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Abstract

The Sign Language Production (SLP) project aims to automat-
ically translate spoken languages into sign sequences. Our ap-
proach focuses on the transformation of sign gloss sequences
into their corresponding sign pose sequences (G2P). In this
paper, we present a novel solution for this task by converting
the continuous pose space generation problem into a discrete
sequence generation problem. We introduce the Pose-VQVAE
framework, which combines Variational Autoencoders (VAEs)
with vector quantization to produce a discrete latent representa-
tion for continuous pose sequences. Additionally, we propose
the G2P-DDM model, a discrete denoising diffusion archi-
tecture for length-varied discrete sequence data, to model the
latent prior. To further enhance the quality of pose sequence
generation in the discrete space, we present the CodeUnet
model to leverage spatial-temporal information. Lastly, we
develop a heuristic sequential clustering method to predict
variable lengths of pose sequences for corresponding gloss
sequences. Our results show that our model outperforms state-
of-the-art G2P models on the public SLP evaluation bench-
mark. For more generated results, please visit our project page:
https://slpdiffusier.github.io/g2p-ddm.

Introduction
Sign Language Production (SLP) is a crucial task for the
Deaf community, involving the provision of continuous sign
videos for spoken language sentences. Due to the distinct
linguistic systems between sign languages and spoken lan-
guages (Pfau, Salzmann, and Steinbach 2018), sign languages
have different sign orders, making direct alignment map-
ping between them challenging. To address this issue, prior
works first translate spoken languages into glosses1, followed
by generating sign pose sequences based on the gloss se-
quences (G2P)(Saunders, Bowden, and Camgöz 2020; Saun-
ders, Camgöz, and Bowden 2020). Finally, the generated sign
pose sequence can optionally be used to produce a photo-
realistic sign video(Saunders, Camgoz, and Bowden 2020).
As such, G2P is the crucial procedure of this task, and this
paper focuses on it.
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Intelligence (www.aaai.org). All rights reserved.

1Sign glosses are minimal lexical items that match the meaning
of signs and correspond to spoken language words.
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Figure 1: The forward diffusion process applied to a pose
sequence. The first line (t=0) represents the original pose
sequence. From top to bottom (t from 0 to T), the level of
noise increases gradually.

Existing G2P methods can be broadly categorized
as autoregressive (Saunders, Bowden, and Camgöz
2020; Saunders, Camgöz, and Bowden 2020) or non-
autoregressive (Huang et al. 2021), depending on their decod-
ing strategies. Autoregressive models generate the next pose
frame based on previous frames, utilizing the teacher forc-
ing strategy (Williams and Zipser 1989). However, during
inference, recurrent decoding can lead to error propagation
over time due to exposure bias (Schmidt 2019). To over-
come this bottleneck, non-autoregressive methods have been
proposed to enable the decoder to generate all target predic-
tions simultaneously (Gu et al. 2018; Ghazvininejad et al.
2019). Huang et al. (Huang et al. 2021) introduced a non-
autoregressive G2P model that generates sign pose sequences
in a one-shot decoding scheme, using an External Aligner
(EA) for sequence alignment learning.

Inspired by the remarkable results achieved by the recently
developed Discrete Denoising Diffusion Probabilistic Mod-
els (D3PMs) (Hoogeboom et al. 2021; Austin et al. 2021;
Gu et al. 2021) for language and vector quantized image
generation, we propose a two-stage approach in this paper.
Our method involves transforming the continuous pose se-
quence into discrete tokens and modeling the discrete prior
space using the denoising diffusion architecture. The pro-
posed method is an iterative non-autoregressive approach
that performs parallel refinement on the generated results,
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demonstrating expressive generative capacity.

We elaborate our approach in three steps. Firstly, we rep-
resent the pose sequence as sequential latent codes using a
vector quantized variational autoencoder (VQ-VAE). Unlike
image VQ-VAE (Esser, Rombach, and Ommer 2021; van den
Oord, Vinyals, and Kavukcuoglu 2017), we propose a specific
architecture, Pose-VQVAE, that divides the sign skeleton into
three local point patches representing pose, right hand, and
left hand separately. Additionally, we use a multi-codebook
to maintain separated latent embedding space for each local
patch, resulting in stronger feature semantics. This approach
eases the difficulty in constructing mappings between the
sign pose feature and the codebook feature, thus improving
reconstruction quality.

Next, we present G2P-DDM, which extends the standard
discrete diffusion models (Austin et al. 2021; Gu et al. 2021)
to model the sequential alignments between sign glosses and
quantized codes of pose sequences. This approach employs a
discrete diffusion model that samples the data distribution by
reversing a forward diffusion process that gradually corrupts
the input via a fixed Markov chain. The corruption process,
depicted in Figure 1, achieved by adding noise data (e.g.,
[MASK] token), draws our attention to the mask-based gener-
ative model, Mask-Predict (Ghazvininejad et al. 2019), which
has been shown to be a variant of the diffusion model (Austin
et al. 2021). We explore two variants of the diffusion model
for variable-length sequence generation. To better leverage
the spatial and temporal information of the quantized pose se-
quences, we introduce a new architecture, CodeUnet, which
is a ”fully transformer network” designed for discrete tokens.
Through iterative refinements and improved spatial-temporal
modeling, our model achieves a higher quality of conditional
pose sequence generation.

Finally, we address the challenging task of length predic-
tion in non-autoregressive G2P models, as the corresponding
lengths of different sign glosses are variable. To tackle this
issue, we propose a novel clustering method for this specific
sequential data that local adjacent frames should belong to a
cluster. Taking advantage of the meaningful learned codes in
the first stage, we apply the k-nearest-neighbor-based density
peaks clustering algorithm (Du, Ding, and Jia 2016; Zeng
et al. 2022) to locate peaks with higher local density. We then
design a heuristic algorithm to find the boundary between
two peaks based on their semantic distance with the two peak
codes. Finally, we leverage the length of each gloss as ad-
ditional supervised information to predict the length of the
gloss sequence during inference.

Our proposed model demonstrates significant improve-
ment in the generation quality on the challenging RWTH-
PHOENIX-WEATHER-2014T (Camgöz et al. 2018) dataset.
The evaluation of conditional sequential generation is per-
formed using a back-translated model. Extensive experi-
ments show that our model increases the WER score from
82.01%(Huang et al. 2021) to 77.26% for the generated
pose sequence to gloss sequence, and the BLEU score from
6.66(Huang et al. 2021) to 7.50 for the generated pose se-
quence to spoken language.

Related Works
Sign Language Production. Most sign language works
focus on sign language recognition (SLR) and translation
(SLT) (Camgöz et al. 2018, 2020; Camgöz et al. 2020; Zhou
et al. 2022; Xie, Zhao, and Hu 2021; Hu et al. 2021), aiming
to translate the video-based sign language into text-based
sequences. And few attempts have been made for the more
challenging task of sign language production (SLP) (Stoll
et al. 2018; Xiao, Qin, and Yin 2020). Stoll et al. proposed the
first deep SLP model, which adopts the three-step pipeline.
In the core process for G2P, they learn the mapping between
the sign glosses and the skeleton poses via a look-up table.
After that, B. Saunders et al. (Saunders, Camgöz, and Bow-
den 2020) proposed the progressive transformer to learn the
mapping with an encoder-decoder architecture and generate
the sign pose in an autoregressive manner in the inference.
Further, B. Saunders et al. (Saunders, Camgoz, and Bow-
den 2020) proposed a Mixture Density Network (MDN) to
generate the pose sequences condition on the sign glosses
and utilize a GAN-based method (Chan et al. 2019) to pro-
duce the photo-realistic sign language video. B. Saunders et
al. (Saunders, Camgöz, and Bowden 2021) translated the
spoken language to sign language representation with an
autoregressive transformer network and used the gloss infor-
mation to provide additional supervision. Then they proposed
a Mixture of Motion Primitives(MoMP) architecture to com-
bine distinct motion primitives to produce a continuous sign
language sequence. B. Saunders et al. (Saunders, Camgoz,
and Bowden 2022) propose a novel Frame Selection Network
(FS-NET) to improve the temporal alignment of interpolated
dictionary signs and SIGNGAN, a pose-conditioned human
synthesis model that produces photo-realistic sign language
videos direct from skeleton pose. Although they achieved
state-of-the-art results, they used an additional sign language
dictionary (Hanke et al. 2010), meaning that each sign vo-
cabulary has a corresponding pose sequence. Therefore, this
paper did not compare their results.

Different from these methods, Huang et al. (Huang et al.
2021) proposed a non-autoregressive model to parallelly gen-
erate the sign pose sequence avoiding the error accumulation
problem. They applied the monotonic alignment search (Kim
et al. 2020) to generate the alignment lengths of each gloss.
Our model also explores a non-autoregressive method with a
diffusion strategy, and the adopted diffusion model architec-
ture allows us to refine the results with multiple iterations.
Discrete Diffusion Models. Most previous works focus on
Gaussian diffusion processes that operate in continuous state
spaces (Dhariwal and Nichol 2021; Ho, Jain, and Abbeel
2020; Ho et al. 2022; Nichol and Dhariwal 2021; Rombach
et al. 2021). The discrete diffusion model is first introduced
in (Sohl-Dickstein et al. 2015), and it is applied to text gener-
ation in Argmax Flow (Hoogeboom et al. 2021). To improve
and extend the discrete diffusion model, D3PM (Austin et al.
2021) used a structured categorical corruption process to
shape data generation and embed structure in the forward
process. VQ-Diffusion (Gu et al. 2021) applied the discrete
diffusion model to conditional vector quantized image syn-
thesis with a mask-and-replace diffusion strategy. Upon this
work, we extend this diffusion strategy with more special
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Figure 2: The architecture of the first stage model Pose-VQVAE for learning the discrete latent codes.

states to length-varied discrete sequence data and introduce
an Unet-like “fully transformer” network to model spatial-
temporal space.

The Proposed Method
Our paper aims to improve the generation of conditional
sign pose sequences through an enhanced discrete diffusion
model. Our approach consists of three key components: the
Pose-VQVAE for latent code learning, the G2P-DDM with
CodeUnet for prior learning to generate discrete codes, and
a sequential-KNN algorithm for length prediction in a non-
autoregressive approach.

Pose VQ-VAE
In this section, we introduce how to tokenize the points of
a sign pose skeleton into a set of discrete tokens. A naive
approach is to treat per point as one token. However, such a
points-wise reconstruction model tends to have tremendous
computational cost due to the quadratic complexity of self-
attention in Transformers. On the other hand, since the details
of hand points are essential for sign pose understanding, treat-
ing all the points into one token leads to remarkably inferior
reconstruction performance. To achieve a better trade-off be-
tween quality and speed, we propose a simple yet efficient
implementation that groups the points of a sign skeleton into
three local patches, representing pose, right hand, and left
hand separately. Figure 2 illustrates the framework of our pro-
posed Pose-VQVAE model with the following submodules.
Encoder. Given a sign pose sequence of N frames s =
(s1, s2, ..., sn, ..., sN ) ∈ RN×J×K , where {xj

n}Jj=1 presents
a single sign skeleton containing J joints and K denotes
the feature dimension for human joint data. We separate
these points into three local paths, sp ∈ RN×(Jp×K), sr ∈
RN×(Jr×K), and sl ∈ RN×(Jl×K) for the pose, right hand,
and left hand, respectively, where J = Jp + Jr + Jl. In
the encoder module E(e|s), we first transform these three
point sequences into feature sequences by simple three lin-
ear layers and concatenate them together. Then we apply a
spatial-temporal Transformer network to learn the long-range
interactions within the sequential point features. Finally, we
arrive at the encoded features {en ∈ R3×h}Nn=1.
Multi-Codebook. Similar to image VQ-VAE (van den
Oord, Vinyals, and Kavukcuoglu 2017), we take the en-
coded features as inputs and convert them into discrete to-
kens. Specifically, we perform the nearest neighbors method
Q(z|e) to quantize the point feature to the quantized features

{zn ∈ R3×h}Nn=1. The quantized features are maintained by
three separate codebooks, where each codebook is of size V .
Decoder. The decoder D(s̃|z) receives the quantized features
as inputs and also applies spatial-temporal Transformer to get
the output features {on ∈ R3×h}Nn=1. Finally, we separate
the output feature for three sub-skeleton and utilize a struc-
tured prediction layer (SPL) (Aksan, Kaufmann, and Hilliges
2019) P(s̃|o) to reconstruct the corresponding sub-skeleton
s̃p ∈ RN×(Jr×K), s̃l ∈ RN×(Jr×K), and s̃r ∈ RN×(Jr×K).
We adopt the SPL to rebuild the skeleton from feature be-
cause it explicitly models the spatial structure of the human
skeleton and the spatial dependencies between joints. The hi-
erarchy chains of the pose, right hand, and left hand skeleton
are given in the Appendix.
Training. The encoder E(e|s), tokenizer Q(z|e), and de-
coder D(s̃|z) can be trained end-to-end via the following
loss function:

LPose-VQVAE =||sp − s̃p||+ ||sr − s̃r||+ ||sl − s̃l||+
||sg[e]− z||+ β||sg[z]− e||, (1)

where sg[·] stands for stop-gradient operation.

G2P-DDM with CodeUnet
To allow conditional sampling, a discrete diffusion model is
trained on the latent codes obtained from the Pose-VQVAE
model. Figure 3 shows the architecture of our proposed G2P-
DDM, which aims to model the latent space in an iterative
non-autoregressive manner.

Given a sequence of latent codes x0 ∈ RN×3 obtained
from the vector quantized model, where x(i,j)

0 ∈ {1, 2, ..., V }
at location (i, j) represents the index within the codebook.
The diffusion process aims to corrupt the original data x0 via
a fixed Markov chain p(xt|xt−1) by adding a small amount
of noise continuously. After a fixed T timesteps, it produces a
sequence of increasingly noisy data x1, .., xT with the same
dimensions as x0, and xT becomes a pure noise sample.

For the scalar discrete variables with V categories x(i,j)
t ∈

[1, V ], the forward transition probabilities from xt−1 to xt

can be represented by matrices [Qt]mn = q(xt = m|xt−1 =
n) ∈ RV×V . Note that we omit the superscripts (i, j) to
avoid confusion. Then the forward diffusion process can be
written as:

q(xt|xt−1) = xT
t Qtxt−1, (2)
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Figure 3: Our approach uses a discrete diffusion model to represent the conditional sign pose sequence generation. Specifically,
each quantized code is randomly masked or replaced, and a CodeUnet model is trained to restore the original data.

where xt ∈ RV×1 is the one-hot version of xt and Qtxt−1

is the categorical distribution for xt. A nice property of the
above Markov diffusion process is that we can sample xt as
any timestep directly from x0 as:

q(xt|x0) = xT
t Q̄tx0,with Q̄t = Qt . . . Q1. (3)

D3PM (Austin et al. 2021) formulates the transition ma-
trix Qt ∈ RV×V by introducing a small number of uniform
noises to the categorical distribution. Based on D3PM, VQ-
Diffusion (Gu et al. 2021) proposes a mask-and-replace diffu-
sion strategy that not only replaces the previous value but also
inserts [MASK] token to explicitly figure out the tokens that
have been replaced. We extend this mask-and-replace strategy
to our variable-length sequence modeling. Since the length of
pose sequences may be different in a minibatch, we have to
add two special tokens, [MASK] and [PAD] tokens, so each
token has V + 2 states. The mask-and-replace diffusion pro-
cess can be defined as follows: each token has a probability
of αt to be unchanged, V βt to be uniformly resampled, and
γt = 1−αt − V βt to be replaced with [MASK] token. Note
that [MASK] and [PAD] tokens always keep their own state.
The transition matrix Qt ∈ R(V+2)×(V+2) is formulated as
the second matrix of the following:

Qt =



αt + βt βt · · · βt 0 0
βt αt + βt · · · βt 0 0
...

...
. . .

...
...

...
βt βt · · · αt + βt 0 0
γt γt · · · γt 1 0
0 0 · · · 0 0 1

 . (4)

Finally, the categorical distribution of xt can be derived as

following using reparameterization trick:

whenx0 ̸= V + 2, Q̄tx0 =


ᾱt + β̄t, xt = x0

β̄t, xt ̸= x0 and xt ≤ V

γ̄t, xt = V + 1

0, xt = V + 2

whenx0 = V + 2, Q̄tx0 =

{
0, xt ̸= V + 2

1, xt = V + 2

(5)
where ᾱt =

∏t
i=1 αi, γ̄t = 1 −

∏t
i=1(1 − γi), and β̄t =

(1− ᾱt− γ̄t)/V . Therefore, we can directly sample xt within
the computation cost O(V ). A visualized example of the
diffusion process is shown in Figure 1, we first get the noised
latent codes by q(xt|xt) and decode them to sign skeleton
with Pose-VQVAE decoder module.

The reverse denoising process is similar to D3PM (Austin
et al. 2021) and VQ-Diffusion (Gu et al. 2021). The relevant
derivation process is given in the appendix.
CodeUnet for Model Learning. Most image diffusion mod-
els (Dhariwal and Nichol 2021; Ho, Jain, and Abbeel 2020;
Song et al. 2021) adopt the Unet (Ronneberger, Fischer, and
Brox 2015) as their architectures since it is effective for data
with spatial structure. However, directly applying the Unet
in discrete sequence generation, e.g., text generation (Austin
et al. 2021) and quantized image synthesis (Gu et al. 2021),
will bring information leakage problem since the convolu-
tion layer over adjacent tokens may provide shortcuts for
the mask-based prediction (Nawrot et al. 2021). Therefore,
Austin et al. (Austin et al. 2021) and Gu et al (Gu et al.
2021) used the token-wise Transformer framework to learn
the distribution pθ(x̃0|xt, c). In this work, to incorporate the
advantages of Unet and Transformer networks, we propose a
novel architecture, CodeUnet, to learn the spatial-temporal
interaction for our quantized pose sequence generation.

As shown in Figure 3, the CodeUnet consists of a con-
tracting path (left side), an expansive path (right side), and a
middle module. The middle module is an encoder-decoder
Transformer framework. The encoder consists of 6 Trans-
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former blocks. It takes the gloss sentence as input and ob-
tains a conditional feature sequence. The decoder has two
blocks. Each block has a self-attention, a cross-attention, a
feed-forward network, and an Adaptive Layer Normaliza-
tion (AdaLN) (Ba, Kiros, and Hinton 2016; Gu et al. 2021).
The AdaLN operator is devised to incorporate timestep t in-
formation as AdaLN(h, t) = αtLayerNorm(h) + βt, where
h is the intermediate activations, αt and βt are obtained from
a linear projection of the timestep embedding.

The contracting and expansive paths are hierarchical struc-
tures, and each level has two Transformer encoder blocks. For
downsampling in contracting path, given the feature of quan-
tized pose sequence, e.g., h ∈ RN×3×dmodel , where dmodel is
the feature dimension, we first sample uniformly with stride 2
in the temporal dimension and remain constant in the spatial
dimension. Then we set the downsampled feature as query
Q ∈ RN/2×3×dmodel , and keep key K and value V unchanged
for the following attention network. In the upsampling of
the expansive path, we directly repeat the feature 2 times
as a query, but the key and value remain for the following
attention network:

∀n = 1, ..., N,Qup
n = hn//2,K

up = V up = h, (6)
where ·//· denotes floor division. Finally, a linear layer and
a softmax layer are applied to make the prediction.

Length Prediction with Sequential-KNN
In this section, inspired by (Zeng et al. 2022), which merges
tokens with similar semantic meanings from different loca-
tions, we propose a novel clustering algorithm to get the
lengths for corresponding glosses. Specifically, given a token
sequence that is obtained from the Pose-VQVAE model, we
compute the local density ρ of each token according to its
k-nearest-neighbors:

ρi = exp(− 1

k

∑
zj∈KNN(zi)

∥zi − zj∥22), where |i− j| <= l (7)

where i, j is the position in the sequence, and l is a predefined
hyperparameter indicating that we only consider the local
region since the adjacent tokens are more likely to belong to
a gloss. zi and zj are the latent feature for ith and jth tokens.
KNN(xi) represents the k-nearest neighbors for ith token.

We assign {p1, ..., pM} positions with a higher local den-
sity as the peaks, where M is the length of the gloss sequence.
Then between two adjacent peaks, for example, p1 and p2, we
sequentially iterate from p1 to p2 and find the first position
that is farther from zp1

and closer to zp2
, which is the bound-

ary we determined. After finding these boundaries, we get the
lengths of the contiguous pose sequence for its correspond-
ing glosses. As shown in Figure 3, we define the obtained
lengths as {L1, .., LM}, and the Transformer encoder for
gloss sequence is trained under the supervised information
of lengths. For each gloss word, we predict a number from
[1, P ], where P is the maximum length of the target pose
sequence. Mathematically, we formulate the classification
loss of length prediction as:

Llen =
δ

M

M∑
i

P∑
j

(−Li = j) log p(Li|c). (8)

In the training of the discrete diffusion mode, Llen is trained
together with a coefficient δ. In the inference, we predict the
length of glosses, and their summation is the length of the
target pose sequence.

In summary, we arrive at our proposed two-stage approach,
G2P-DDM, with the first-stage Pose-VQVAE model and the
second-stage discrete diffusion model with a length predictor.

Experiments

Datasets. We evaluate our G2P model on RWTH-PHOENIX-
WEATHER-2014T dataset (Camgöz et al. 2018). It is the only
publicly available SLP dataset with parallel sign language
videos, gloss annotations, and spoken language translations.
This corpus contains 7,096 training samples (with 1,066 dif-
ferent sign glosses in gloss annotations and 2,887 words in
German spoken language translations), 519 validation sam-
ples, and 642 test samples.
Evaluation Metrics. Following the widely-used setting in
SLP (Saunders, Camgöz, and Bowden 2020), we adopt the
back-translation method for evaluation. Specifically, we uti-
lize the state-of-the-art SLT (Camgöz et al. 2020) model to
translate the generated sign pose sequence back to gloss se-
quence and spoken language, where its input is modified as
pose sequence. Specifically, we compute BLEU (Papineni
et al. 2002) and Word Error Rate (WER) between the back-
translated spoken language translations and gloss recognition
results with ground truth spoken language and gloss sequence.
Although this evaluation method may introduce noise, it is
currently the prevailing approach in SLP models, and we
adopt it to ensure a fair comparison with existing methods.
Data Processing. Since the RWTH-PHOENIX-WEATHER-
2014T dataset does not contain pose information, we generate
the pose sequence as the ground truth. Following B. Saunders
et al. (Saunders, Camgöz, and Bowden 2020), we extract
2D joint points from sign video using OpenPose (Cao et al.
2021) and lift the 2D joints to 3D with a skeletal model
estimation improvement method (Zelinka and Kanis 2020).
Finally, similar to (Stoll et al. 2018), we apply skeleton
normalization to remove the skeleton size difference between
different signers.
Model Settings. The Pose-VQVAE consists of an Encoder, a
Tokenizer, and a Decoder. The Encoder contains a linear layer
to transform pose points to a hidden feature with a dimension
set as 256, a 3-layer Transformer module with divided space-
time attention (Bertasius, Wang, and Torresani 2021). The
Tokenizer maintains a codebook with a size set as 2,048.
The Decoder contains the same 3-layer Transformer module
as the Encoder and an SPL layer to predict the structural
sign skeleton. For the discrete diffusion model, we set the
timestep T as 100. All Transformer blocks of CodeUnet have
dmodel=512 and Ndepth=2. The size of the local region l in
Eq. (7), is set as 16, which is the average length of a gloss.
And the number of nearest neighbors k is set as 16. We train
the model on 8 NVIDIA Tesla V100 GPUs. We include all
hyperparameters settings and the details of implementation
in the Appendix.
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Method WER BLEU-1 BLEU-2 BLEU-3 BLEU-4 DTW-MJE

PTR† (Saunders, Camgöz, and Bowden 2020) 94.65 11.45 7.08 5.08 4.04 0.191
NAT-AT (Huang et al. 2021) 88.15 14.26 9.93 7.11 5.53 0.177
NAT-EA (Huang et al. 2021) 82.01 15.12 10.45 7.99 6.66 0.146

G2P-AR (Ours) 85.27 14.26 10.02 7.57 5.94 0.172
G2P-MP (Ours) 79.38 15.43 10.69 8.26 6.98 0.146

G2P-DDM (Ours) 77.26 16.11 11.37 9.22 7.50 0.116
GT† 55.93 24.12 16.77 12.80 10.58 0.0

Table 1: Quantitative results for the G2P task on the RWTH-PHOENIX-WEATHER-2014T test dataset. † indicates the results is
provided by Huang et al. (Huang et al. 2021). Note that, GT refers to the validation metrics obtained by using the original pose
sequence extracted from the video and then applying a back-translation method.

Comparisons with State-of-the-Art Methods
Competing Methods. We compare our G2P-DDM with pre-
vious state-of-the-art G2P models. Progressive Transformer
(PTR) (Saunders, Camgöz, and Bowden 2020) is the first SLP
model to tackle the G2P problem in an autoregressive man-
ner. Since they use the ground-truth first sign pose frame and
timing information, their reported results are not compara-
ble to ours. Thus we adopt the results reported by Huang et
al. (Huang et al. 2021). NAT-EA (Huang et al. 2021) pro-
poses a non-autoregressive method to directly predict the
target pose sequence with the External Aligner (EA) to learn
alignments between glosses and pose sequences. NAT-AT is
the NAT model without EA that uses the decoder-to-encoder
attention to learn the alignments.
Quantitative Comparison. The comparison between our
G2P-DDM and the competing methods is shown in Tabel 1.
Note that, the evaluation results of the GT† are lower than
the reported results in the state-of-the-art SLT (Camgöz et al.
2020) model. This is because the evaluation results obtained
using the pose sequence are inferior to those obtained us-
ing photo-realistic content (Saunders, Camgoz, and Bowden
2022).

The row of G2P-AR refers to the vector quantized
model with an autoregressive decoder. The row of G2P-
MP refs to the vector quantized model with the Mask-
Predict (Ghazvininejad et al. 2019) strategy, which is also
a variant of discrete diffusion model (Austin et al. 2021).
G2P-DDM refs to the vector quantized model with mask-
and-replace diffusion strategy. As indicated in Table 1, both
diffusion-based models outperform the state-of-the-art G2P
models with relative improvements on WER score by 5.7%
(82.01 → 77.26) and on BLEU-4 by 12.6% (6.66 → 7.50).
This shows the effectiveness of the iterative mask-based non-
autoregressive method on the vector quantized pose sequence.
In addition, the Mask-Predict strategy is a mask-only strategy
similar to G2P-DDM with γ̄T = 1. Therefore, G2P-DDM
achieves better performance than G2P-MP. This reflects that
the mask-and-replace strategy is superior to the mask-only
strategy.

Model Analysis and Discussions
We also investigate the effects of different components and
design choices of our proposed model.

Figure 4: Visulization of latent vectors in the shared codebook
and separated codebooks. In the separated codebook, the pink
part is for the pose, and the green and orange parts represent
the left and right hands, respectively.
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Figure 5: Ablation on the design of prediction model.

Analysis of The Design of Pose-VQVAE. As shown in Ta-
ble 2, we study the design of our Pose-VQVAE model. Pose-
VQVAE-joint-shared means we compress all points into one
token with one shared codebook. Pose-VQVAE-separated-
shared means the points are separated into three local patches
according to the structure of a sign skeleton, and the latent
embedding space is maintained with one shared codebook.
Pose-VQVAE-separated-separated means the points are sep-
arated into three local patches, and the latent vectors are
maintained with three codebooks separately.

Experimental results in Table 2 show that Pose-VQVAE-
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Figure 6: G2P qualitative results. We show several examples of generated sign pose sequences compared with Pose-VQVAE and
previous G2P model (Saunders, Camgöz, and Bowden 2020). For readability, we sampled every 5 frames for a total of 16 frames.
See the Appendix for more results.

local patches codebook (size) MSE (↓) WER (↓)
joint shared (2048) 0.0242 -

separated shared (2048) 0.0139 78.21
separated shared (3072) 0.0131 78.15
separated separated (1024*3) 0.0113 77.26

Table 2: Ablation on the design of Pose-VQVAE reconstruc-
tion model.

Training Steps

In
fe

r.
St

ep
s 20 50 100 200

20 79.53 79.40 78.25 78.62
50 - 79.31 77.69 78.23
100 - - 77.26 78.18
200 - - - 78.15

Table 3: Ablation on training steps and inference steps.

separated-separated achieves much better reconstruction
(MSE) performance. This indicates that compressing all
skeleton points into one token embedding is not advisable,
leading to information loss. Using separated latent feature
spaces for different local regions, that is, three codebooks
can achieve better reconstruction quality and generation per-
formance. To further explain this phenomenon, we visualize
the latent space vectors of shared codebooks and separated
codebooks with T-SNE (Van der Maaten and Hinton 2008).
As shown in Figure 4, the latent space vectors corresponding
to the left-hand and right-hand local regions are easily con-
fused because of their close distances. Therefore, separated
codebooks can reduce the difficulty in constructing mappings
between the sign pose feature and the codebook feature, thus
learning better latent space and reconstruction quality. The
second row of Figure 6 shows the sample of sign pose se-

quences reconstructed by Pose-VQVAE-separated-separated.
CodeUnet vs. Transformer. For a fair comparison, we re-
place our CodeUnet with a Transformer network, keeping
other settings the same. As shown in Figure 5, the diffusion-
based model with our CodeUnet achieves better performance
on the back-translate evaluation. This phenomenon suggests
that the hierarchical structure of CodeUnet makes it particu-
larly effective for data with spatial structure. Moreover, the
curve in the figure shows that CodeUnet coverages faster than
Transformer. Having said that, due to sign pose sequences
being temporally redundant, the compression of CodeUnet
in the time dimension makes it more efficient in training.
Number of Timesteps. We compare the performance of the
model with different numbers of training steps. As shown in
the left two columns of Table 3, we find that the results get
better when the training step size is increased from 20 to 100.
As it increased further, the results seemed to saturate. There-
fore, we set the training step to 100 to trade off performance
and speed. Besides, within the same training steps, increasing
the number of inference steps yields better results.
Deaf User Evaluation In our final user evaluation, we pro-
vided 50 pose sequences generated by our proposed method
and a baseline method (Saunders, Camgöz, and Bowden
2020), and asked 7 participants to compare which one was
closer to the ground truth pose sequence. The results showed
that 319/350 preferred our method, while only 31/350 chose
the baseline method. This clearly demonstrates the superior-
ity of our proposed approach.

Conclusion
We present a novel paradigm for text-based sign pose se-
quence generation. Specifically, we first devise a specific
architecture Pose-VQVAE with a multi-codebook to learn
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semantic discrete codes by reconstruction. Then we extend
the discrete diffusion method with special states to model
the alignments between sign glosses and length-varied quan-
tized code sequences. Further, a “fully transformer” network
CodeUnet is proposed to model the spatial-temporal informa-
tion in discrete space. Finally, we propose a sequential-KNN
algorithm to learn the length of corresponding glosses and
then predict the length as a classification task. Our extensive
experiments show that our proposed G2P-DDM framework
outperforms previous state-of-the-art methods.
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