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Abstract

Supervised Contrastive Loss (SCL) is popular in visual rep-
resentation learning. Given an anchor image, SCL pulls two
types of positive samples, i.e., its augmentation and other
images from the same class together, while pushes negative
images apart to optimize the learned embedding. In the sce-
nario of long-tailed recognition, where the number of samples
in each class is imbalanced, treating two types of positive sam-
ples equally leads to the biased optimization for intra-category
distance. In addition, similarity relationship among negative
samples, that are ignored by SCL, also presents meaningful
semantic cues. To improve the performance on long-tailed
recognition, this paper addresses those two issues of SCL by
decoupling the training objective. Specifically, it decouples
two types of positives in SCL and optimizes their relations
toward different objectives to alleviate the influence of the
imbalanced dataset. We further propose a patch-based self
distillation to transfer knowledge from head to tail classes to
relieve the under-representation of tail classes. It uses patch-
based features to mine shared visual patterns among differ-
ent instances and leverages a self distillation procedure to
transfer such knowledge. Experiments on different long-tailed
classification benchmarks demonstrate the superiority of our
method. For instance, it achieves the 57.7% top-1 accuracy on
the ImageNet-LT dataset. Combined with the ensemble-based
method, the performance can be further boosted to 59.7%,
which substantially outperforms many recent works. Our code
will be released.

Introduction
Thanks to the powerful deep learning methods, the perfor-
mance of various vision tasks (Russakovsky et al. 2015; Long,
Shelhamer, and Darrell 2015) on manually balanced dataset
has been significantly boosted. In real-world applications,
training samples commonly exhibit a long-tailed distribution,
where a few head classes contribute most of the observa-
tions, while lots of tail classes are associated with only a
few samples (Van Horn et al. 2018). Long-tailed distribution
leads to two challenges for visual recognition: (a) the loss
function designed for the balanced dataset can be easily bi-
ased toward the head classes. (b) each of tail classes contains
too few samples to represent visual variances, leading to the
under-representation of the tail classes.
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Figure 1: Examples of retrieval results using features learned
by SCL on head classes in (a) and tail classes in (b). In (b),
features learned by SCL are biased to low-level appearance
cues, while features learned by our method are more discrim-
inative to semantic cues.

By optimizing the intra-inter category distance, Supervised
Contrastive Loss (SCL) (Khosla et al. 2020) has achieved im-
pressive performance on balanced datasets. Given an anchor
image, SCL pulls two kinds of positive samples together, i.e.,
(a) different views of the anchor image generated by the data
augmentation, and (b) other images from the same classes.
Those two types of positives supervise the model to learn
different representations, i.e., images from the same cate-
gories enforce the learning of semantic cues, while samples
augmented by appearance variances mostly lead to the learn-
ing of low-level appearance cues. Fig. 1 (a) shows that, SCL
effective learns semantic features for head classes, e.g.,the
learned semantic “bee” is robust to cluttered backgrounds.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

6396



As shown in Fig. 1 (b), representations learned by SCL for
tail classes are more discriminative to low-level appearance
cues like shape, texture, and color.

Our theoretical analysis in Section Overview indicates that,
SCL poses imbalanced gradients on two kinds of positive
samples, resulting a biased optimization for head and tail
classes. We hence proposes the Decoupled Contrastive Learn-
ing, which adopts the Decoupled Supervised Contrastive Loss
(DSCL) to handle this issue. Specifically, DSCL decouples
two kinds of positive samples to re-formulate the optimiza-
tion of intra-category distance. It alleviates the imbalanced
gradients of two kinds of positive samples. We also give a
theoretical proof that DSCL prevents the learning of a biased
intra-category distance. In Fig. 1 (b), features learned by our
method are discriminative to semantic cues, and substantially
boost the retrieval performance on tail classes.

To further alleviate the challenge of long-tailed distribu-
tion, we propose the Patch-based Self Distillation (PBSD) to
leverage head classes to facilitate the representation learning
in tail classes. PBSD adopts a self distillation strategy to
better optimize the inter-category distance, through mining
shared visual patterns between different classes and transfer-
ring knowledge from head to tail classes. We introduce patch-
based features to represent visual patterns from an object.
The similarity between patch-based features and instance-
level features is calculated to mine the shared visual patterns,
i.e., if an instance shares visual patterns with a patch-based
feature, they will have high similarity. We leverage the self
distillation loss to maintain the similarity relationship among
samples, and integrate the knowledge into the training.

DSCL and PBSD are easy to implement, and substan-
tially boosts the long-tailed recognition performance. We
evaluate our method on several long-tailed datasets including
ImageNet-LT (Liu et al. 2019), iNaturaList 2018 (Van Horn
et al. 2018), and Places-LT (Liu et al. 2019). Experimental
results show that our method improves the SCL by 6.5% and
achieves superior performance compared with recent works.
For example, it outperforms a recent contrastive learning
based method TSC (Li et al. 2021) by 5.3% on ImageNet-LT.
Our method can be flexibly combined with ensemble-based
methods like RIDE (Wang et al. 2020), which achieves the
overall accuracy of 74.9% on the iNaturaList 2018, outper-
forming the recent work CR (Ma et al. 2023) by 1.4% in
overall accuracy.

To the best of our knowledge, this is an original contribu-
tion decoupling two kinds of positives and using patch-based
self distillation to boost the performance of SCL on long-tail
recognition. The proposed DSCL decouples different types
of positive samples to pursue a more balanced intra-category
distance optimization across head and tail classes. It also
introduces the similarity relationship cues to leverage shared
patterns in head classes for the optimization in tail classes.
Extensive experiments on three commonly used datasets have
shown its promising performance. Our method is easy to im-
plement and the code will be released to benefit the future
research on long-tailed visual recognition.

Related Work
Long-tailed recognition aims to address the problem of
the model training in the situation where a small portion of
classes have massive samples but the others are associated
with only a few samples. Current research can be summa-
rized into four categories, e.g., re-balancing methods, decou-
pling methods, transfer learning methods and ensemble-based
methods, respectively.

Re-balancing methods use re-sampling or re-weighting
to deal with long-tailed recognition. Re-sampling methods
typically include over-sampling for the tail classes (Byrd and
Lipton 2019) or under-sampling for the head classes (Japkow-
icz and Stephen 2002). Besides re-sampling, re-weighting
the loss function is also an effective solution. For instance,
Balanced-Softmax (Ren et al. 2020) presents the unbiased
extension of Softmax based on the Bayesian estimation. Re-
balancing methods could be harmful to the discriminative
power of the learned backbone (Kang et al. 2019). Therefore,
decoupling methods propose the two-stage training to de-
couple the representation learning and the classifier training.
Transfer learning methods enhance the performance of the
model by transferring knowledge from head classes to tail
classes. BatchFormer (Hou, Yu, and Tao 2022) introduces
a one-layer Transformer (Vaswani et al. 2017) to transfer
knowledge by learning the sample relationship from each
mini-batch. Ensemble-based methods leverage multi experts
to solve long-tailed visual learning. RIDE (Wang et al. 2020)
proposes a multi-branch network to learn diverse classifiers
in parallel. Although ensemble-based method achieves supe-
rior performance, the introduction of multi experts increases
the number of parameters and computational complexity.

Contrastive learning has received much attention because
of its superior performance on representation learning (He
et al. 2020). Contrastive learning aims to find a feature space
that can encode the semantic similarities by pulling the posi-
tive pairs together while pushing negative pairs apart. Some
researchers have leveraged contrastive learning in the long-
tailed recognition. For example, KCL (Kang et al. 2020) finds
that the self-supervised learning based on contrastive learning
can learn a balanced feature space. To leverage the useful
label information, they extend SCL (Khosla et al. 2020) by
introducing a k-positive sampling method. TSC (Li et al.
2021) improves the uniformity of the feature distribution by
making features of different classes converge to a pre-defined
uniformly distributed targets. Some methods (Yun et al. 2022;
Zhang et al. 2023) extend contrastive learning with localized
information to benefit the dense prediction tasks.

This work differs with previous ones in several aspects. Ex-
isting long-tailed recognition works using contrastive learn-
ing treat two kinds of positives equally. To the best of our
knowledge, this is an early work revealing that treating two
kinds of positives equally leads to a biased optimization
across categories. We hence propose a decoupled supervised
contrastive loss to pursue a balanced intra-category distance
optimization. We further extend the contrastive learning by
introducing patch-based self distillation to transfer knowl-
edge between classes, mitigating the under-representation of
the tailed classes and leading to a more effective optimiza-
tion to inter-category distance. Different from other transfer
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Figure 2: Average ratio of gradient L2 norm computed by
pulling the anchor with two types of positives as in Eq. (6)
on ImageNet-LT. ‘*’ denotes the theoretical ratio. SCL treats
two types of positives equally, and leads to the imbalanced
optimization. Two types of positives denote the data argu-
mentation and other images in the same category.

learning methods, PBSD leverages patch-based features to
mine shared patterns between different classes and designs
a self distillation procedure to transfer knowledge. The self
distillation procedure does not rely on a large teacher model
or multi-expert models (Li et al. 2022), making it efficient.
Compared with patch-based contrastive learning methods
that only mine similar patches from different views of an
image, PBSD transfers knowledge between different images.
Those differences and the promising performance in exten-
sive experiments highlight the contribution of this work.

Methodology

Analysis of SCL
Given a training dataset D = {xi, yi}ni=1, where xi denotes
an image and yi ∈ {1, . . . ,K} is its class label. Assuming
that nk denotes the cardinality of class k in D, and indexes
of classes are sorted by cardinality in decreasing order, i.e., if
a < b, then na ≥ nb. In long-tailed recognition, the training
dataset is imbalanced, i.e., n1 ≫ nK , and the imbalance
ratio is defined as n1/nK . For the image classification task,
algorithm aims to learn a feature extraction backbone vi =
fθ(xi), and a linear classifier, which first maps an image xi
into a global feature map ui and uses the global pooling to
get a d-dim feature vector vi. It hence classifies the feature
vector to a K-dim classification score. Typically, the testing
dataset T is balanced.

Supervised Contrastive Learning (SCL) is commonly
adopted to learn the feature extraction backbone. Given an
anchor image xi, defining zi = gγ(vi) as the normalized fea-
ture extracted with the backbone and an extra projection head
gγ (He et al. 2020), z+i as the normalized feature of a positive
sample of xi generated by data augmentation. We use M to
denote a set of sample features that can be acquired by the
memory queue (He et al. 2020), and use Pi as the positive fea-
ture set of xi drawn from M with Pi = {zt ∈ M : yt = yi}.

SCL decreases the intra-category distance by pulling the
anchor image and its positive samples together, meanwhile
enlarges the inter-category distance through pushing images
with different class labels apart, i.e.,

Lscl =
−1

|Pi|+ 1

∑
zt∈{z+i ∪Pi}

log p(zt|zi), (1)

where |Pi| is the cardinality of Pi. Using τ to denote a pre-
defined temperature parameter, the conditional probability
p(zt|zi) is computed as,

p(zt|zi) =
exp(zt · zi/τ)∑

zm∈{z+i ∪M}
exp(zm · zi/τ)

. (2)

Eq. (1) can be formulated as a distribution alignment task,

Lalign =
∑

zt∈{z+i ∪M}

−p̂(zt|zi) log p(zt|zi), (3)

where p̂(zt|zi) is the probability of the target distribution. For
z+i and zt ∈ Pi, SCL treats them equally as positive samples
and sets their target probability as 1/(|Pi| + 1). For other
images with different class labels in M , SCL treats them as
negative samples and sets their target probability as 0.

For the feature zi of an anchor image xi, the gradient of
SCL is,

∂Lscl

∂zi
=

1

τ

{ ∑
zj∈Ni

zjp(zj |zi) + z+i

(
p(z+i |zi)−

1

|Pi|+ 1

)

+
∑

zt∈Pi

zt

(
p(zt|zi)−

1

|Pi|+ 1

)}
,

(4)
where Ni is the negative set of xi containing features drawn
from {zj ∈ M : yj ̸= yi}. SCL involves two types of
positive samples z+i and zt ∈ Pi. We compute gradients of
pulling the anchor with two types of positive samples as,

∂Lscl

∂zi

∣∣∣∣
z+i

= z+i

(
p(z+i | zi)−

1

|Pi|+ 1

)
,

∂Lscl

∂zi

∣∣∣∣
zt

= zt

(
p(zt|zi)−

1

|Pi|+ 1

)
, zt ∈ Pi.

(5)

At the beginning of the training, the ratio of gradient L2
norm of two kinds of positive samples is,∥∥∥∥ ∂Lscl

∂zi

∣∣∣
z+i

∥∥∥∥
2∑

zt∈Pi

∥∥∥∥ ∂Lscl
∂zi

∣∣∣
zt

∥∥∥∥
2

≈ 1

|Pi|
. (6)

When SCL converges, the optimal conditional probability
of z+i is,

p(z+i |zi) =
1

|Pi|+ 1
. (7)

A detailed proof of above computations can be found in the
Supplementary Material.

In SCL, the memory queue M is uniformly sampled from
the training set, which leads to |Pi| ≈ nyi

n |M |. In a balanced
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Figure 3: Illustration of the proposed method. Data augmentation is performed to get two global views of a training image. Then
small patch is cropped from the global view. The backbone and Exponential Moving Average (EMA) backbone (He et al. 2020)
are used to extract normalized features. These features are used to calculate the similarity distribution with memory queue M .
Ldscl optimizes the feature space by pulling the anchor image with its positive samples together and pushing the anchor image
with its negative samples apart. Lpbsd transfers knowledge through mimicking two similarity distributions.

dataset, n1 ≈ n2 ≈ · · · ≈ nK , resulting a balanced |Pi|
across different categories. For a long-tail dataset with imbal-
anced |Pi|, SCL makes the head classes pay more attention
to pulling the anchor zi with features from Pi together as the
gradient is dominated by the third term in Eq. (4).

As shown in Fig. 2, the ratio of gradient L2 norm of pulling
two kinds of positive samples is unbalanced. When the train-
ing of SCL converges, the optimal value of p(z+i |zi) is also
influenced by the |Pi| as shown in Eq. (7). The inconsistency
of learned features across categories is illustrated in Fig. 1(a)
and (b). This phenomena has also been validated by (Wei
et al. 2020) that pulling zi with z+i and samples from Pi

leads to learning different representations, i.e., appearance
features for tail classes and semantic features for head classes,
respectively.

Eq. (4) also indicates that, SCL equally pushes away all the
negative samples to enlarges the inter-category distance. This
strategy ignores the valuable similarity cues among different
classes. To seek a better way to optimize intra and inter
category distance, we propose the Decoupled Supervised
Contrastive Loss (DSCL) to decouple two kinds of positive
samples to prevent the biased optimization, as well as the
Patch-based Self Distillation (PBSD) to leverage similarity
cues among classes.

Decoupled Supervised Contrastive Loss

DSCL is proposed to ensure a more balanced optimization
to the intra-category distance across different categories. It
decouples two kinds of positive samples and add different
weights on them to make the gradient L2 norm ratio and the
optimal value of p(z+i |zi) not influenced by the number of

samples in each category. We represent the DSCL as,

Ldscl =
−1

|Pi|+ 1

∑
zt∈{z+i ∪Pi}

log
expwt(zt · zi/τ)∑

zm∈{z+i ∪M}
exp(zm · zi/τ)

,

(8)
where,

wt =


α(|Pi|+ 1), zt = z+i

(1− α)(|Pi|+ 1)

|Pi|
, zt ∈ Pi

(9)

where α ∈ [0, 1] is a pre-defined hyper-parameter. The pro-
posed DSCL is a generalization of SCL in both balanced
setting and imbalanced setting. If the dataset is balanced,
DSCL is the same as SCL by setting α = 1/(|Pi|+ 1).

We proceed to show why Eq. (8) leads to a more balanced
optimization.

At the beginning of the training, the gradient L2 norm ratio
of two kinds of positives is,∥∥∥∥ ∂Ldscl

∂zi

∣∣∣
z+i

∥∥∥∥
2∑

zt∈Pi

∥∥∥∥ ∂Ldscl
∂zi

∣∣∣
zt

∥∥∥∥
2

≈ α

1− α
. (10)

When DSCL converges, the optimal conditional probability
of z+i is p(z+i |zi) = α, where a detailed proof can be found
in the Supplementary Material.

As shown in Eq. (10) and Fig. 2, the gradient ratio of two
kinds of positive samples is not influenced by |Pi|. DSCL also
ensures that the optimal value of p(z+i |zi) is not influenced by
|Pi|, hence alleviates the inconsistent feature learning issue
between head and tail classes.

Patch-based Self Distillation
Visual patterns can be shared among different classes, e.g.,
the visual pattern ‘wheel’ is shared by the class ‘truck’, ‘car’,
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and ‘bus’. Features of many visual patterns in tail classes can
be learned from head classes that share these visual patterns,
hence reducing the difficult of representation learning in tail
classes. SCL pushes two instances from different classes
away in the feature space, even they share meaningful visual
patterns. As shown in Fig. 4, we extract query patch features
from yellow bounding boxes and retrieve the top-3 similar
samples from the dataset. Retrieval results of SCL denoted by
‘w/o PBSD’ are not semantically related to the query patch,
indicating that SCL is not effective in learning and leveraging
patch-level semantic cues.

Inspired by the patch-based methods in fine-grained image
recognition (Zhang et al. 2014; Quan et al. 2019; Sun et al.
2018), we introduce patch-based features to encode visual
patterns. Given the global feature map ui of an image xi
extracted by the backbone, we first randomly generate some
patch boxes. The coordinates of those patch boxes denote
{Bi[j]}Lj=1, where L is the number of the patch boxes. We
hence apply ROI pooling (He et al. 2017) according to the co-
ordinates of those patch boxes and send pooled features into
a projection head to get the normalized embedding features
{ci[j]}Lj=1 with

ci[j] = gγ (ROI (ui,Bi[j])) . (11)

Similar to Eq. (2), the conditional probability is leveraged
to calculate the similarity relationship between instances,

p(zt|cji ) =
exp(zt · ci[j]/τ)∑

zm∈{z+i ∪M}
exp(zm · ci[j]/τ)

. (12)

If the image corresponding to zt has shared visual patterns
with the patch-based features, zt and ci[j] will have a high
similarity. Therefore, Eq. (12) encodes the similarity cues
between each pair of instances.

We use the similarity cues as the knowledge to supervise
the training procedure. To maintain such knowledge, we
also crop multi image patches from the image according to
{Bi[j]}Lj=1, and extract their feature embeddings {si[j]}Lj=1
with the backbone,

si[j] = gγ (fθ (Crop(xi, Bi[j]))) . (13)

PBSD enforces the feature embeddings of image patches
to produce the same similarity distribution as the patch-based
features via the following loss,

Lpbsd =
1

L

L∑
j=1

∑
zt∈{z+i ∪M}

−p(zt|ci[j]) log p(zt|si[j]), (14)

note that p(zt|ci[j]) is detached from the computation graph
to block the gradient.

Local visual patterns of an object can be shared by different
categories. We hence use patch-based features to represent
visual patterns. p(zt|ci[j]) is calculated to mine relationship
of the shared patterns among images. Minimizing Eq. (14)
maintains shared patterns to transfer knowledge and mitigate
the under-representation of the tailed classes. The retrieval
results shown in Fig. 4 indicate that our method effectively
reinforces the learning of patch-level features and patch-to-
image similarity, making it possible to mine shared visual

w/ PBSD w/o PBSD

Figure 4: Patch-based image retrieval results (top 3 returned)
on ImageNet-LT. Query patches are highlighted with yellow
bounding boxes. The response map of query patch features
on the retrieved images is also illustrated.

patterns of different classes. Experiments also validate that
PBSD loss is important to the performance gain.

Multi-crop trick (Caron et al. 2020) is commonly used in
self-supervised learning to generate more augmented samples
of the anchor image. It introduces low resolution crops to
reduce the computational complexity. Our motivation and
loss design are different with the multi-crop strategy. PBSD
is motivated to leverage shared patterns between head and tail
classes to assist the learning of the tail classes. Patch-based
features are obtained with ROI pooling to represent shared
patterns. Eq. (14) performs self distillation to maintain shared
patterns. We conduct an experiment by replacing PBSD with
the multi-crop trick. As shown in Table 1, the performance
on ImageNet-LT drops from 57.7% to 56.1%, indicating that
PBSD is more effective than the multi-crop strategy.

Training Pipeline
We illustrate our method in Fig. 3. To maintain a memory
queue, we use a momentum updated model as in (He et al.
2020). The training is supervised by two losses, i.e., the
decoupled supervised contrastive loss and the patch-based
self distillation loss. The overall training loss is denoted as,

Loverall = Ldscl + λLpbsd, (15)

where λ is the loss weight.
Our method focuses on the representation learning, and

can be applied in different tasks by concatenating their losses.
Following (Li et al. 2021; Kang et al. 2020), after the training
of the backbone, we discard the learned projection head gγ(·)
and train a linear classifier on top of the learned backbone
using the standard cross-entropy loss with the class-balanced
sampling strategy (Kang et al. 2019). The following section
proceeds to present our evaluation to the proposed methods.

Experiments
Experimental Setup
Datasets. We use three popular datasets to evaluate the long-
tailed recognition performance.
• ImageNet-LT (Liu et al. 2019) contains 115,846 train-

ing images of 1,000 classes sampled from the Ima-
geNet1K (Russakovsky et al. 2015), with class cardinality
ranging from 5 to 1,280.
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Settings Many Medium Few Overall
Baseline 61.6 48.6 30.3 51.2
DSCL 63.4 50.0 31.4 52.6
+ PBSD 67.2 53.7 33.7 56.3
DSCL + PBSD∗ 67.2 53.9 33.7 56.2
DSCL + PBSD† 68.0 53.3 32.3 56.1
DSCL + PBSD 68.5 55.2 35.4 57.7

Table 1: Effectiveness of each component in our method
on ImageNet-LT. SCL is used as baseline. * denotes using
features of the global view instead of patch-based features to
calculate Eq. (14). † denotes using the multi-crop trick (Caron
et al. 2020) instead of PBSD.

• iNaturaList 2018 (Van Horn et al. 2018) is a real-world
long-tailed dataset with 437,513 training images of 8,142
classes, with class cardinality ranging from 2 to 1,000.

• Places-LT (Liu et al. 2019) contains 62,500 training im-
ages of 365 classes sampled from the Places (Zhou et al.
2017), with class cardinality ranging from 5 to 4,980.

Evaluation Metrics. We follow the standard evaluation met-
rics that evaluate our models on the testing set and report the
overall top-1 accuracy across all classes. To give a detailed
analysis, we follow (Liu et al. 2019) that groups the classes
into splits according to their number of images: Many (> 100
), Medium (20 - 100), and Few (< 20).
Implementation Details. For a fair comparison, we follow
the implementations of TSC (Li et al. 2021) and KCL (Kang
et al. 2020) that train the backbone at the first stage and
train the linear classifier with the freezed learned backbone
at the second stage. We adopt ResNet-50 (He et al. 2016) as
backbone for all experiments except that using ResNet-152
pre-trained on ImageNet1K for Places-LT. The α in Eq. (9)
is set as 0.1 and the loss weight λ in Eq. (15) is 1.5.

At the first stage, the basic framework is the same as Mo-
CoV2 (Chen et al. 2020), the momentum value for the updat-
ing of EMA model is 0.999, the temperature τ is 0.07, the
size of memory queue M is 65536, and the output dimension
of projection head is 128. The data augmentation is the same
as MoCoV2 (Chen et al. 2020). Locations to get the patch-
based features are sampled randomly from the global view
with the scale of (0.05, 0.6). Image patches cropped from the
global view are resized to 64. The number of patch-based
feature L per anchor image is 5. SGD optimizer is used with
a learning rate decays by cosine scheduler from 0.1 to 0 with
batch size 256 on 2 Nvidia RTX 3090 in 200 epochs. For
Places-LT, we only fine-tune the last block of the backbone
for 30 epochs (Kang et al. 2019). At the second stage, the
parameters are the same as (Li et al. 2021). The linear classi-
fier is trained for 40 epochs with CE loss and class-balanced
sampling (Kang et al. 2019) with batch size 2048 using SGD
optimizer. The learning rate is initialized as 10, 30, 2.5 for
ImageNet-LT, iNaturaList 2018, and Places-LT, respectively,
and multiplied by 0.1 at epoch 20 and 30.

Ablation Study
Components analysis. We analyze the effectiveness of
each proposed component on ImageNet-LT in Table 1.

Settings ResNet50 ResNeXt50
Baseline 51.2 51.8
DSCL 52.6 53.2
+ PBSD 56.3 57.7
DSCL + PBSD 57.7 58.7

Table 2: Ablation study of each component in our method on
different backbones.
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Figure 5: Evaluation of α in Eq. (9), the number of patch-
based features L per anchor image, and the loss weight λ on
ImageNet-LT in (a), (b), and (c), respectively. Green dotted
line in (a) denotes the baseline SCL.

SCL (Khosla et al. 2020) is used as baseline. Compared
with the SCL baseline, DSCL improves the top-1 accuracy by
1.4%. This result is already better than the recent contrastive
learning based method TSC (Li et al. 2021). Many methods
for long-tailed classification could improve the performance
of tail classes but sacrifice the head classes performance. Dif-
ferent from those works, PBSD improves the performance
of both head and tail classes. The Table 1 clearly indicates
that, the combination of DSCL and PBSD achieves the best
performance. The introduction of patch-based features are
important to PBSD. We conduct experiment by using features
of global view to calculate Eq. (14). It decreases the overall
accuracy by about 1.5%. In addition, our method is also more
effective than the multi-crop trick, i.e., it improves the overall
accuracy by 1.6% over the multi-crop trick. In summarize,
each component in our method is effective in boosting the
performance.
Components analysis on different backbones. To validate
that our method generalizes well on different backbones, we
further conduct experiments using the ResNeXt50 (Xie et al.
2017) as backbone on ImageNet-LT. Results are summarized
in Table 2, where our proposed components are also effective
on ResNext50. Both DSCL and PBSD can bring performance
improvement over the baseline. The combination of them
achieves the best performance.
The impact of α in Eq. (9) is investigated in Fig. 5 (a). α
determines the weight of pulling the anchor with its data
augmented one. α = 0 means only pulling the anchor with
other images from the same class. This setting decreases the
accuracy from 57.7% to 56.8%, showing the importance of
involving two kinds of positives. In addition, this setting still
outperforms the SCL baseline, i.e., denoted by the green dot-
ted line in the figure. It indicates that preventing the biased
features is important. α = 1 degenerates the loss into the
self-supervised loss. The accuracy is only 39.8% because of
the lack of label information. We set α as 0.1, which gets
the best performance. Setting α = 0.1 also gets competi-
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Methods Reference ImageNet-LT iNaturaList 2018 Places-LT
Many Medium Few Overall Many Medium Few Overall Overall

CE - 64.0 33.8 5.8 41.6 72.2 63.0 57.2 61.7 30.2
Balanced NeurIPS20 61.1 47.5 27.6 50.1 - - - - 38.7
cRT ICLR20 58.8 44.4 26.1 47.3 69.0 66.0 63.2 65.2 36.7
DisAlign CVPR21 59.9 49.9 31.8 51.3 - - - 67.8 39.3
BatchFormer CVPR22 61.4 47.8 33.6 51.1 - - - - 38.2
KCL ICLR20 61.8 49.4 30.9 51.5 - - - 68.6 -
PaCo‡ ICCV21 59.7 53.2 38.1 53.6 66.3 70.8 70.6 70.2 41.2
TSC CVPR22 63.5 49.7 30.4 52.4 72.6 70.6 67.8 69.7 -
BCL CVPR22 - - - 56.0 - - - 71.8 -
Our* This paper 67.2 54.8 38.7 57.4 - - - - -
Our This paper 68.5 55.2 35.4 57.7 74.2 72.9 70.3 72.0 42.4
RIDE ICLR21 - - - 55.4 70.9 72.4 73.1 72.6 40.3
NCL† CVPR22 - - - 59.5 72.7 75.6 74.5 74.9 -
SADE NeurIPS22 - - - - - - - 72.9 40.9
Our + RIDE This paper 70.1 57.5 37.7 59.7 76.2 75.7 73.6 74.9 -

Table 3: Comparison with recent methods on ImageNet-LT, iNaturaList2018, and Places-LT. CE denotes training the model with
the cross entropy loss. ∗ denotes the learning rate at the second stage of our method is initialized as 2.5. ‡ denotes the model
is trained without RandAug (Cubuk et al. 2020) and with 200 epochs for fair comparison. † denotes the model is trained with
RandAug and 400 epochs, which is a more expensive training setup than ours.

tive performance on different datasets as shown in following
experiments.
The impact of the number of patch-based features per
anchor image is shown in Fig. 5 (b). The model benefits from
involving more patch-based features into training. The top-1
accuracy improves from 55.0% to 57.7% when increasing L
from 1 to 5. We set L as 5 for a reasonable trade-off between
training cost and accuracy.
The impact of the loss weight λ is shown in Fig. 5 (c).
Because λ weights the influence of PBSD, the figure shows
that PBSD is important. Setting λ from 1 to 2 gets similar
performance. We set it as 1.5 for different datasets.

Comparison with Recent Works
We compare our method with recent works on ImageNet-LT,
iNaturaList 2018, and Places-LT. The compared methods
include re-balancing methods (Ren et al. 2020), decoupling
methods (Kang et al. 2019; Zhang et al. 2021), transfer learn-
ing based methods (Hou, Yu, and Tao 2022), methods that
extend SCL (Kang et al. 2020; Li et al. 2021; Cui et al. 2021;
Zhu et al. 2022), and ensemble-based methods (Li et al. 2022;
Zhang et al. 2022; Wang et al. 2020). Experimental results
are summarized in Table 3.

As shown in Table 3, directly using cross entropy loss
leads to a poor performance on tail classes. Most long-tailed
recognition methods improve the overall performance, but
sacrifice the accuracy on ‘Many’ split. Compared with the re-
balancing methods, decoupling methods adjust the classifier
after the training, and achieve a better performance, showing
the effectiveness of the two-stage training strategy. Compared
with above works, transfer learning based methods get better
performance on head classes. For instance, BatchFormer gets
a higher accuracy on ‘Many’ split than DisAlign which has
the same overall accuracy with it.

Our method achieves the best overall accuracy of 57.7% on
ImageNet-LT. It also outperforms PaCo (Cui et al. 2021) that

uses stronger data augmentation and twice training epochs.
To make a fair comparison, we train PaCo with the same data
augmentation and training epochs as our method, which de-
creases it accuracy from 57.0% to 53.6%. We also found that
the learning rate of the second stage linear classifier training
can change the accuracy distribution on ‘Many’, ‘Medium’
and ‘Few’ splits, while maintaining the same overall accuracy.
For instance, with a learning rate of 2.5 at the second training
stage, the accuracy on ‘Few’ split increases from 35.4% to
38.7%, while the overall accuracy only decreases by about
0.3%. We hence note that, the overall accuracy could be more
meaningful than individual accuracy on each split, which can
be adjusted by hyperparameters.

Our method can also be combined with ensemble-based
method to further boost its performance. Combined with
RIDE, our method achieves 59.7% overall accuracy on
ImageNet-LT, outperforming all those compared ensemble-
based methods. Our method also achieves superior perfor-
mance on iNaturaList 2018, where it gets comparable perfor-
mance with NCL that is trained with stronger data augmenta-
tion and twice training epochs. With only a single model, our
method achieves the best performance on Places-LT.

Conclusion
To tackle the challenge of long-tailed recognition, this paper
analyzed two issues in SCL and addressed them with DSCL
and PBSD. The DSCL decouples two types of positives in
SCL, and optimizes their relations toward different objec-
tives to alleviate the influence of the imbalanced dataset. The
PBSD leverages head classes to facilitate the representation
learning in tail classes by exploring patch-level similarity
relationship. Experiments on different benchmarks demon-
strated the promising performance of our method, where it
outperforms recent works using more expensive setups. Ex-
tending our method to long-tailed detection is considered as
the future work.
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