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Abstract

Recently, CLIP has found practical utility in the domain of
pixel-level zero-shot segmentation tasks. The present land-
scape features two-stage methodologies beset by issues such
as intricate pipelines and elevated computational costs. While
current one-stage approaches alleviate these concerns and in-
corporate Visual Prompt Training (VPT) to uphold CLIP’s
generalization capacity, they still fall short in fully harness-
ing CLIP’s potential for pixel-level unseen class demarca-
tion and precise pixel predictions. To further stimulate CLIP’s
zero-shot dense prediction capability, we propose SPT-SEG,
a one-stage approach that improves CLIP’s adaptability from
image to pixel. Specifically, we initially introduce Spectral
Prompt Tuning (SPT), incorporating spectral prompts into the
CLIP visual encoder’s shallow layers to capture structural in-
tricacies of images, thereby enhancing comprehension of un-
seen classes. Subsequently, we introduce the Spectral Guided
Decoder (SGD), utilizing both high and low-frequency in-
formation to steer the network’s spatial focus towards more
prominent classification features, enabling precise pixel-level
prediction outcomes. Through extensive experiments on two
public datasets, we demonstrate the superiority of our method
over state-of-the-art approaches, performing well across all
classes and particularly excelling in handling unseen classes.

Introduction
Semantic segmentation is one of the fundamental tasks in
computer vision, aiming to predict the class for each pixel
in an image (Xu et al. 2023d, 2021b; Chen et al. 2021;
Dong et al. 2021). Despite the existence of numerous re-
lated works (Lu et al. 2020; Dong et al. 2020; Xu et al.
2023b; Wang et al. 2023a), the success of deep semantic
segmentation models heavily relies on a large amount of an-
notated training images, which requires significant efforts.
In recent years, interest has been growing in unsupervised
or weakly supervised semantic segmentation methods, in-
cluding semi-supervised (Chen et al. 2021), weakly super-
vised (Xu et al. 2023a,c; Wang et al. 2023b), few-shot (Xie
et al. 2021), and zero-shot semantic segmentation (Bucher
et al. 2019; Pastore et al. 2021; Xian et al. 2019). Among
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Figure 1: (a) Our SPT-SEG method demonstrates outstand-
ing performance across all classes. (b) While yielding fa-
vorable results within the seen classes, it exhibits relatively
poorer performance in the unseen classes. (c) Its perfor-
mance is unsatisfactory across all classes.

them, zero-shot semantic segmentation tasks are particularly
challenging and appealing, as they require generating accu-
rate semantic segmentation results with only the semantic
descriptions of the classes given.

To incorporate zero-shot capability into visual systems,
researchers have proposed large-scale vision-and-language
pretraining models, such as CLIP (Radford et al. 2021) and
ALIGN (Jia et al. 2021a). Specifically, CLIP encodes se-
mantic concepts into model parameters by contrastive train-
ing on a massive collection of image-text pairs, forming a
zero-shot knowledge base for downstream tasks. However,
contrastive pretraining mainly focuses on capturing image-
level concepts. In CLIP, the training texts primarily describe
the global context of images, and the encoded image and
text embeddings are used together to compute contrastive
losses. Consequently, CLIP is more suitable for image-level
classification tasks (Zhou et al. 2022b,a; Lu et al. 2022;
Zhang et al. 2022). The pretrained visual-language model
CLIP (Radford et al. 2021) has recently found applica-
tions in various dense prediction tasks, including semantic
segmentation (Pakhomov et al. 2021), referring segmenta-
tion (Wang et al. 2022), and object detection (Esmaeilpour
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et al. 2022). In the zero shot semantic segmentation task, ap-
proaches like zsseg (Xu et al. 2021a) and Zegformer (Ding
et al. 2022) adopt a similar strategy that requires two-stage
processing: first generating region proposals and then feed-
ing the cropped regions into CLIP for zero-shot classifica-
tion. However, this strategy involves encoding images twice
as FI 1(c), once for proposal generation and another for
CLIP encoding of each proposal. This design introduces ad-
ditional computational overhead and fails to fully leverage
the knowledge in the CLIP encoder to guide the proposal
generation stage. To streamline the process, ZegCLip (Zhou
et al. 2023) introduces a one-stage approach by incorporat-
ing visual prompt tuning into CLIP, then extending CLIP’s
zero-shot capabilities from image-level to pixel-level.

The inclusion of Visual Prompt Tuning (VPT) in CLIP
significantly enhances its downstream task generalization
with few learnable parameters. However, since the origi-
nal CLIP’s training primarily revolves around image-level
contrastive learning, its features tend to emphasize only the
most discriminative parts of objects. Even with the introduc-
tion of VPT, the observed phenomenon persists even dur-
ing pre-training with image-level contrastive loss. Conse-
quently, this phenomenon leads to incomplete and biased
segmentation in dense prediction tasks.

Based on the aforementioned observations, we believe
that further enhancing the image-to-pixel adaptability of
CLIP (Radford et al. 2021) would contribute to improved
zero-shot segmentation performance. Therefore, we propose
an innovative one-stage method called SPT-SEG, as shown
in Fig. 1(b). SPT-SEG differs from plain one-stage meth-
ods, as depicted in Fig.1(a). In our approach, we integrate
spectral cues into the shallow layers of the CLIP visual en-
coder, which provides additional structural information that
enhances the model’s comprehension of various object com-
ponents. We also utilize high-frequency and low-frequency
information to guide the alignment of text and pixels, direct-
ing the network’s spatial focus towards more salient classifi-
cation features. The synergy of these two designs enhances
the model’s semantic understanding and reasoning capabil-
ities, effectively addressing the issues of inadequate pixel
generalization and incomplete segmentation present in the
current CLIP-based zero-shot semantic segmentation meth-
ods.

In summary, our contributions are listed as follows:

• We introduce Spectral Prompt Tuning (SPT), which
builds upon VPT by incorporating a small set of learn-
able spectral parameters. These parameters are integrated
into the shallow layers of the CLIP visual encoder to in-
troduce spectral information.

• We propose the Spectral Guided Decoder (SGD) layer,
which is a novel component that utilizes high-frequency
and low-frequency information to guide the matching
process between textual and pixel representations.

• We comprehensively assess our method on two public
datasets, and the results clearly show that our approach
significantly surpasses state-of-the-art methods.

Related Work
Vision-Language Model. Extensive research has been con-
ducted on Visual-Language Models (VLM)(Hong et al.
2021; Huang et al. 2021; Kamath et al. 2021; Kim, Son, and
Kim 2021), showcasing significant advancements in down-
stream vision tasks, especially in settings with unannotated
or restricted data. These tasks encompass diverse areas such
as image retrieval(Liu et al. 2021), dense prediction (Rao
et al. 2022), visual referring expression (Wang et al. 2022),
and visual question answering (Jiang, Liu, and Zheng 2022).
CLIP (Radford et al. 2021) is widely recognized as one of
the most popular vision-language models. It is pretrained us-
ing contrastive learning on a massive dataset of 400 million
text-image pairs. ALIGN (Jia et al. 2021b) utilized an even
larger dataset, comprising 1.8 billion pairs, for pre-training
its model. However, this larger dataset also introduced a sig-
nificant amount of noise. In more recent works, CoCa (Yu
et al. 2022) and Beit-V3 (Wang et al. 2023c) have further
emphasized the superior performance of VLM pre-trained
features.
Prompt Tuning. The concept of prompts originated from
natural language processing and is mainly used in VLM to
enhance its understanding of downstream specific tasks. By
providing prompts, we can avoid massive parameter learn-
ing for VLM and instead use it as a fixed knowledge base,
focusing only on task-relevant information. These prompts
can be manually created for downstream tasks or automati-
cally learned during fine-tuning. Full fine-tuning and linear
probe (Gao et al. 2021) are two typical methods for adapting
the VLM (i.e. CLIP) to downstream tasks. Full fine-tuning
leads to a reduced VL representation of previously learned,
while linear probe limits the zero-shot capability of CLIP.
Inspired by the prompt learning in NLP, many works pro-
pose to adapt VLM by adding learnable tokens during end-
to-end training. CoOp (Zhou et al. 2022b) introduced contin-
uous prompt learning, where a set of continuous vectors are
optimized end-to-end with down-stream supervision . Addi-
tionally, learnable prompts are applied by CoOp on the text
encoder of CLIP to replace sub-optimal hand-crafted tem-
plates. Co-CoOp (Zhou et al. 2022a) highlights the poor per-
formance of CoOp on novel classes and addresses the gen-
eralization problem by explicitly conditioning the prompts
on image instances. Recently, prompting (Jia et al. 2022;
Sandler et al. 2022) has been adapted to vision tasks. (San-
dler et al. 2022) proposes memory tokens which is a set
of learnable embedding vectors for each transformer layer.
VPT (Jia et al. 2022) proposes similar ideas and investi-
gates the generality and feasibility of visual prompting via
extensive experiments spanning multiple kinds of recogni-
tion tasks across multiple domains and backbone architec-
tures. Our research further extends the paradigm of visual
prompt learning by introducing spectral prompt, addressing
the limitations of previous visual prompt learning methods
in fully leveraging the structural information of images and
their limited adaptability to pixel-level tasks.
Zero-shot Semantic Segmentation. It remains a challeng-
ing task to achieve zero-shot semantic segmentation due to
the presence of an imbalance problem in seen classes. Pre-
vious studies such as SPNet (Xian et al. 2019), ZS3 (Bucher

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

6370



CLIP Text Encoder

CLIP Image 
Encoder

…

A photo of a {…}

.

.

×3SPT···

b. Spectral Guided  Decoder

 Spectral Guided Decoder Layer

cls 

Relationship 
Descriptor

a. Spectral Prompt Tuning

Token 
selection

Channel 
selection

… Mat Mul

Q Dot-Product
Attention

Q

K

low-frequency branch

high-frequency branch

Avg  Pool

C

Loss ...

V

K V

Dot-Product
Attention

GT Masks

argmaxupsampling

Figure 2: Overview of our proposed SPT-SEG. The main contribution of our work lies in two simple but effective designs (Red
marks a,b in the figure): (a) Spectral prompt tuning which adds learnable spectral prompts to the first two layers of the CLIP’s
visual encoder; (b) Spectral guided decoder which utilizes high- and low-frequency feature information to guide the text to
match with pixels, and decodes the predicted results.

.

et al. 2019), CaGNet (Gu et al. 2020) and STRICT (Pas-
tore et al. 2021) adopt strategies to improve the general-
ization ability of semantic mappings from visible to invis-
ible classes. Since the popular pre-trained visual language
model CLIP has shown powerful zero-shot classification ca-
pabilities, it has recently been applied to zero-shot seman-
tic segmentation as well. Zegformer (Ding et al. 2022) and
zsseg (Xu et al. 2021a) developed an extensive proposal gen-
erator and used CLIP to classify each region and then inte-
grate the predictions. Previous studies, such as SPNet (Xian
et al. 2019), ZS3 (Bucher et al. 2019), CaGNet (Gu et al.
2020), SIGN (Cheng et al. 2021), Joint (Baek, Oh, and
Ham 2021), and STRICT (Pastore et al. 2021), adopt the
approach of improving the generalization capability of se-
mantic mapping from the classes that have been encoun-
tered to unseen ones. Recently, a two-stage paradigm (Ding
et al. 2022; Xu et al. 2021a) has been proposed to explore
the use of CLIP for zero-shot segmentation. They leveraged
the CLIP model to classify individual regions following a
comprehensive proposal generator and then integrate the re-
sulting predictions. Although effective, this design requires
two image encoding processes, resulting in expensive com-
putational costs. In order to simplify the pipeline of the two
stages, ZegCLIP (Zhou et al. 2023) proposed a one-stage
method that transfers CLIP’s powerful generalization ability
from images to pixel-level classification. In this work, we
use a one-stage method and achieve outstanding zero-shot
segmentation performance through two effective designs.

Method
Problem Definition
We adopt the generalized zero-shot semantic segmentation
(GZLSS) method (Xian et al. 2019), which requires to seg-
ment both seen classes Cs and unseen classes Cu after only
training on a dataset with pixel-annotations of seen part.
During training, the model generates per-pixel classifica-
tion results based on the semantic descriptions of all visible
classes. During testing, the model is evaluated on both seen
and unseen classes. It is important to note that Cs ∩ Cu = ⊘
and that the label of Cu is not available during training.

SPT-SEG
The architecture of SPT-SEG is illustrated in Fig. 2. The ba-
sic one-stage methodology comprises four key components:
the CLIP encoder that incorporates the text and visual en-
coders, the relationship descriptor between the cls token and
the text embeding, a decoder, and a loss function. Our en-
hancements focus on two pivotal components: (1) Introduc-
ing an innovative Spectral Prompt Tuning approach within
the visual encoder, aimed at extracting structural insights
to bolster CLIP’s adaptability to dense prediction tasks, (2)
Integrating a Spectral Guided Decode Layer into the de-
coder, which adeptly captures high and low-frequency fea-
tures specific to the task.

Spectral Prompt Tuning Prompt tuning is a recently
proposed fine-tuning technique that offers a valuable ap-
proach to adapt pre-trained transformer models to target
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domains (Xing et al. 2022). However, fine-tuning zero-
shot segmentation models solely on a limited set of visible
classes often leads to overfitting. This occurs because the
optimization process focuses solely on visible classes, dis-
regarding knowledge relevant to visual concepts that cannot
be obtained from the training set. To address this issue, Vi-
sual Prompt Tuning (VPT) (Jia et al. 2022) has emerged as
a potential solution. VPT introduces a small number of task-
specific learnable parameters in the input space while keep-
ing the backbone frozen during downstream training. While
VPT has shown promising results in certain cases, it does not
fully leverage the intrinsic properties and structural charac-
teristics of images, which may not be fully manifested in the
spatial domain, thereby limiting its effectiveness in handling
structure-aware tasks.

To address this limitation, we propose the Spectral Prompt
Tuning (SPT) method, as shown in Fig. 3. SPT extends the
concept of VPT by incorporating prompt parameters learned
from a spectral perspective.

In contrast to VPT’s exclusive reliance on visual prompts
for fine-tuning, SPT capitalizes on frequency domain fea-
tures to offer supplementary understanding of intricate at-
tributes and structural characteristics. The features learned
by SPT in the spectrum allow it to better capture and dis-
tinguish subtle visual features of different classes, even for
those classes that do not have direct examples in the train-
ing data. In this way, when the model encounters images
of completely new classes, it can extract common informa-
tion about these classes from the spectrum features, enabling
more accurate segmentation. This ability can alleviate the

”partial” or ”ambiguous” segmentation issues that occur in
zero-shot scenarios, thus ensuring a more precise capture of
unknown classes.

The input embeddings from the l-th layer of the
image encoder in the CLIP model are denoted as{
gl,hl

1,h
l
2, · · · ,hl

N

}
. Here, gl represents the embedding

for the [cls] token, and Hl =
{
hl
1,h

l
2, · · · ,hl

N

}
corre-

sponds to the embeddings of image patches. In the context
of SPT, the CLIP image encoder’s token sequences are ex-
tended with learnable tokens Vl =

{
vl
1,v

l
2, · · · ,vl

M

}
in

each layer. Furthermore, learnable spectral prompts Sl ={
sl1, s

l
2, · · · , slN

}
are added in the first two layers. These ad-

ditions enhance the model’s ability to process image features
at multiple levels of abstraction.

Sl is calculated from Hl and gl, and a set of learnable
filter parameters wf , the process can be expressed as:

Sl = F -1(F(Hl ⊙ gl)⊙wf ), (1)

where F is the 2D fast fourier transform (FFT) and F−1 is
the inverse FFT (IFFT). Then, when l ≤ 2 the layer pro-
cesses the input token as:

[
gl,−,H

l
]
= Layerl

([
gl−1,Vl−1,Hl−1 + Sl−1

])
), (2)

when l > 2 the transform layer processes the input token as:

[
gl,−,H

l
]
= Layerl

([
gl−1,Vl−1,Hl−1

])
). (3)

Spectral Guided Decode Layer In practical semantic
segmentation applications, high-quality segmentation re-
sults are crucial for the success of the task. Recent work (Pa-
tro, Namboodiri, and Agneeswaran 2023) combined spectral
layers with multi-head attention in a transformer architecture
to capture relevant features in initial layers. LiTv2 (Pan, Cai,
and Zhuang 2022)introduced a novel attention mechanism
that separately processes high and low-frequency compo-
nents in attention layers, capturing local and global relation-
ships effectively in classification and segmentation tasks.
Drawing inspiration from these insights, we propose an in-
novative decoding method as shown Fig. 2(b) by introducing
frequency domain features during the decoding stage, which
significantly enhances the performance of image segmenta-
tion. Firstly, the frequency domain-guided decoder can bal-
ance the attention on small details and global structure, en-
abling the model to focus on both local and overall features
simultaneously. Secondly, guided by frequency domain fea-
tures, the decoder can capture object boundaries and textures
more accurately, thereby improving the precision of the seg-
mentation results. Most importantly, this decoder exhibits
stronger generalization ability on unseen classes, which is
crucial for unknown situations in real-world applications.
The design comprises the following steps:

(1) The high-frequency branch captures fine-grained local
dependencies through local window self-attention., while
the low-frequency branch applies average pooling to each
window, obtaining low-frequency signals that capture the
global dependencies of the input. This high and low-
frequency capturing is built on the multi-head self-attention
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(MSA) mechanism, which allowsfor capturing distant re-
lations labeled at different locations in the input sequence
X ∈ RN×D. Here, N is the length of the input sequence,
and D represents the hidden dimension. To achieve this,
we divide the Nh heads in MSA into two groups with a
split ratio α. Specifically, αNh heads are used for the high-
frequency branch, and the remaining (1 − α)Nh heads are
utilized for the low-frequency branch. The high-frequency
branch computes the output by linearly projecting the out-
puts of the α self-attention heads and then concatenating
them as follows: The high-frequency branch performs a sim-
ple non-overlapping-window (3 × 3) partitioning of the in-
puts X , and then computes the outputs by α-sizing and con-
catenating them as follows:

MSAα(X̂) = Concat
h∈[αNh]

[SAh(X̂)], (4)

where SAh(X̂) denotes the output of the h-th self-attention
head, and note that X̂ denotes the input with the non-
overlapping window already divided. Meanwhile, the low-
frequency branch utilizes average pooling to extract low-
frequency signals within each window, and its computation
process can be expressed as:

MSA1−α(X̂) = Concat
h∈[(1−α)Nh]

[SAh(AvgPool(X̂))], (5)

Finally, the overall output is obtained by concatenating the
outputs from each branch as follows:

z = [MSAα(X̂);MSA1−α(X̂)], (6)
where [·] denotes the concatenation operation.

(2) we emphasize task-relevant tokens and channels
through frequency domain feature extraction to select spe-
cific characteristics. We perform frequency domain feature
extraction on z ∈ RN×D to identify task-related markers
and channels. The output is obtained using the following op-
eration:

ẑ = P · sim(z, ξ) · z, (7)

where ξ ∈ Rd and P ∈ Rd×d are task-specific param-
eters, and sim(·, ·) represents the cosine similarity rang-
ing between [0, 1]. The resulting ẑ can be represented as
[ẑ1, ẑ2, ..., ẑN ] ∈ RN×D, where ẑj denotes the embedding
for the jth patch class. The matrix t = [t1, t2, ..., tC ] ∈
RC×D represents C classes, with d as the feature dimen-
sion of the CLIP model. Here, ti denotes the representation
of the i-th class, and [cls] corresponds to the global feature
represented as g ∈ RN×D. The relationship descriptor can
be represented as:

t̂ = ϕ([t · g; t]), (8)
where ϕ(·) projects [t · g; t] to the same dimension as ẑ.

Semantic masks are calculated using matrix product:

Masks = t̂ · ẑT ∈ RC×N , (9)
The final segmentation results are obtained by applying the
Argmax operation along the class dimension of Masks.

Loss Function We employ a combination of the focal
loss (Lin et al. 2017), and the structural similarity (SSIM)
loss (Wang, Simoncelli, and Bovik 2003). The total loss L
is a linear combination of the focal loss and SSIM loss, with
coefficients α and β to balance their contributions:

L = γ · Lfocal + σ · Lssim, (10)

The coefficients γ, σ are used to control the relative impor-
tance of the focal loss and SSIM loss in the overall loss func-
tion.

Experiments
Datasets
We conducted extensive experiments on two benchmark
datasets to evaluate the effectiveness of our proposed
method: PASCAL VOC 2012 (20), COCO-Stuff 164K. Here
are the details of each dataset:

1. PASCAL VOC 2012: This dataset consists of 10,582
augmented images for training and 1,449 for validation.
We focus on 15 seen classes, ignoring the ”background”
class, and 5 unseen classes.

2. COCO-Stuff 164K: It is a large-scale dataset with
118,287 training images and 5,000 testing images, cover-
ing 171 classes. Among them, 156 classes are seen, and
15 classes are unseen.

Evaluation Metrics
As in previous studies, we assess the performance using
pixel-wise classification accuracy (pAcc) and the mean in-
tersection over union (mIoU ) for both seen and unseen
classes, referred to as mIoU(S) and mIoU(U), respec-
tively. Additionally, we calculate the harmonic mean IoU
(hIoU ) between the seen and unseen classes as in Zeg-
CLIP (Zhou et al. 2023), which is formulated as:

hIoU =
2 ∗mIoU(S) ∗mIoU(U)

mIoU(S) +mIoU(U)
. (11)

Implementation Details
Our proposed method is implemented using the MMSeg-
mentation open-source toolbox(Contributors 2020) with Py-
Torch 1.10.1. All experiments were conducted on two H800
GPUs using the pre-trained CLIP ViT-B/16 model. The
batch size was set to 16, and the images were resized to a
resolution of 512 × 512. We performed a total of 20,000
training iterations on the PASCAL VOC 2012 dataset, and
96,000 iterations on the COCO-Stuff 164K dataset. Based
on previous research works (Gu et al. 2020; Xu et al. 2021a;
Ding et al. 2022; Zhou, Loy, and Dai 2022), we have set up
the unseen classes. The optimizer used was AdamW, and we
followed the default training schedule provided by the MM-
Seg toolbox. In SPT-SEG, it should be noted that the model
learns multiple prompts exclusively from seen classes dur-
ing training. The optimizer used was AdamW, and we fol-
lowed the default training schedule provided by the MMSeg
toolbox.
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Methods PASCAL VOC 2012 COCO-Stuff 164K
pAcc mIoU(S) mIoU(U) hIoU pAcc mIoU(S) mIoU(U) hIoU

SPNetCV PR′19 / 78.0 15.6 26.1 / 35.2 8.7 14.0
ZS3NeurIPS′19 / 77.3 17.7 28.7 / 34.7 9.5 15.0

CaGNetACMMM ′20 80.7 78.4 26.6 39.7 56.6 33.5 12.2 18.2
SIGNICCV ′21 / 75.4 28.9 41.7 / 32.3 15.5 20.9
JointICCV ′21 / 77.7 32.5 45.9 / / / /

ZegFormerCV PR′22 / 86.4 63.6 73.3 / 36.6 33.2 34.8
zssegarXiv′21 90.0 83.5 72.5 77.5 60.3 39.3 36.3 37.8

ZegCLIPCV PR′23 94.6 91.9 77.8 84.3 62.0 40.2 41.4 40.8

SPT-SEG (Ours) 96.7
(+2.1)

92.9
(+1.0)

87.4
(+9.6)

90.1
(+5.8)

62.9
(+0.9)

40.6
(+0.4)

43.8
(+2.4)

42.1
(+1.3)

ZegCLIP *CV PR′23 96.3 92.4 90.9 91.6 69.9 40.7 63.2 49.6
SPT-SEG * (Ours) 97.6 93.6 92.9 93.2 72.5 41.6 66.0 51.0

Table 1: Comparison with state-of-the-art methods on the PASCAL VOC 2012 and COCO-Stuff 164K datasets. The asterisk
(*) denotes training involving all classes. The best results are highlighted in bold.

Comparison with State-of-the-Art Methods
To showcase the effectiveness of our method, we present the
evaluation results in comparison with previous state-of-the-
art approaches, as shown in Tab. 1. Additionally, we include
the results of fully supervised learning as an upper bound to
demonstrate the performance gap between fully supervised
segmentation and zero-shot segmentation on unseen classes.
We provide qualitative results on the COCO-Stuff 164K
dataset, depicted in Fig. 4. Our proposed method exhibits
significant performance improvements, particularly for un-
seen classes, surpassing previous approaches, as depicted in
Tab. 1. This highlights the superior generalization capability
of our method compared to existing methods. Particularly
noteworthy is the significant increase in mIoU for unseen
classes in the VOC dataset 9.6% and for unseen classes in
the COCO dataset 2.4%

Fig. 4 showcases the segmentation outcomes of the Zeg-
CLIP (Zhou et al. 2023) and our proposed SPT-SEG, both
on seen and unseen classes. With the integration of our pro-
posed designs, SPT-SEG demonstrates impressive segmen-
tation capabilities on both seen and unseen classes, effec-
tively distinguishing similar unseen classes. For example,
our approach effectively segments small target ’sport ball’
objects and achieves full recognition of the unseen class
’playing field’ (Fig. 4(1)). Furthermore, our method success-
fully discriminates “plastic” classes from skateboard regions
(Fig. 4(2)), and accurately segments “dog” instances bearing
resemblance to “horses” (Fig. 4(3)). Overall, SPT-SEG com-
pletely segments the unseen classes(“playing field”, “plas-
tic”) and significantly outperforms other methods in terms of
segmentation details. These results confirm the effectiveness
of our proposed method in achieving superior segmentation
performance, especially for unseen classes.

Ablation Study
Detailed results of applying designs on baseline To
demonstrate the effectiveness of our proposed designs, we
further report the improvements of applying designs on
baseline (ZegCLIP) in Tab. 2. The addition of the SPT sig-

Bas. SPT SGD PASCAL VOC 2012
mIoU(S) mIoU(U) hIoU

✓ 91.9 77.8 84.3
✓ ✓ 92.6 86.7 89.6
✓ ✓ 92.0 79.9 85.5
✓ ✓ ✓ 92.9 87.4 90.1

Table 2: Quantitative results on VOC dataset to demonstrate
the effectiveness of our proposed two designs. Here ✓means
that this component is applied. Note that our baseline (Bas.)
method is ZegCLIP (Zhou et al. 2023). The best results are
highlighted in bold.

Depth PASCAL VOC 2012
mIoU(S) mIoU(U) hIoU

1-6 92.5 86.4 89.3
6-12 92.1 80.9 86.1
1-12 92.6 86.5 89.4
11-12 92.0 78.3 84.6
1-2 92.9 87.4 90.1

Table 3: Ablation on Spectral Prompt Tuning depth. The 1-st
layer refers to the one closest to input. ViT-B has 12 layers
in total.The best results are highlighted in bold.

nificantly enhances the model’s performance on unseen data.
When both SPT and SGD are utilized, the SPT-SEG model
exhibits excellent results on the VOC test dataset.

Effect of the depth of SPT Tab. 3 demonstrates the im-
pact of SPT insertion positions and layers on SPT-SEG per-
formance. The performance of SPT is notably superior when
inserted in the earlier layers compared to the later ones.
However, its overall performance is comparable when ap-
plied across all layers as well as with its application limited
to the first two layers. This finding indicates the greater sig-
nificance of early transformer layer spectral prompts over
later layers’ prompts.
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Figure 4: Qualitative results on COCO-Stuff 164K. (a) are the original testing images; (b) are the ground truths of each image.(c)
represent the performance of ZegCLIP; (d) are the visualization results of our proposed SPT-SEG. Note that we have highlighted
prominent regions using yellow arrows and marked other significant areas with yellow stars for emphasis.

Layers PASCAL VOC 2012
mIoU(S) mIoU(U) hIoU

1 91.9 82.8 87.1
3 92.9 87.4 90.1
5 92.2 83.7 87.7

Table 4: Ablation on layers of Spectral Guided Decode
Layer. The best results are highlighted in bold.

Effect of Spectral Guided Decode layers To investigate
the impact of decoder layers on the performance of SPT-
SEG, we conducted an ablation study on decoder layer
depth. Tab. 4 demonstrates that within our research settings,
the model achieved its optimal performance with 3 decoder
layers. At this layer depth, the model exhibited excellent per-
formance both at the pixel-level and class-level. However,
when the decoder layers were increased to 5, we observed
signs of overfitting, resulting in a decline in performance on
the test set. Conversely, employing only 1 decoder layer sig-
nificantly reduced the model’s performance.

Limitations
Limited by the recognition capability and resolution of
CLIP, pixel classification may be prone to errors in complex
scenes such as object occlusion and glass reflection (e.g.
(Fig. 4(5))). Additionally, the ability to recognize details,
such as object edges, also needs improvement. Resolving
these limitations and enhancing the robustness of the SPT-

SEG method are important directions for future research.

Conclusion

In this work, we present an efficient one-stage direct zero-
shot semantic segmentation method based on the pre-trained
vision-language model CLIP. We introduce two innovative
designs to transfer image classification capabilities to dense
prediction tasks while maintaining a leading edge in zero-
shot knowledge. These designs enable us to achieve com-
petitive results on known classes and significantly improve
performance on novel classes. To demonstrate the effective-
ness of our approach, we comprehensively test its perfor-
mance on two widely-used benchmark datasets, outperform-
ing the previous state-of-the-art methods. Our research aims
to explore the use of pre-trained visual language models for
semantic segmentation. By integrating spectral information
and enhancing the capability of CLIP, we successfully ap-
ply its zero-shot knowledge to downstream tasks, providing
a flexible and accurate solution for zero-shot semantic seg-
mentation.
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