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Abstract
Recently, convolutional neural networks (CNNs) have be-
come the best quantitative encoding models for capturing
neural activity and hierarchical structure in the ventral vi-
sual pathway. However, the weak interpretability of these
black-box models hinders their ability to reveal visual repre-
sentational encoding mechanisms. Here, we propose a con-
volutional neural network interpretable framework (CNN-
IF) aimed at providing a transparent interpretable encoding
model for the ventral visual pathway. First, we adapt the
feature-weighted receptive field framework to train two high-
performing ventral visual pathway encoding models using
large-scale functional Magnetic Resonance Imaging (fMRI)
in both goal-driven and data-driven approaches. We find that
network layer-wise predictions align with the functional hier-
archy of the ventral visual pathway. Then, we correspond fea-
ture units to voxel units in the brain and successfully quantify
the alignment between voxel responses and visual concepts.
Finally, we conduct Network Dissection along the ventral vi-
sual pathway including the fusiform face area (FFA), and dis-
cover variations related to the visual concept of ‘person’. Our
results demonstrate the CNN-IF provides a new perspective
for understanding encoding mechanisms in the human ventral
visual pathway, and the combination of ante-hoc interpretable
structure and post-hoc interpretable approaches can achieve
fine-grained voxel-wise correspondence between model and
brain. The source code is available at: https://github.com/BIT-
YangLab/CNN-IF.

Introduction
The ventral visual pathway is a remarkable feat of nature,
capable of processing complex visual stimuli with predomi-
nant efficiency and accuracy. Recently, CNNs have emerged
as optimal quantitative encoding models for capturing neu-
ral activities and hierarchical structures in the ventral visual
pathway (Yamins et al. 2014; Kriegeskorte 2015; Schrimpf
et al. 2018; Cadena et al. 2019; Schrimpf et al. 2020; Storrs
et al. 2021). These models provide a hierarchical correspon-
dence to the early visual cortex (V1-V4) and inferior tem-
poral (IT) (Khosla et al. 2022): early CNN layers predict
V1 best, while intermediate and late layers predict V4 and
IT best (Yamins et al. 2014; Cichy et al. 2016; Güçlü and
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van Gerven 2015). Comparable strategies have proven suc-
cessful in understanding the human auditory cortex (Kell
et al. 2018) and motor cortex (Sussillo et al. 2015), high-
lighting the universality of CNN encoding models (Zhuang
et al. 2021; Konkle and Alvarez 2022). Nonetheless, the cur-
rent understanding of the fundamental mechanisms within
the brain and model systems remains incomplete. Unravel-
ing the nature of representational transformations and com-
putations in the ventral visual pathway has long been a vital
aim in neuroscience. Importantly, the use of computational
models enables the simulation of visual hierarchical process-
ing and facilitates the exploration of hypotheses that may not
be readily accessible in the human brain (Beguš, Zhou, and
Zhao 2023).

To date, CNNs have been predominantly regarded as
black-box models, posing a significant challenge in terms of
interpretability. The inherent inability to delve into the inter-
nal workings of these models impedes our progress in com-
prehending the fundamental mechanisms by which they en-
code visual representations (Ribeiro et al. 2022). Despite on-
going efforts from researchers to enhance the interpretability
of CNNs, such as utilizing Grad-CAM (Gradient-weighted
Class Activation Mapping) (Selvaraju et al. 2017) and LRP
(Layer-wise Relevance Propagation) (Bach et al. 2015),
striking a balance between accuracy and interpretability re-
mains a major obstacle. With the emergence of large-scale
brain imaging datasets (Chang et al. 2019; Allen et al. 2022),
both goal-driven and data-driven approaches have the poten-
tial to provide advanced encoding models for the ventral vi-
sual pathway (Qiao et al. 2021; Gu et al. 2022). This creates
a further appetite for model interpretability. The goal-driven
approach is to characterize voxel responses through the fea-
ture space trained on high-level tasks, and the data-driven
approach is to directly train the model with fMRI data to
characterize voxel responses (Cadena et al. 2019; Xiao et al.
2022). It is essential to note that biological visual learning
is a process of differentiation, wherein the learning involves
discerning differences in existing visual features present in
visual inputs rather than constructing new features for each
new category (Konkle and Alvarez 2022). This highlights
the need to strike a balance between predictive performance
and interpretability. Overemphasizing the predictive perfor-
mance of CNN models may lead to high accuracy in voxel
response prediction but often at the cost of understanding
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Figure 1: The architecture of CNN-IF. (A) All voxels within the ROI are characterized by a shared CNN extractor. To effectively
predict voxel responses for input images, spatial pooling fields, and voxel-weighted matrices are specifically allocated to each
voxel. The input images utilized in this study are obtained from the NSD experiment, leveraging the COCO dataset, comprising
a total of 73,000 images. (B) The input images are segmented by a binary segmentation network, yielding up to six concept
maps per image. The IoU (Intersection over Union) is then calculated between the concept maps and the thresholded voxel
maps. (C) For each voxel, the Pearson correlation between the predictive responses and the measured responses is computed on
a testing dataset and then corrected by the noise ceiling of that voxel.

their underlying neural processing mechanisms (Cole et al.
2017; Kohoutová et al. 2020). Therefore, it is of utmost im-
portance to give more attention to both goal-driven and data-
driven approaches in terms of interpretability.

Here, we propose CNN-IF which is used for the interpre-
tation of CNN models in the human ventral visual pathway.
First, we adapt the feature-weighted receptive filed (fwrf)
model (St-Yves and Naselaris 2018) to establish an inter-
pretable component for our encoding models. Then, we train
encoding models on a large-scale fMRI dataset named the
Natural Scenes Dataset (NSD) (Allen et al. 2022). Next, we
utilize the voxel-weighted matrix derived from the parame-
ters of the fwrf to correspond feature units to voxel units in
the brain and successfully quantify the alignment between
voxel responses with visual concepts. Finally, we conduct
Network Dissection (Bau et al. 2017, 2020) along the visual
ventral pathway and achieve similar results to a previous
study (Khosla and Wehbe 2022) on the fusiform face area
(FFA) (Kanwisher, McDermott, and Chun 1997), the extras-
triate body area (EBA) (Downing et al. 2001), the visual
word form area (VWFA) (Cohen et al. 2000), and the ret-
rosplenial cortex (RSC) (Dilks et al. 2013). We demonstrate
that our framework achieves fine-grained hierarchical align-
ment between the model and the brain. Overall, our main
contributions are as follows:
• The CNN-IF can provide transparent interpretable en-

coding models for the ventral visual pathway.

• The CNN layer-wise predictions align with the func-
tional hierarchy of the ventral visual pathway.

• We captured fine-grained hierarchical alignment between
voxel units and a set of visual concepts.

• We discovered variations related to the visual concept of
‘person’ in V1-V2-V3-hV4-FFA brain regions.

• We visualized the spatial pooling field and the activation
map to explain this sensational finding.

Related Work
Human Ventral Visual Pathway
The human ventral visual pathway is a major neural pathway
in the brain that is responsible for object recognition and vi-
sual perception. It is located primarily in the ventral (lower)
region of the brain, specifically the temporal lobe. The visual
process of object recognition along the ventral visual path-
way mainly includes four stages retinal imaging, feature ex-
traction, feature combination, and finally object recognition.
Among these brain functional regions, V1 is responsible for
capturing information such as edges and curvatures as well
as detecting simple features such as shape, color, and posi-
tion (Hubel and Wiesel 1962; Cadena et al. 2019). V2 which
receives most of the input from V1 to extract more complex
local features has similar selectivity to direction and spatial
scale (Levitt, Kiper, and Movshon 1994; Coggan et al. 2017)
and shows stronger selectivity and tolerance to visual texture
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(Ziemba et al. 2016). Finally, the high-level regions, includ-
ing FFA, EBA, VWFA, and RSC, complete the final coding
semantic category to achieve object recognition tasks such
as faces, scenes, etc (Khosla et al. 2022).

Network Dissection

Network dissection is a technique used in computer vision
to understand the inner workings of deep neural networks
(Bau et al. 2017). It involves analyzing the intermediate lay-
ers of a neural network model to identify and interpret the
function of individual units or groups of units. The goal of
network dissection is to uncover the semantics and meanings
learned by the network for specific tasks. It helps researchers
gain insights into what the network has learned and how it
has encoded and represented information. Network dissec-
tion has been used to analyze and interpret various deep net-
work architectures, such as CNNs for image classification
and generative adversarial networks (GANs) for image syn-
thesis (Bau et al. 2020). Network dissection is also used to
interpret the tumor segmentation results (Natekar, Kori, and
Krishnamurthi 2020). In the human visual system, network
dissection is applied to the last layer of their encoding model
to demonstrate strong selectivity and functional specializa-
tion of the high-level visual areas (Khosla and Wehbe 2022;
Sarch et al. 2023), but they don’t discover the encoding pro-
cessing for this selectivity and specialization.

Methods

CNN-IF

The architecture of CNN-IF is shown in Figure 1. We adopt
the fwrf model to separate the “where” parameter, which
indicates the location of feature pooling, from the “what”
parameter, which fine-tunes the feature weights, establish-
ing interpretable components called spatial pooling fields for
each voxel of in human brain (Fig. 1A). The size of these
spatial pooling fields matches the size of the feature map in
each layer of the model. For the goal-driven model, a single
isotropic 2D Gaussian pooling field is selected from a pre-
defined set and applied to all feature maps. In contrast, for
the data-driven model, an independent and flexible pooling
field is applied to each layer of feature maps. Feature maps
are grouped based on the model layers and then multiplied
pixel-wise by the corresponding spatial pooling field giv that
determines the region of visual space that drives voxel re-
sponse. The weighted pixel values in each feature map are
then weighted by the voxel-weighted matrix Wv to yield pre-
dictive voxel responses. The CNN extractors remain iden-
tical for all voxels across the encoding models, while the
spatial pooling fields are optimized and vary across voxels.
After training, feature maps of each convolutional layer in
the extractor are multiplied by the voxel-weighted matrix
to obtain voxel maps. We then perform network dissection
with these voxel maps. This allows us to quantify the align-
ment between a set of semantic concepts with all voxels in
a specific region of interest (ROI) (Fig. 1B). Our procedure
closely follows the work of (Bau et al. 2017).

Dataset
All encoding models were trained on the NSD1 (Allen et al.
2022), which consists of individual high-density sampling
fMRI data obtained from 8 participants (6 females, aged 19-
32 years). During 30-40 sessions of 7T MRI (whole-brain
gradient-echo EPI, 1.8 mm isotropic voxels, and 1.6 s TR),
each participant viewed 9,000-10,000 different colored nat-
ural scenes, with each scene repeated 2-3 times. A special
set of 1,000 images was shared across subjects, while the
rest were mutually exclusive. The trained model is validated
on these 1000 shared pictures to obtain validation accuracy.
The images that subjects viewed (3 s on and 1 s off) were
from the Microsoft Common Objects in Context (COCO)
database (Lin et al. 2014) with a square crop resized to 8.4
× 8.4°.

Regions of Interests
We focus on modeling responses within 8 ROIs in the ventral
visual in the study. Four ROIs belonging to the retinotopic
early visual cortex, namely, V1, V2, V3, and hV4 are defined
using a population receptive field (pRF) localizer scan ses-
sion, and four higher-level visual ROIs, namely FFA, EBA,
RSC, VWFA are manually drawn based on the results of the
functional localizer (fLoc) experiment after a liberal thresh-
olding procedure (Allen et al. 2022). We use the cortical flap
map resent eight selected ROIs on the ventral visual path-
way (Fig. 2C). To better demonstrate the generalization of
CNN-IF, we register the ROI of each subject to a common
anatomical space (MNI152), and the model predictions are
presented in the same manner.

Model Architecture
We employ AlexNet (Krizhevsky, Sutskever, and Hinton
2012) and GNet (Allen et al. 2022; St-Yves et al. 2023)
to predict voxel responses. These models possess intricate
brain-inspired architectures and provide biologically plau-
sible interpretations, enabling the effective capture of hi-
erarchical representations of visuals in the human brain.
AlexNet has previously been shown to deliver state-of-the-
art performance in visual response modeling (Güçlü and van
Gerven 2015; St-Yves and Naselaris 2018). GNet is a data-
driven encoding model that has been shown to train models
from scratch and accurately predict voxel responses for V1-
V2-V3-hV4. Both AlexNet and GNet consist of a CNN fea-
ture extractor and an interpretable fwrf model used to predict
the voxel response.

The CNNs utilized in the AlexNet and GNet models are
constructed by hierarchically composing functions that pro-
cess an input image denoted as t:

fl(t) = fl−1(t) · ξl

where ξl is a CNN extractor that operates at layer l on the
output of fl−1(t). fl(t) is the output of layer l and is fed into
the next layer as input. The encoding models leverage the
intermediate representations fl(t), which are feature maps

1http://naturalscenesdataset.org
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with pixels donated by [fl(t)]k,i,j , where (i, j) is the loca-
tion of the pixel in the kth feature map. The predictive re-
sponse of voxel v to the input t is expressed by the following
formula:

R̃t,v,l = bv +
∑
k

Wk,v · σk,v,l(t)

where Wk,v is the feature weight for voxel v and feature
k. The summation

∑
k

Wk,v of voxel v indicates the voxel-

weighted matrix by summing up the weights of all features
in encoding models. bv is a bias item for voxel v.

σk,v,l(t) =
∑
i,j

[fl(t)]k,i,j · g
l
v,i,j

where glv,i,j indicates the spatial pooling field of voxel v in
CNN-IF to reduce the spatial dimensions of feature maps
while preserving important features. Important features are
located by pixel (i, j). The spatial pooling field of each voxel
in different layers is initialized with the same parameters.

Model Training and Testing
We aim to maximize the utilization of data from all eight
subjects for model training, a rigorous evaluation resulted
in excluding data from subjects 4, 6, 7, and 8 due to signifi-
cantly lower signal-to-noise ratios, particularly in the higher-
level visual brain areas focused on in this study. Finally, we
selected data from subjects 1, 2, 3, and 5 for both training
and testing. The dataset consists of a total of 37,000 natural
scene images, with 1,000 images shared by all subjects, and
each subject contributing 9,000 unique images. The model
is tested on the 1,000 shared images, while the remaining
36,000 images were split into a training set (90%) and a
validation set (10%). To fully exploit the advantages of the
NSD dataset, we jointly optimized our CNN extractor us-
ing data from the four subjects. Specifically, for the goal-
driven encoding model, the CNN extractor parameters were
pre-trained based on object classification in the ImageNet
database (Deng et al. 2009). As for the data-driven encoding
model, the CNN extractor parameters, spatial pooling fields,
and feature weights were all optimized using stochastic gra-
dient descent and an L2-norm weighted loss function:

Loss(R̃, R) =
∑

t∈Batch

∑
s

∑
l

∑
t

(R̃t,s,v,l −Rt,s,v)
2

where t, s denote the image t presented to subject s, R̃t,s,v,l

denotes the predictive response of model layer l for stimulu t
received by voxel v of subject s. Rt,s,v denotes the measured
response of voxel v of subject s to stimulu t.

We quantified the predictive accuracy of the model by
calculating the Pearson correlation coefficient between the
predictive responses of each voxel and the measured re-
sponse and then compared the predictive accuracy with the
noise ceiling (Fig. 2B). We employed the ADAM optimizer
(Kingma and Ba 2014) with a learning rate of 1e-3, β1=0.9,
β2=0.999, 50 epochs, and a batch size of 50 for training. Ad-
ditionally, in order to promote stability during the training
process, parameter updates were alternated between feature
extractors, spatial pooling fields, and feature weights.

Experiments
In the following experiment, we first trained interpretable
encoding models AlexNet and GNet in goal-driven and data-
driven approaches on the NSD dataset. We found differences
in training methods and predictive performance between the
two models. Then, we evaluated the predictive accuracy of
each layer of the model and found that network layer-wise
predictions align with the functional hierarchy of the ventral
visual pathway. Next, we used the voxel-weighted matrix
to correspond feature units to voxel units and successfully
quantified the alignment between voxel responses with a set
of visual concepts by network dissection. Finally, we per-
formed network dissection along the ventral visual pathway
and visualized spatial pooling fields and activation maps, ex-
plaining variations related to the visual concept of ‘person’
in V1-V2-V3-hV4-FFA ROIs.

Interpretable Encoding Models for the Ventral
Visual Pathway
To validate the effectiveness of our CNN-IF, we carefully
selected eight ROIs (V1, V2, V3, hV4, FFA, EBA, RSC,
VWFA) along the ventral visual pathway with hierarchi-
cal relationships (Fig. 2C). Voxel responses corresponding
to these ROIs were extracted from the NSD dataset and
utilized for training. To assess the generalizability of the
CNN-IF, we employed both goal-driven and data-driven ap-
proaches to train the AlexNet and GNet encoding models. In
the data-driven approach, we further partitioned the model
by initializing the CNN extractor with the identical parame-
ters utilized in our ‘goal-driven-pretrained encoding model’,
which we referred to as the ‘data-driven-pretrained encoding
model’. Additionally, we conducted training from scratch
with the random initialization, denoting this particular vari-
ant as the ‘data-driven-unpretrained encoding model’. De-
tailed information about the construction and training of the
models can be found in the method section.

When only a small amount of data is available, we
found that the goal-driven encoding model exhibits signif-
icantly higher predictive accuracy compared to the data-
driven encoding model. However, as we further increase
the amount of data, the predictive accuracy of the mod-
els eventually levels off. The difference in predictive ac-
curacy between the two approaches narrows. This suggests
that data-driven approaches demonstrate impressive perfor-
mance improvements when there is a large amount of avail-
able data, approaching the performance of the goal-driven
encoding model, particularly evident on GNet (Fig. 2A, 2E).
Providing the model with pretraining parameters does in-
deed improve the predictive accuracy, which is more pro-
nounced in the case of AlexNet. To further understand the
performance of the GNet model, we compared its predic-
tive performance with the noise ceiling estimate (Fig. 2B).
Throughout the voxels, the predictive accuracy is closely re-
lated to the noise ceiling, indicating that voxel differences in
predictive accuracy simply reflect differences in signal-to-
noise ratio (SNR). Additionally, the predictive accuracy ap-
proaches but does not reach the noise ceiling. Next, the corti-
cal flapmap reveals voxel-wise predictive performance (Fig.
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Figure 2: Prediction of voxel responses in the ventral visual pathway. (A) The results of the change in the predictive accuracy
of the training results of six models with the amount of training data. The validation accuracy is estimated as the Pearson
correlation coefficient between measured voxel responses and predictive responses on the testing dataset. (B) The distribution of
prediction accuracy per voxel relative to the corresponding noise ceiling shows voxel differences in predictive accuracy simply
reflect differences in SNR. (C) Illustration of ROIs of the ventral visual pathway for encoding models. (D) The cortical flat
map demonstrates the achieved predictive accuracy of our models across all voxels in the eight ROIs, revealing high accuracy
across extensive regions within these ROIs. (E) The distribution of voxel-wise differences in predictive accuracy between goal-
driven and data-driven approaches shows that pretrained parameters contribute to an increase in predictive accuracy. d-d-u,
data-driven-unpretrained; d-d-p, data-driven-pretrained; g-d-p, goal-driven-pretrained.

2D). The predictive performance of the early visual cortex is
higher than the predictive accuracy of the floc ROIs. This is
due to the higher SNR in the primary visual cortex.

Fine-grained Hierarchical Alignment between
Model and the Ventral Visual Pathway
Layer-wise hierarchy To evaluate the alignment between
network layer-wise predictions and the functional hierarchy
of the ventral visual pathway, we divided the eight ROIs into
the hierarchy of early visual cortex (V1, V2, V3, hV4) and
floc ROIs (FFA, EBA, RSC, VWFA) (Fig. 3A). Then, we
quantified the correlation between predictive responses of
all goal-driven encoding model layers of AlexNet and GNet
with measured responses of the ventral visual pathway hier-
archy to obtain the AlexNet hierarchy (Fig. 3B) and GNet
hierarchy (Fig. 3C). The results of the correlation of data-
driven encoding models are similar to goal-driven encoding
models, which are provided in the Appendix2. Results from

2https://github.com/BIT-YangLab/CNN-IF

both models consistently demonstrate a hierarchical align-
ment between the model and the brain. Specifically, the early
layers of the model exhibit the strongest predictive perfor-
mance for the early visual cortex, whereas the intermediate
and late layers of the model exhibit the strongest predictive
performance for the floc ROIs.

Fine-grained voxel-wise hierarchy To further obtain
fine-grained hierarchical alignment, we first used the voxel-
weighted matrix to correspond feature units to voxel units,
quantifying the alignment between voxel responses and a
set of visual concepts. Then, we performed network dis-
section for each of the four floc ROIs (FFA, EBA, RSC,
VWFA). The alignment between each concept map and in-
dividual voxel map is quantified by the Intersection over
Union (IoU), which is computed on Broden, a broadly and
densely labeled dataset (Bau et al. 2017). The units with
semantics are given labels across a range of objects, parts,
scenes, and materials. We chose an IoU threshold of 0.04
and a voxel map activation threshold of 0.01 to quantify the
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Figure 3: Alignment between model and brain. (A) Visualization of the hierarchical structure of the ventral visual pathway,
proceeding from posterior to anterior regions (including the early visual cortex and floc ROIs). (B) and (C) show the correlation
between predictive voxel responses and measured voxel responses for each ROI from all goal-driven encoding model layers.
The results were averaged across four subjects. (D) The number of voxels that are detected on AlexNet (goal-driven-pretrained).
(E) The number of voxels that are detected on AlexNet (data-driven-pretrained). (F) The number of voxels that are detected on
AlexNet (data-driven-unpretrained). Floc ROIs are aligned with the last convolutional layer of AlexNet for network dissection.
The number of voxels reflects the highest alignment (IoU > 0.04) of all voxels within a certain ROI with a set of visual
concepts. (G) Variations in the number of voxels aligned with ‘person’ are detected by different model layers. (H) Variations in
the proportion of voxels aligned with the ‘wall’ are detected by different model layers.

interpretability of a layer. Specifically, if IoUv,k calculated
by voxel map for voxel v and concept map k for concept
c exceed 0.4, we consider voxel v to have successfully de-
tected representations encoded by the model feature space
for the input image. To quantify the interpretability of a
layer, we only select the concept with the highest IoU score
per voxel and count the number of unique concepts aligned
with voxel units. FFA, EBA, and VWFA all show selectivity
for the concept of ‘person’ (Fig. 3D), but FFA is more con-
centrated on the face (Fig. 4A), EBA is more concentrated
on the body parts (Fig. 4B), and VWFA is not only highly se-
lective for ‘word’ but also for ‘person’. This is due to the lo-
cal anatomical overlap of FFA, EBA, and VWFA. Due to the
lack of a Word-related label in Broden, this concept was de-
tected as ‘building’, which can be seen in the activation map
visualized in Fig. 4D. RSC shows selectivity for the concepts
of ‘wall’ and ‘street-s’ (Fig. 3D), which can be seen in the

activation map visualized in Fig. 4C. We achieved similar re-
sults to a previous study by (Khosla and Wehbe 2022). Addi-
tionally, we found that the AlexNet (goal-driven-pretrained)
model (Fig. 3D) detected more concepts than the AlexNet
(data-driven-pretrained) model (Fig. 3E), and this alignment
was more difficult to capture in the AlexNet (data-driven un-
pretrained) model (Fig. 3F). The results of the GNet network
dissection are in the Appendix2.

Variations of the ‘person’ concept in V1-V2-V3-hV4-
FFA ROIs Our model successfully simulated the face
recognition function of human high-level visual areas. To
further explore the variations of this process along the ven-
tral visual pathway, we performed network dissection along
the ventral visual pathway (V1-V2-V3-hV4-FFA ROIs) to
seek variations related to the visual concept of ‘person’ that
occur at the functional hierarchy learned by AlexNet (goal-
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Figure 4: Activation map of AlexNet (goal-driven-
pretrained). For each region of floc ROIs, we took the top
five activation maps with the highest activation from the
top five voxels with the highest IoU score (top 1% quan-
tile level). (A) Voxels in FFA are aligned with ‘person’. (B)
Voxels in EBA are aligned with ‘person’ but more focused
on the body. (C) Voxels in RSC are aligned with ‘wall’ and
‘street-s’. (D) Voxels in VWFA are aligned with ‘person’
and ‘building’ (the concept of ‘word’ is hidden in the label of
‘building’). (E) The activation of two images at each layer of
AlexNet (goal-driven-pretrained) and they are aligned with
‘person’ only from conv5 and conv6.

driven-pretrained) models. Our results show that the brain
encodes the visual concept of ‘person’ along the ventral
visual pathway and ultimately forms the representation of
‘person’ in the FFA in an unprecedented way (Fig. 3G). We
also counted the proportion of voxels aligned with the ‘wall’
concept in the corresponding ROI in this hierarchy (Fig. 3H).
According to the concept map of the ‘wall’, it contains some
basic semantic information such as color and text, which is
easier to detect in the early layer of the model. As expected,
when a high-level concept contains more low-level semantic
information, this problem may more easily occur. The in-
ability of early layers to detect the ‘person’ label may be be-
cause these voxels are involved in encoding other concepts.

Although V1-hV4 (corresponding to conv1-conv4 of the
model) didn’t merge unique voxel units aligned with the
‘person’ concept, these ROI voxels are still involved in en-
coding representation that contains the semantic of ‘person’
when we paid attention to two images that contain ‘person’
(Fig. 4E). Conv1 and conv2 activate only the regions around
the person, indicating a focus on some basic semantic infor-
mation such as color and texture. Since V3, although voxels
corresponding to ‘person’ has not been detected at this time,
the activation map of conv4 shows that voxels in V3 and hV4
are sensitive to the circle (the face is also round). By compar-

Figure 5: Visualization of the spatial pooling field of
AlexNet (goal-driven-pretrained). We fit the corresponding
spatial pooling field for each voxel in each layer of the model
to visualize this interpretable component.

ing conv5 and conv6 (where voxel is starting to appear that
can detect ‘person’) with other earlier layers, we can find
that conv5 and conv6 have a larger whole of active areas,
which can include all the information related to a ‘person’,
while earlier layers are still a few scattered activated areas.
This is the reason why we find that representations about
the ‘person’ are ultimately formed at FFA rather than at the
early visual cortex.

Finally, we exhibited the variations of interpretable spa-
tial pooling fields of the AlexNet (goal-driven-pretrained)
model. The parameters of spatial pooling fields reflect where
the corresponding model layer should focus the most when
predicting voxel responses (Fig. 5). All receptive fields are
initialized in the same way. As the model layer deepens, the
activation region of the receptive field expands, however, the
size of the activated area decreases. This observation sug-
gests that the spatial pooling field prioritizes local pivotal
information while fitting voxel responses.

Conclusion
We propose the CNN-IF which provides an interpretable en-
coding model for the human ventral visual pathway and well
balances the predictive performance and interpretability of
the model. By exploiting the interpretable hierarchical fwrf
model of two high-performing encoding models, including
AlexNet and GNet, we discover that the network layer-wise
predictions align with the functional hierarchy of the ven-
tral visual pathway. Using network dissection, we quantify
the alignment between voxel responses and a set of visual
concepts. The results show variations related to the visual
concept of ‘person’ in the high-level visual area correspond-
ing to higher layers of the model. Finally, we exhibit the
spatial pooling field and the activation map to explain this
sensational finding. We demonstrate that CNN-IF provides
a new perspective on the interpretability of the CNN model
for understanding encoding mechanisms in the human ven-
tral visual pathway and achieving fine-grained hierarchical
alignment between the model and the ventral visual path-
way.
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