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Abstract

This paper presents a novel approach to computing vector
road maps from satellite remotely sensed images, building
upon a well-defined Patched Line Segment (PaLiS) repre-
sentation for road graphs that holds geometric significance.
Unlike prevailing methods that derive road vector represen-
tations from satellite images using binary masks or key-
points, our method employs line segments. These segments
not only convey road locations but also capture their ori-
entations, making them a robust choice for representation.
More precisely, given an input image, we divide it into
non-overlapping patches and predict a suitable line segment
within each patch. This strategy enables us to capture spa-
tial and structural cues from these patch-based line segments,
simplifying the process of constructing the road network
graph without the necessity of additional neural networks
for connectivity. In our experiments, we demonstrate how
an effective representation of a road graph significantly en-
hances the performance of vector road mapping on estab-
lished benchmarks, without requiring extensive modifications
to the neural network architecture. Furthermore, our method
achieves state-of-the-art performance with just 6 GPU hours
of training, leading to a substantial 32-fold reduction in train-
ing costs in terms of GPU hours.

1 Introduction
By “vector road mapping”, it refers to a process of con-
verting the road features presented in satellite-borne remote
sensing images into vector-based and symbolic graph rep-
resentations, which is also known as road graph extraction
or road network extraction within the community of remote
sensing and plays a fundamental role in numerous down-
stream tasks including navigation (Zhang et al. 2021; Cai
et al. 2023), urban planning (Shi et al. 2019; Xu et al. 2023a),
and autonomous driving (Xu, Sun, and Liu 2021; He and
Balakrishnan 2022; Büchner et al. 2023).

The state-of-the-art methods for vector road mapping pri-
marily rely on the strong representation capabilities of deep
neural networks. These approaches formulate the problem
as a supervised learning task, utilizing paired satellite im-
ages and annotated road graphs that use vertices and edges
to depict the line and curve structures of roads. As the input
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(a) Input image (b) Ground truth (c) Dense GT

(d) Road graph learned from Keypoints (Xu et al. 2023b)

(e) Road graph learned via PaLiS (Ours)

Figure 1: Illustration of graphs constructed by different rep-
resentations. The predicted representations (keypoints and
line segments) are denoted in yellow marks and the connec-
tivities are denoted in orange marks.

images are in pixel form, it becomes crucial to establish an
appropriate representation for facilitating the learning from
the pixels of satellite images to the vector representation of
roads. In the state-of-the-art methods (Batra et al. 2019; He
et al. 2020; Xu et al. 2023b), the “appropriate representa-
tion” of vector road annotations were initially come down to
mask-based representation (i.e., road masks) and were then
upgraded to the keypoint-based graph representation as the
main representation in the pursuit of end-to-end learning.

While keypoint-based graph representations have demon-
strated remarkable performance, many of these methods en-
counter a significant drawback: the substantial training cost
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involved. For instance, RNGDet++ model (Xu et al. 2023b)
requires approximately 192 GPU hours to train on a dataset
of moderate size with thousands of images. This high train-
ing cost can be attributed to the prevalent oversampling strat-
egy used to define the “keypoints” in the original annota-
tions (depicted in Fig. 1(b)). This strategy involves densely
sampling numerous points along each road, as shown in
Fig. 1(c), lacking invariance to commonly employed im-
age transformations used for data augmentation, such as
random cropping and image translation, and eventually re-
sults in ambiguity during the learning process. As a conse-
quence, methods employing keypoint-based graph represen-
tations must grapple with inherent representation ambiguity,
requiring a greater number of training iterations. Such a pro-
longed training process often entails cluttered patterns in the
keypoint detection outcomes, as illustrated by the enclosed
regions in Fig. 1(d). Furthermore, the keypoint-based repre-
sentations have to leverage additional modules to learn the
connectives for the learned keypoints on the fly to accom-
plish the task of vector road mapping.

In this paper, we devote ourselves to finding a better repre-
sentation of vector road annotations, to eliminate the ambi-
guity in the existing keypoint-based graph representations,
for the sake of efficient learning during training and top-
performing mapping results in the testing phase. Our study is
motivated by the recently-proposed PaRK-Detect (Xie et al.
2023) that defines patched keypoints, in which each small
patch (e.g., 16×16) will have at most one keypoint for learn-
ing. Because the local patches are uniformly distributed over
the image grids, such a definition largely eliminates the am-
biguity for learning. However, since the keypoints are unary
primitives that do not explicitly define the spatial relation-
ships, PaRK-Detect (Xie et al. 2023) only obtained com-
parable performance in testing. Motivated by this, we are
interested in presenting a patched representation to take its
ambiguity-free merits while retaining the spatial context for
facilitating the final vector road mapping.

Our work is inspired by an observation that the spa-
tial and geometric information of roads in local patches
can be well represented by line segments instead of key-
points. Based on this, we present a novel PaLiS (Patched
Line Segment) representation to depict the annotated road
graphs in a geometrically-meaningful way while enjoying
the ambiguity-free merits of patch-based representation. By
dividing the grid of input images into a set of local (e.g.,
8× 8) patches, most of the local patches that contain a frag-
ment of road path can uniquely define the only local line seg-
ment. To preserve the rich structural information of the local
line segments, we use the closed-form xy − xy representa-
tion for the two endpoints of a line segment, which facili-
tates the computation of patch adjacency in a geometrically-
meaningful way. As shown in Fig. 1(e), our proposed PaLiS
representation could handle a variety of road graph patterns
in a unified representation. With the proposed PaLiS repre-
sentation, we find out that our PaLiS representation can be
reliably learned via the rasterized road masks as supervision
in differentiable rasterization, largely alleviating the need for
vectorized road graph annotations.

In the experiments, we demonstrate that our proposed
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Figure 2: Convergence curves on City-Scale dataset.

PaLiS representation clearly set new state-of-the-art perfor-
mance on two public benchmarks, i.e., the City-Scale (He
et al. 2020) and SpaceNet (Van Etten, Lindenbaum, and Ba-
castow 2018), without paying any extra efforts on the net-
work design. Except for the competitive performance on
these two benchmarks, our method only requires 6 GPU
hours for the training, significantly reducing the training
cost by 32 times for the prior art, RNGDet++ (Xu et al.
2023b). As shown in Fig. 2, for the performance evaluation
by training iterations on the City-Scale dataset, our proposed
method wins after the first 1K iterations by significant mar-
gins and converges to the S.O.T.A. performance after 20K
iterations of training.

In summary, our paper made the following contributions:

• We propose a novel representation of road graphs, the
patched line segment representation, which facilitates the
learning of road graphs with the best efficacy in both the
training and testing phases.

• Based on our patched line segment representation, we
present a graph construction strategy for the task of vec-
tor road mapping, which takes advantage of the geo-
metric nature of our representation to produce vector
graphs without using any additional neural networks for
the learning of connectives between keypoints.

• Our proposed patched line segment representation is
learnable and compatible with the mask-based represen-
tation by leveraging a differentiable soft rasterizer, which
helps to learn the patched line segments efficiently with-
out introducing additional vector labels.

2 Related Works
Road Graph Representations. There have been plenty of
studies for vector road mapping, mainly relying on either the
rasterized road map or the keypoint/vertex-based graph rep-
resentations, and derived two categories, the segmentation-
based (Máttyus, Luo, and Urtasun 2017; Zhou, Zhang,
and Wu 2018; Mei et al. 2021; Wang et al. 2023; Batra
et al. 2019; Cheng et al. 2021) and the keypoint-based ap-
proaches (He et al. 2020; He, Garg, and Chowdhury 2022;
Shit et al. 2022; Yang et al. 2023; Xie et al. 2023). Regarding
the popularity of end-to-end learning for better performance,
the state-of-the-art approaches (He, Garg, and Chowdhury
2022; Xu et al. 2023b) mainly learn keypoints (i.e., graph

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

6289



(a) The Road Ground Truth

Patchify

(b) PaLiS Representation

Singular patch Intersected patchPatched line segment

Figure 3: An illustrative figure for the proposed Patched Line
Segment (PaLiS) representation. Larger patch size is applied
for better illustration.

vertices) and the connectivity between vertices while us-
ing the rasterized road masks/maps as the additional super-
vision signals to enhance the feature representation ability
of ConvNets. Except for the representation ambiguity is-
sue discussed in Sec. 1 for prolonged learning schedule,
these representations mainly focus on point primitives in-
stead of the line structure of road graphs, thus usually requir-
ing additional design to learn or infer the connectivity be-
tween points/pixels. Regarding the above issues, we present
a novel line-segment-based representation that defines the
road graphs in the local image patches while characterizing
the structural information of roads using line segments. We
show that our well-defined and geometrically-meaningful
representation largely facilitates the learning process of vec-
tor road mapping with the best efficacy.

Line Segment Learning and Differentiable Rasteriza-
tion. There has been a vast body of literature studying the
line segments from both computer vision (CV) and graph-
ics (CG) communities. On one hand, many works study the
problem of line segment detection (Xue et al. 2019, 2020,
2021, 2022), which is similar to vector road mapping but
mainly focuses on the line segment itself instead of the road
graphs. On another hand, some CG researchers study the dif-
ferentiable vector graphics rasterization/rendering (Li et al.
2020; Xie et al. 2014), in which they aim at using graphic
primitives such as points, lines, and curves to represent ras-
terized digital images. The differentiable rasterization tech-
niques were also applicable to the polygonal shape repre-
sentation with end-to-end learning in instance segmenta-
tion (Lazarow, Xu, and Tu 2022) and polygonal building ex-
traction (Zorzi et al. 2022). Our study is inspired by all these
studies, but we pay more attention on the well-posedness of
the primitive definition for the complicated road graphs/net-
works. By thinking of local patches, we eventually derive
our novel PaLiS representation and set new state-of-the-art
performance for the task of vector road mapping.

3 PaLiS Representation of Road Graphs
In this section, we elaborate on the proposed PaLiS repre-
sentation of road graphs. Denoted by the input satellite im-
age I ∈ R3×H×W and the corresponding road graph an-

notation R = {Γi(t) ∈ R2|t ∈ [0, 1]}, where Γi(t) is a
parameterized 2D curve/line, Γi(0) and Γi(1) respectively
represent the two endpoints of the parameterized curve. We
use the local p× p patches to patch-wisely define the “key”
line segments and eventually form the new PaLiS represen-
tation of road graphs. We assume that the patch size p is
divisible by H and W without loss of generality.

The Main Representation
By generating a set of N non-overlapping p×p patches {Pi}
where N = H

p × W
p , we define the patched line segment

for each local patch Pi. As shown in Fig. 3(b), there are
three cases for each patch Pi depending on the number of
roads passing through the patch, denoted by N (Pi) ∈ N. If
N (Pi) = 0, we term it as the background patch (i.e., the
gray patches in Fig. 3). If N (Pi) = 1, we uniquely define
its patched line segment, denoted by

PaLiS(Pi) = (xu
i , y

u
i , x

v
i , y

v
i ) ∈ R4if N (Pi) = 1. (1)

For those patches that satisfy N (Pi) > 1, we can-
not uniquely define their line segments, but we found such
patches are playing a key role to construct the expected road
graphs. As shown in Fig. 4, we further study the properties
of the patches that have N (Pi) ≥ 1. In Fig. 4(a), the fore-
ground patches clearly define a (local) straight road without
ambiguity. But for the patches that have N (Pi) > 1, there
are two types as shown in Fig. 4(b) and 4(c), depending on if
there is an annotated “keypoint” to connect the multiple road
paths in one keypoint. If there is such keypoint annotation,
we call such a type as the X-type. Otherwise, the multiple
road paths passing through the patch Pi will have different
elevations like the overpasses, and we called them as the T -
type patches.

In summary, the proposed PaLiS representation firstly
samples N non-overlapping local patches and identifies the
foreground patches by three different types, the I-type, X-
type and T -type, and defines the local line segments for the
I-type patches in the form of (xu

i , y
u
i , x

v
i , y

v
i ) to retain the

geometric information of road paths. In the next section, we
will show how to learn our proposed PaLiS representation
for the task of vector road mapping.

Road Graph Reconstruction from PaLiS
Thanks to our geometric PaLiS representation, the road
graphs can be reasonably reconstructed without leveraging

𝑙𝑖 𝑒𝑖 𝑒𝑗 𝑙𝑗

(a) I-type

𝑙𝑖

𝑙𝑗

(b) X-type

𝑙𝑖

𝑙𝑗

(c) T -type

Figure 4: Illustration of different types of foreground
patches. Patched line segments are denoted in cyan mark-
ers and connectivities are denoted in dashed markers.
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Figure 5: Proposed Method Pipeline: The process begins with an input image. (1) An Encoder-Decoder network extracts
pixel-level (FI) and patch-level (FP) feature maps. (2) The Patch-level branch uses FP to predict line segments (coordinates
(xu

i , y
u
i , x

v
i , y

v
i )) and patch types (C). (3) The Pixel-level branch generates a binary mask of road centerlines from FI. (4)

Finally, a road graph is reconstructed using the PaLiS representation. Note: Enlarged patches are shown for clarity.

another subnetwork for the learning of graph connectivity.
Here, we hypothesize that the PaLiS representation can be
reliably learned and defer the learning details in Sec. 4.
We developed a geometrically-meaningful scheme to recon-
struct the road graphs from our PaLiS representation (see
our supp. material for the pseudo code) by considering the
properties of I-type, X-type and T -type foreground patches
in the following three cases:

• As shown in Fig. 4(a), we first consider the most com-
mon case for the I-type patches. For two adjacent I-type
patches Pi and Pj , their line segments li = PaLiS(Pi)
and lj = PaLiS(Pj) are connected with the observa-
tion that line segments of adjacent I-type patches share
a common endpoint. We formulate the rule based on the
shape distance ds(A,B), which represents the shortest
perpendicular distance between shapes A and B. Two
line segments are connected if the average of ds(lj , ei)
and ds(li, ej) is less than a given distance threshold τd,
where ei is the endpoint of li close to the line segment lj
and ej is the endpoint of lj close to the line segment li.

• While encountering the X-type patch PX (e.g., cross
roads), line segments surrounding the patch PX are ex-
tended to an intersection as shown in Fig. 4(b). To
achieve this, candidate intersections are calculated by
pairing up lines segments around the patch PX . The in-
tersection Ii,j ∈ R2 of the line segment pair (li, lj) is
valid if the two line segments intersect within the patch
PX . And the final intersection Ifinal is obtained by av-
eraging the position of all candidate intersections and is
connected to the surrounding line segments.

• Regarding the T -type patch PT (e.g., overpasses), the
layouts with different height are made by the directional
and spatial and extension of roads as shown in Fig. 4(c).
We pair up lines segments around the patch PT and
the connection of a line segments pair (li, lj) is valid
if the shape distance ds(li, lj) and the angle difference
dangle(li, lj) are less than the distance threshold τd and
the angle threshold τa respectively.

4 Learning PaLiS Representations
In this section, we show how to reliably learn the pro-
posed PaLiS representation for vector road mapping in
an off-the-shelf ConvNet. We use an encoder-decoder net-
work, DLinkNet (Zhou, Zhang, and Wu 2018), with the
lightweight ResNet-34 (He et al. 2016) as the backbone
encoder to extract feature maps for the learning of PaLiS.
Fig. 5 shows the overall pipeline of our approach. For the
learning of PaLiS representation, two headnets are respec-
tively leveraged, to classify the patches according to their
PaLiS classes, and regress the two endpoints for each I-type
patch. Apart from the main branches, an auxiliary segmen-
tation head is leveraged to learn the rasterized masks from
the final feature maps of the decoder network.

Identifying Patch Classes/Types
Our PaLiS representation categorizes the foreground patches
into three different types (I-type, X-type, and T -type) for a
better understanding of intricate road graph structures. To
achieve this, we use a patch classification head, which con-
sists of four convolution layers all with 3 × 3 kernels and
an MLP layer, to predict the class of each patch. The patch
classification head takes patch-level feature maps FP as in-
put and produces the patch map M ∈ RCP×H

p ×W
p , where

CP is the number of patch classes (i.e., CP = 4 by consid-
ering the background patches). During training, we compute
the classification loss by comparing the predicted patch map
M with the corresponding ground truth M∗ which can be
easily obtained from the original annotations of the dataset.
Cross-entropy loss is employed for M:

LM = CE(M,M∗). (2)

Line Segments Learning for I-type Patches
With the patch classification head, we focus on the I-type
patches to learn the patched line segments. It should be noted
that although the line segment li for the patch Pi is in the
closed-form for the two endpoints, directly regressing their
endpoint coordinates is suboptimal since the data augmen-
tation techniques (like cropping) used in the training phase
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Model Type
City-Scale SpaceNet

TOPO APLS ↑ TOPO APLS ↑P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑
DLinkNet (Zhou, Zhang, and Wu 2018)

Mask
78.63 48.07 57.42 54.08 88.42 60.06 68.80 56.93

Orientation (Batra et al. 2019) 75.83 68.90 72.20 55.34 81.56 71.38 76.13 58.82
Seg-DLA (He et al. 2020) 75.59 72.26 73.89 57.22 78.99 69.80 74.11 56.36

RoadTracer (Bastani et al. 2018)

Point

78.00 57.44 66.16 57.29 78.61 62.45 69.90 56.03
Sat2Graph (He et al. 2020) 80.70 72.28 76.26 63.14 85.93 76.55 80.97 64.43
TD-Road (He, Garg, and Chowdhury 2022) 81.94 71.63 76.27 65.74 84.81 77.80 81.15 65.15
PaRK-Detect (Xie et al. 2023) 82.17 68.23 74.29 67.66 91.34 68.07 78.01 62.97
RNGDet (Xu et al. 2022) 85.97 69.78 76.87 65.75 90.91 73.25 81.13 65.61
RNGDet++ (Xu et al. 2023b) 85.65 72.58 78.44 67.76 91.34 75.24 82.51 67.73

Ours PaLiS 86.36 73.16 79.08 68.12 90.05 78.19 83.70 69.68

Table 1: Quantitative results on City-scale Dataset and SpaceNet dataset. Best results are highlighted in bold.

𝑎

𝑑(𝑙, 𝑎) 𝑙

Patched line segments Rasterized soft mask

Figure 6: Illustration of the rasterization. Darker pixels con-
tribute more to the line segment.

will incur inefficient computation in terms of cropping the
vector road annotations. To avoid this issue, we propose to
use the differentiable rasterization techniques to learn the
line segment li of the patch Pi from the mask supervision,
similar to (Lazarow, Xu, and Tu 2022; Zorzi et al. 2022). It
is interesting to see that, although we use the rasterized road
mask supervision instead of the vector annotations, such a
design is prevailing than the vector annotations. Please move
to our ablation studies in Sec. 5 for a detailed comparison.

By taking the feature map FP , we set a regression head
with four 3×3 convolution layers and an MLP layer, to pre-
dict line segments L ∈ R4×H

p ×W
p where 4 is the number of

coordinates of line segments. These patched line segments L
are then converted into a soft mask Ssoft ∈ RH×W with the
proposed rasterizer. As shown in Fig. 6, the proposed raster-
izer produces a p × p patch Ci ∈ Rp×p, where the scalar
value at the pixel a = (x, y) in the local coordinate of the
patch is computed by

Ci(a) = e
−d2(li,a)×t

τinv , (3)

where d(li,a) is the projection distance from the pixel a to
the line segment li. t and τinv are the projection factor and
sharpness factor respectively. We empirically set t = 10 if
the pixel a is projected outside of the line segment otherwise
t is set to 1. The values of projection factor t and the sharp-
ness factor τinv are chosen to accurately reflect the position
of the line segment in the patch.

The rasterized soft mask Ssoft ∈ RH×W is obtained from
the contributions of all pixels. During training, we efficiently

compute the loss by comparing the soft mask Ssoft with the
existing ground truth mask S∗ of road centerlines. Similar
to BoundaryFormer (Lazarow, Xu, and Tu 2022), we em-
ploy the DICE (Milletari, Navab, and Ahmadi 2016) loss to
measure the difference:

LL = DICE(Ssoft,S
∗). (4)

The rasterizer and backwards pass are fully implemented
in CUDA, ensuring efficiency in the training process.

Auxiliary Pixel-level Learning
In addition to the PaLiS representation, we incorporate the
learning of an auxiliary binary mask for road centerlines
to extract road information. We use a segmentation head,
which consists of one 3× 3 convolution layer and one 1× 1
convolution layer followed by a sigmoid function, to predict
the binary mask S ∈ RH×W of road centerlines from the
pixel-level feature maps FI. We compute the loss of the pre-
dicted binary mask S with the ground truth mask S∗ of road
centerlines by cross-entropy loss:

LS = CE(S,S∗) (5)

The total loss of the PaLiS learning can be summarized as

Ltotal = LS + LM + LL. (6)

5 Experiments
In this section, we run experiments for our proposed PaLiS-
based approach on public benchmarks and provide a com-
prehensive analysis of our design choices. The implementa-
tion details are in our supplementary material.

Datasets and Evaluation Metrics
Datasets. We conduct experiments on two widely used
datasets: City-Scale dataset (He et al. 2020) and SpaceNet
dataset (Van Etten, Lindenbaum, and Bacastow 2018). City-
Scale dataset (He et al. 2020) covers 720 km2 area of 20
cities in the United States. It consists of 180 tiles, which we
divide into 144, 9, and 27 tiles for training, validation, and
testing respectively, following previous methods (He et al.
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(a) Sat2Graph (b) RNGDet++ (c) PaRK-Detect (d) Ours (e) Ground Truth

Figure 7: Example of qualitative road network extraction results on City-scale dataset. Predicted road segments are marked in
orange lines and intersections are marked in red dots. Our approach leads to reasonable and accurate connected road graphs.

2020; He, Garg, and Chowdhury 2022; Xu et al. 2023b).
Each tile of the dataset has the resolution of 2048 × 2048
pixels, representing 1 meter in the real world. SpaceNet
dataset (Van Etten, Lindenbaum, and Bacastow 2018) com-
prises 2549 satellite images, each with the resolution of
400 × 400 pixels. We use 2040, 127, and 382 images for
training, validation, and testing respectively, following the
partition used in Sat2Graph (He et al. 2020).

Evaluation metrics. Two quantitative metrics are utilized
in the experiments: APLS (Van Etten, Lindenbaum, and
Bacastow 2018) and TOPO (Biagioni and Eriksson 2012).
APLS assesses the overall graph quality by comparing the
similarity of shortest paths between two locations on the pre-
dicted and ground truth graphs. On the other hand, the TOPO
metric (precision, recall, and F1-score) provides a stricter
evaluation of detailed topology correctness by measuring the
similarity of sub-graphs sampled from a seed location on the
ground truth and predicted graphs. Higher scores indicate
better performance for both APLS and TOPO metrics.

Main Comparisons
Quantitative and Qualitative Evaluation. We compare
our approach to state-of-the-art segmentation- and keypoint-
based methods on the City-Scale and SpaceNet datasets. Ta-
ble 1 presents the quantitative results. Segmentation-based
methods exhibit substantially inferior performance on both
TOPO and APLS metrics, because of their heuristic post-
processing schema. In contrast, graph-based methods output
and refine the graph of road networks directly, gaining bet-
ter performance on the two metrics. Our method achieves the
highest TOPO and APLS scores on the City-Scale dataset,
demonstrating superior performance in capturing road net-

Ground truth Keypoint heatmap Patched line segments

Figure 8: Comparison on early stage (10 epochs) of training.

work structures with our unified PaLiS representations. Ad-
ditionally, our approach outperforms all other methods in
terms of recall, F1-score, and APLS on SpaceNet dataset,
further validating its effectiveness. These consistently supe-
rior evaluation results across metrics indicate that our ap-
proach generates more precise and complete road graphs
both locally and globally. The same conclusions can be
drawn from the qualitative comparisons in Fig. 7.

Keypoint-based Graph Representation v.s. PaLiS.
Comparisons between keypoints and PaLiS representation
during training and testing involved further analysis. Fig. 8
first visualized the predicted keypoints heatmap and line
segments on the early training epoch. Apparently, the
learned keypoints heatmap was ambiguous in the early
stage of training, whereas the line segments were accurately
predicted. Subsequently, we studied the model’s sensitivity
to thresholds of keypoints (or line segments) prediction by
varying the thresholds with the 0.1 step as shown in Fig. 9.
Notably, our model demonstrated greater stability compared
to keypoint-based methods, indicating the robustness of our
PaLiS representation during testing.
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Figure 9: Parameter sensitivity on City-Scale dataset.

Supervision TOPO APLS ↑P ↑ R ↑ F1 ↑
unsorted vector 91.79 60.34 72.82 57.34
sorted vector 91.75 66.81 77.31 65.28
raster mask 90.05 78.19 83.70 69.68

Table 2: Comparison results on SpaceNet dataset in associ-
ation with different supervisions for patched line segments.

Training efficiency. The training efficiency is also com-
pared as shown in Fig. 2. The approach relying on our
unified PaLiS representation achieves superior performance
with considerably fewer training iterations while methods
relying on keypoints (He et al. 2020; Xu et al. 2023b; Xie
et al. 2023) require much more iterations to converge.

Ablation Studies
Mask-supervised line segment learning. To evaluate the
efficacy of the proposed soft rasterizer, we conducted ad-
ditional experiments using three different types of super-
vision for line segments learning: unsorted vector labels,
sorted vector labels, and mask labels. The unsorted and
sorted vector labels are denoted by (x̂u

i , ŷ
u
i , x̂

v
i , ŷ

v
i ) ∈ R4,

where the only difference is the direction. Directions of un-
sorted vector labels are randomly inherent from origin an-
notations, while sorted vector labels have consistent direc-
tions ((x̂u

i , ŷ
u
i ) is always the endpoint on the left). We use L1

loss to compute the difference between the predictions and
ground truth vector labels. The results shown in Table 2 in-
dicate that line segments are learned more precisely with the
proposed rasterizer, leading to enhanced connectivity in the
graph construction. Furthermore, our approach leverages the
existing mask labels to guide the training process of patched
line segments, without requiring the generation of vector la-
bels.

Graph construction strategy. Road graphs can be re-
constructed by PaLiS representation (geometric connectiv-
ity) without the learned relationships of patches (relation-
ship connectivity) used in PaRK-Detect (Xie et al. 2023).
To compare the two different construction strategies, we
learned additional relationships of patches following PaRK-
Detect (Xie et al. 2023). The results presented in Table 3
show that our approach outperforms the relationship con-
nectivity on the two metrics, and provides more accurate and

Graph construction TOPO APLS ↑P ↑ R ↑ F1 ↑
Learned relationship 88.01 79.28 83.42 68.47
Ours 90.05 78.19 83.70 69.68

Table 3: Results on SpaceNet of varied connectivity strategy.

Patch Size TOPO APLS ↑P ↑ R ↑ F1 ↑
4× 4 91.88 74.23 82.12 67.25
8× 8 90.05 78.19 83.70 69.68
16× 16 82.61 77.64 80.05 67.58

Table 4: Results on Spacenet of varied patch size.

reasoned connectivity as shown in Fig. 10.
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Figure 10: Comparison of graph construction strategies.

Patch size. The patch size serves as a crucial hyper-
parameter in our approach. We conducted experiments to
assess the impact of patch size, and the results are shown in
Table 4. We observe that both smaller and bigger patch sizes
cause the inferior performance. This is due to the PaLiS rep-
resentation with small patch size yields results that are close
to mask representation, suffering from the disconnected is-
sue. Whereas PaLiS representation with big patch size strug-
gles to provide precise shape of road graphs. Considering
accuracy and efficiency, we set the patch size to 8.

6 Conclusions
This paper introduces a learning-based approach for vec-
tor road mapping using the innovative PaLiS (Patched Line
Segment) representation. By leveraging local patches, our
approach effectively represents road graphs. Through con-
volutional neural networks, we achieve state-of-the-art per-
formance on public datasets, with efficient training in just
6 GPU hours. Additionally, the ability of PaLiS represen-
tation to learn line segment endpoint coordinates from ras-
terized road maps suggests a promising direction for large-
scale vector road mapping without costly manual annota-
tions in the near future.
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