
plications, we evaluate the model with the following three
types of masks:
◦ Object mask: it is used to simulate applications like un-

desired object removal. Following FuseFormer (Liu et al.
2021), we employ the foreground object annotations in
DAVIS dataset as the testing object masks, which have
continuous motion and realistic appearance.

◦ Curve mask: it is composed of curves with continuous
motion, which is exploited to simulate applications like
scratch restoration. In our experiment, these curve masks
are sampled from FVI dataset (Chang et al. 2019).

◦ Stationary mask: it has an arbitrary shapes but a relatively
fixed position. The stationary mask is used to simulate
applications such as watermark removal, and its genera-
tion process follows previous work (Chang et al. 2019;
Zeng, Fu, and Chao 2020).

Experimental Results and Analysis
Quantitative Results. Quantitative results of video inpaint-
ing are reported on both YouTube-VOS and DAVIS. We se-
lect the most recent and the most competitive approaches as
the baselines, including TCCDS, VINet, CPVINet, DFVI,
FGVC, OPN, STTN, FuseFormer, E2FGVI and FGT. To en-
sure the comparability of experimental results, these base-
lines are fine-tuned several times based on their released
codes, and report their best results in this section.

As shown in Tab.1, the PSNR, SSIM, Ewarp and LPIPS of
our model substantially surpass all previous state-of-the-art
methods on YouTube-VOS and DAVIS. The superior results
demonstrate that our WaveFormer can generate the videos
with less distortion (PSNR and SSIM), more visually plau-
sible content (LPIPS) and better spatial and temporal co-
herence (Ewarp). Such a commendable performance verifies
the superiority of the proposed method.
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Figure 2: Qualitative results compared with E2FGVI (Li et al. 2022), STTN (Zeng, Fu, and Chao 2020), FuseFormer (Liu et al.
2021) ,and FGT (Zhang, Fu, and Liu 2022). Better viewed at zoom level 400%.
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Figure 3: Comparison of the feature maps before feeding
into transformer blocks between STTN (Zeng, Fu, and Chao
2020), FuseFormer (Liu et al. 2021) and our WaveFormer.

Qualitative Results. To visually inspect the visual results,
we choose four competitive methods, including E2FGVI,
STTN, FuseFormer and FGT, to conduct visual compar-
isons. Respectively, Fig.2 (a), Fig.2 (b) and Fig.2 (c) illus-
trates the scratch restoration case of curve masks, the wa-
termark removal case of stationary masks and the object
removal case of object masks. It can be observed that our
WaveFormer generates the missing contents with more accu-
rate structures and details than baselines in these three cases.

Furthermore, we also visualize the feature maps of
STTN, FuseFormer and WaveFormer before extracting spa-
tial patches for attention computation. As shown in the sec-
ond example (rollerblade) of Fig. 3, the texture structure of
text, windows and walls in the feature map generated by
STTN is completely destroyed. Although the texture struc-

0%

10%

20%

30%

40%

50%

rank 1 rank 2 rank 3

STTN FuseFormer E2FGVI FGT Ours

Figure 4: User study. “rank x” means the percentage of re-
sults from each model being chosen as the x-th best.

ture of text in the feature map produced by FuseFormer is re-
tained, the texture structure of windows and walls has been
totally broken by strong noise. Compared with these two
most competitive approaches, our WaveFormer produces the
feature map with a cleaner background and a more complete
texture structure. It is easy to figure out the text, window
and wall in our feature map. Such a distinct background tex-
ture leads to more accurate attention retrieval in the trans-
former block, thus naturally producing better visual quality.
The above observations illustrate that noise accumulation
destroys the texture structure used for attention retrieval, and
our WaveFormer relieves this drawback to some extent. We
believe that this is the reason why our WaveFormer has bet-
ter inpainting performance.
User Study. In order to further make a comprehensive com-
parison, we conduct a user study of the inpainting results
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(a) Parkour (b) Train

Figure 5: Visual comparison of the feature maps sourced from clean and noisy video frame, where the first, second and third
rows are the clean frames, frame with Gaussian noise and frame with Salt & pepper noise, respectively. Best viewed in zoom.

of the five competitive approaches, including STTN, Fuse-
Former, E2FGVI, FGT and WaveFormer. We invited 20 vol-
unteers to perform a questionnaire survey for 10 videos from
the DAVIS dataset. In each inquiry, we asked volunteers to
choose the video for which they think the inpainting re-
sults are best. To ensure the reliability of subjective evalu-
ations, the inpainting results obtained by the five methods
were scrambled at each interrogation, and each video can be
played multiple times. The results of the user study are con-
cluded in Fig. 4. As we can see, volunteers obviously favor
our results compared with other competitors.

Ablation Study
Noise-robustness. Fig. 5 shows the feature maps with noisy
frames as inputs in two representative example, where the
first row reveals the feature map produced when using the
clean frame from DAVIS dataset as inputs, and the next
two rows display the feature map generated when using
the frame added with Gaussian and Salt & pepper noise
as inputs. As shown in Fig. 5, we can find that it is dif-
ficult for STTN and FuseFormer to suppress noise, while
WaveFormer could suppress the noise and maintain the
background structure during its inference. For example, in
Fig. 5(a), the building structure in the two feature maps gen-
erated by STTN and WaveFormer is complete, when the
clean parkour frame is fed. After the frame is superposed
with Gaussian or salt & pepper noise, the feature map of
STTN contains very strong noise, and the building structure
vanishes, while the basic structure could still be observed
from our WaveFormer. Similarly, in Fig. 5(b), the feature
map of FuseFormer also contains strong noise, and the rail-
way structure disappears, while WaveFormer can still ob-
serve the railway structure. such results indicate that Wave-
Former is robust to different noises.
The Impact of Noise. To further verify the impact of noise
on attention calculation, we use DWT to separate the noise
from the embedding used for attention calculation in the
STTN and FuseFormer, and compare them with its orig-
inal versions. Here, the improved STTN and FuseFormer
are labeled STTN Wave and FuseFormer Wave. As shown
in Tab.2, STTN Wave and FuseFormer Wave are obviously
superior to original STTN and FuseFormer in all evaluation
metrics. These results demonstrate the effectiveness and ne-
cessity of noise removal in attention calculation.

Methods PSNR↑ SSIM↑ Ewarp ↓ LPIPS↓
STTN 28.993 0.8761 0.1523 0.6965

STTN Wave 30.012 0.8917 0.1509 0.6631
FuseFormer 29.765 0.8876 0.1463 0.5481

FuseFormer Wave 31.171 0.8995 0.1429 0.5236
w/o DWT 31.326 0.9259 0.1299 0.3471
Full model 33.264 0.9435 0.1184 0.2933

Table 2: Impact of noise on attention computation.

Methods STTN FuseFormer E2FGVI FGT WaveFormer
FLOPs 477.91G 579.82G 442.18G 455.91G 349.71G
Time 0.22s 0.30s 0.26s 0.39s 0.18s

Table 3: Efficiency analysis.

Efficiency analysis. In addition, we compare the efficiency
of WaveFormer with STTN, FuseFormer, E2FGVI and FGT
by using FLOPs and inference time. Since the FLOPs in
video inpainting are related to the simultaneous processing
of the temporal size (number of frames), we set the tempo-
ral size to 20 following to previous works (Liu et al. 2021;
Zeng, Fu, and Chao 2020; Zhang, Fu, and Liu 2022). And
the runtime is measured on a single Titan RTX GPU. The
compared results are shown in Tab. 3. The inference speed
of the proposed method is the fastest, improving 0.04s over
the optimal baseline—STTN. Besides, WaveFormer holds
the lowest FLOPs in contrast to all other methods.

Conclusion
In this work, we theoretically proved that noise reduces
the attention to relevant contents and increases the atten-
tion to irrelevant contents when generating the missing re-
gions. Based on this fact, we propose a novel transformer
network by introducing the DWT, named WaveFormer. Our
WaveFormer uses DWT to separate the noise existing in the
embedding into high-frequency components, and employs
relatively clean low-frequency components to calculate at-
tention weight, thereby mitigating the impact of noise on the
calculation of attention weight to the greatest extent. Experi-
ments demonstrate the superior performance of the proposed
WaveFormer both quantitatively and qualitatively.
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