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Abstract

Face reenactment is challenging due to the need to establish
dense correspondence between various face representations
for motion transfer. Recent studies have utilized Neural Radi-
ance Field (NeRF) as fundamental representation, which fur-
ther enhanced the performance of multi-view face reenact-
ment in photo-realism and 3D consistency. However, estab-
lishing dense correspondence between different face NeRFs
is non-trivial, because implicit representations lack ground-
truth correspondence annotations like mesh-based 3D para-
metric models (e.g., 3DMM) with index-aligned vertexes. Al-
though aligning 3DMM space with NeRF-based face repre-
sentations can realize motion control, it is sub-optimal for
their limited face-only modeling and low identity fidelity.
Therefore, we are inspired to ask: Can we learn the dense
correspondence between different NeRF-based face repre-
sentations without a 3D parametric model prior? To address
this challenge, we propose a novel framework, which adopts
tri-planes as fundamental NeRF representation and decom-
poses face tri-planes into three components: canonical tri-
planes, identity deformations, and motion. In terms of motion
control, our key contribution is proposing a Plane Dictionary
(PlaneDict) module, which efficiently maps the motion con-
ditions to a linear weighted addition of learnable orthogonal
plane bases. To the best of our knowledge, our framework is
the first method that achieves one-shot multi-view face reen-
actment without a 3D parametric model prior. Extensive ex-
periments demonstrate that we produce better results in fine-
grained motion control and identity preservation than previ-
ous methods.

Introduction

One-shot face reenactment (Hong et al. 2022) aims to uti-
lize motion conditions from the driving image, such as
facial expressions and head poses, to animate the face
in the source image. The main challenge is establishing
dense correspondence between different face representa-
tions to transfer motion conditions. Recent studies (Li et al.
2023b; Ma et al. 2023b) have utilized Neural Radiance Field
(NeRF) (Mildenhall et al. 2021) as fundamental representa-
tion, which further enhanced the performance of multi-view
face reenactment in photo-realism and 3D consistency.
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However, establishing dense correspondence between dif-
ferent face NeRFs is non-trivial. Unlike mesh-based rep-
resentations which have index-aligned vertexes as ground-
truth correspondence annotations, the NeRF-based repre-
sentations lack an explicit surface descriptor that con-
structs correspondence of spatial points (Lan, Loy, and Dai
2022). Although introducing 3D parametric models (e.g.,
3DMM (Blanz and Vetter 1999), FLAME (Li et al. 2017),
and DECA (Feng et al. 2021)) as motion conditions make it
feasible to achieve explicit motion control for cross-identity
face reenactment (Zeng et al. 2022; Ma et al. 2023b; Li et al.
2023b), aligning mesh-based parametric space with latent
space of NeRF-based generative models brings a significant
optimization burden. Additionally, the 3D parametric mod-
els themselves have some limitations, such as their focus be-
ing predominantly on the facial region, requiring additional
processing for hair and eyes. These limitations inspire us to
ask: Can we learn the dense correspondence between differ-
ent NeRF-based face representations without a 3D paramet-
ric model prior?

To address the challenge of learning dense correspon-
dences between NeRF-based face representations, the first
issue is the selection of NeRF representations. The vanilla
NeRF (Mildenhall et al. 2021) employs an MLP network to
capture the spatial information of the target object, which
tends to suffer from overfitting and can lead to a loss of 3D
consistency when animating the representation network. In
order to strike a balance between 3D consistency and anima-
tion capabilities, we have opted to utilize the tri-plane repre-
sentation proposed by EG3D (Chan et al. 2022) as our fun-
damental NeRF representation, which adopts three spatially-
orthogonal plane feature maps to represent an object. This
choice allows us to maintain 3D consistency within the tri-
plane representation itself, while also leveraging the strong
modeling capacity of the StyleGAN-based (Karras et al.
2020) generator to handle feature deformations.

In this work, we propose a novel framework that can
realize one-shot multi-view face reenactment, as shown in
Fig. 1. Our framework utilizes tri-planes as fundamental
NeRF representation and decomposes face tri-planes into
three components: canonical tri-planes, identity deforma-
tions, and motion. The plane feature deformations regard-
ing motion conditions differ from those caused by identity
conditions since the rules governing motion are shared be-
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Figure 1: Results of one-shot multi-view face reenactment. We present both cross-identity reenactment and multi-view synthesis
at various yaw and pitch angles. Through comparisons with state-of-the-art HiDeNeRF, we illustrate that our PlaneDict module
excels in fine-grained motion control, particularly for non-facial elements such as eyes, and offers better identity preservation
(vertex distance from source identity]/ vertex distance from driving identity?) than utilizing 3DMM as correspondence.

tween various identities. Thus, we design a Plane Dictio- and Tri-Planes (Chan et al. 2022) to model face as static
nary module, referred to as PlaneDict, to efficiently maps objects. Considering the dynamic synthesis requirements of
motion conditions to a linear weighted addition of learnable faces, two strategies have been proposed: First, constructing
orthogonal plane bases. Extensive experiments demonstrate the deformable neural radiance fields, such as NeRFies (Park
that our method achieves better results in fine-grained mo- et al. 2021a) and HyperNeRF (Park et al. 2021b), which
tion control and identity preservation than previous work. maps each observed point into a canonical space through

To summarize, the contributions of our approach are: a continuous deformation field, but it tends to handle small

movements or person-specific rendering. Second, adopting
NeRF with 3DMM (Li et al. 2017) prior for explicit mo-
tion control, such as RigNeRF (Athar et al. 2022), NeR-
Face (Gafni et al. 2021), MoFaNeRF (Zhuang et al. 2022),
o OmniAvatar (Xu et al. 2023), and some 3D GAN Inversion
* We propose a Plane Dictionary (PlaneDict) module for methods (Lin et al. 2022; Lan et al. 2023; Yang et al. 2023b).

tri-plane representation, which efficiently maps motion However, the dense correspondence provided by 3DMM has

conditions to a linear weighted addition of learnable or- limitations in non-facial regions (e.g., eyes and hair) and

thogonal plane bases. brought an optimization burden to align the 3DMM repre-

* We propose a novel decomposition method of face tri-
plane representation, making it suitable for learning the
dense correspondence between different face tri-planes
and realizing motion transfer.

e To the best of our knowledge, we propose the first sentation and NeRF-based latent space. Therefore, a better
method to achieve one-shot multi-view face reenactment dense correspondence of different 3D implicit representa-
without a 3DMM prior, which achieves better results tions is needed.

in fine-grained motion control and identity preservation

than previous work. One-Shot Face Reenactment

Related Work Previous face reenactment methods can be divided into

. . . warping-based, mesh-based, and NeRF-based. Warping-

Face Implicit Representation based methods (Dong et al. 2018; Geng et al. 2018; Liu
Compared with 2D (Liu et al. 2015) and 3D parametric et al. 2019; Ha et al. 2020; Drobyshev et al. 2022; Zhao and
representation (Li et al. 2017), 3D implicit representation Zhang 2022; Wang et al. 2022) warp the source features by
has advantages of photo-realism and 3D-consistency. Previ- estimated motion field to transport driving expressions and
ous work based on 3D scene representation has tried to use poses into the source face for 2D generation. Among them,
Neural Radiance Field (Gu et al. 2022; Yang et al. 2023a), FOMM (Siarohin et al. 2019) builds a 2D motion field from
Signed Distance Field (Or-El et al. 2022; Ma et al. 2023a), the sparse keypoints detected by an unsupervised trained de-
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Figure 2: Method overview. We decompose face tri-planes into three components: canonical tri-planes, identity deformations,
and motion. In terms of motion control, which is the topology transformation rules shared by different identities, we propose a
Plane Dictionary (PlaneDict) module to transfer motion conditions between different face tri-planes for face reenactment.

tector, while DaGAN (Hong et al. 2022) incorporates the
depth estimation to supplement the missing 3D geometry in-
formation in 2D motion field. Mesh-based methods employ
3DMM uses a single image to create realistic photos in a
rigged mesh format such as ROME (Khakhulin et al. 2022).
In terms of NeRF-based methods (Guo et al. 2021; Liu et al.
2022; Shen et al. 2022; Li et al. 2023a), using one image
to build a 3D implicit representation is an ill-posed prob-
lem, because the lack of multi-view information makes the
failure of learning the dense spatial information from one
image. FDNeRF (Zhang et al. 2022) relaxes the constraint
to the required number of images, while FNeVR (Zeng et al.
2022) takes the merits of 2D warping and 3D neural ren-
dering. As for the motion control of tri-plane representation,
OTAvatar (Ma et al. 2023b) designs a motion encoding strat-
egy for pre-trained EG3D (Chan et al. 2022) with the 3DMM
prior, while HiDeNeRF (Li et al. 2023b) proposes a multi-
scare tri-plane feature extractor, as well as 3DMM-based im-
plicit motion-conditioned deformation field, to train a gen-
erative model from scratch. However, these 3DMM-based
methods still suffer from the limitations brought by 3DMM
itself. Therefore, we aim to tackle the more tricky challenge
that is learning the dense correspondence between different
tri-planes without 3DMM prior and achieving matchable or
even better results than previous methods, which can have
the potential of animating arbitrary objects which lack a so-
phisticated 3D parametric modeling like human faces.

Method

We propose a novel framework to achieve one-shot multi-
view face reenactment, which can learn the dense correspon-
dence between different face tri-planes and realize motion
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transfer. In terms of motion control, our key contribution is
to construct a Plane Dictionary (PlaneDict) module to ef-
ficiently map motion conditions to feature deformations of
tri-planes, which realizes fine-grained motion transfer.

Overview

Tri-Plane Representation. Previous studies have utilized
NeRF (Mildenhall et al. 2021) as fundamental implicit rep-
resentation. Notably, 3D generative models like StyleN-
eRF (Gu et al. 2022) and EG3D (Chan et al. 2022) combine
NeRF-based representation with StyleGAN-based (Karras
et al. 2020) generator. These models extend identity-specific
overfitting of vanilla NeRFs to a GAN space which can
render 3D-consistent multi-identity face images with di-
verse expressions and poses. Among these NeRF variants,
the tri-planes proposed by EG3D achieve a superior bal-
ance between information density and photo-realism, while
also enabling the construction of a diverse latent space for
manipulation. In contrast to the vanilla NeRF, which em-
ploys an MLP network to record spatial points in the space,
EG3D adopts a latent vector to represent it and maps it
to three spatially-orthogonal plane feature maps (i.e., tri-
planes) through a StyleGAN-based generator. The tri-planes
effectively provide sufficient information for rendering a
spatial point and can be queried efficiently. Consequently,
we adopt tri-planes as our fundamental representation.

Decomposition Strategy. The computer graphics re-
searchers (Blanz and Vetter 1999; Li et al. 2017) typically
decompose the canonical space (also known as the tem-
plate mesh) and vertex deformations caused by identity
and motion conditions in order to enhance the stability and
interpretability of the learning process used in the mesh-
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based pipeline for modeling human faces. Unfortunately, the
EG3D pipeline did not incorporate this decomposition struc-
ture, resulting in a lack of explicit control over the identity
and motion of human faces. This limitation poses challenges
for downstream applications such as facial attribute editing
and face reenactment. To address this issue, previous meth-
ods (Lin et al. 2022; Ma et al. 2023b) have employed GAN
inversion to embed real face images into the latent space
of EG3D, which tend to utilize the encoder of a face para-
metric model to obtain explicit control over identities, ex-
pressions, and poses. However, this roadmap only distills
the correspondence from the parametric models and inher-
its their limitations. Therefore, we decompose the canonical
space, identity deformations, and motion to learn dense cor-
respondence of tri-planes for more flexible motion transfer.
Specifically, as shown in Fig. 2, we adopt an encoder E to
extract the style codes of the input image I, pw¢, Wwhich can
be embedded as identity code w?® and motion code w™:

M

The dense correspondence and motion transfer are
achieved by identity deformations A P;4 and motion A P,,,.
We feed the identity code w*? into a StyleGAN-based gen-
erator G;4 to obtain the identity deformations A P;4. How-
ever, the motion A P,,, aims to achieve motion transfer be-
tween different face tri-planes, which means a shared defor-
mation method should be proposed to handle this challenge.
Therefore, we propose our PlaneDict module to obtain the
motion A P,,,, which will be presented in the next section.

The tri-planes P which represents the driven face image
to be rendered consist of the learnable canonical tri-planes
P,, the identity deformations AP;4 from the source face
image I, and the motion A P,,, from the driving face image
14, which can be formulated as follows:

(W' Ww™) = E(ILinput).

P(wit wi') = P.4+ APig + APy, )

AP;q = Gig(w?), 3)

AP,, = PlaneDict (Gm(w3"); B), “4)

where G,,, and B are the motion deformation generator and
the learnable plane bases of the PlaneDict module.

Finally, when we query a spatial point according to its lo-
cation (x,y, z) and the camera direction C, we sample fea-
tures (fxy, fxz, and fy z) from the driven tri-planes P,
aggregate by summation, and process the aggregated fea-
tures with a lightweight tri-plane decoder. This decoder out-
puts a scalar density and a 32-channel feature, and both of
them are then processed by a volume renderer to project the
3D feature volume into a 2D feature image. For training effi-
ciency, we render 32-channel feature maps Iy at a resolution
of 1282, with 96 total depth samples per ray. And we adopt
the Super Resolution module to increase the final image size
to 2562, which utilizes two blocks of StyleGAN-modulated
convolution layers that upsample and refine the 32-channel
feature maps I¢ into the final RGB image I.
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Plane Dictionary (PlaneDict)

Preliminary. In the 3D Morphable Model (3DMM) (Blanz
and Vetter 1999), every face is represented by a shared topol-
ogy which consists of vertexes with the aligned index. The
hundreds of these 3D faces are high dimensional data and
then reduced through Principal Component Analysis (PCA)
to several orthogonal vector bases. These bases are further
divided into identity-related and expression-related bases.
When we fit the mesh model to a target face, we only need
to linearly add these orthogonal bases to obtain the iden-
tity and expression deformations of every vertex relative to
the template mesh, and finally get the 3D representation of
the target face. It is worth noting that the expression repre-
sentation of different faces can be obtained through linear
addition of expression bases, which means that through the
above modeling method, we can achieve dense correspon-
dence between different face representations.

Motivation. The modeling approach of graphics inspires us
to establish dense correspondence and realize motion trans-
fer between different face tri-planes. However, if we have
achieved such dense correspondence, how can we transform
these motion conditions into deformations of each implicit
spatial point? The previous methods (Lin et al. 2022; Li et al.
2023b; Ma et al. 2023b) either skipped this issue and di-
rectly learned the mapping relationship between 3DMM and
their latent space of generative models, and then used dense
correspondence of 3DMM to control their own generative
model; or conducted the learning of dense correspondence
and motion transfer in the latent vector space correspond-
ing to each implicit representation. The former is limited by
3DMM and cannot handle non-facial areas such as hair and
eyes; The latter, which ignores the inherent characteristics
of implicit representation, cannot perform more fine-grained
expression control. Therefore, we propose a Plane Dictio-
nary (PlaneDict) module, which can obtain the plane fea-
ture deformations driven by motion conditions by linearly
adding a set of orthogonal plane bases.

Specifically, as shown in Fig. 2 and Eqn. (4), the driving
motion code wj* is first fed into the motion generator Gy, to
obtain the linear decomposition factors L, which consists of
N feature maps. These decomposition factors are then mul-
tiplied by the orthogonal plane bases in the plane dictionary
B through the Hadamard product. The plane bases in 5 are
channel-wise orthogonal, i.e., NV vectors that have the same
channel index in these orthogonal plane feature maps are
reduced by QR decomposition to maintain the orthogonal-
ity, and they are learnable in the training stage. Finally, the
Hadamard product of L and 53 is channel-wisely summed to
output the motion A P,,,. Note that our face motion condi-
tions include facial expressions and head poses.

Optimization

The goal of proposing our framework is to learn the dense
correspondence. We have the assumption that different iden-
tities have different topological structures which is suitable
for modeling by a StyleGAN-based generator, and the rules
of topological transformations are shared among different
identities which can be modeled by our PlaneDict module.
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So we only adopt a self-supervision manner to train our
framework. If this self-supervision successfully disentangles
the deformations brought by identity and motion conditions,
it precisely indicates that our aforementioned assumptions
are valid, and our framework can exactly learn dense corre-
spondence without a 3D parametric model prior.

The cross-identity driving is our ultimate goal, and we
should fully utilize the paired data and learn the motion
deformations with ground truth. Therefore, we adopt dis-
entanglement loss £g;s to model the different deformations
brought identity and motion conditions, and reconstruction
10ss L;-ccons to improve the image quality and rendering de-
tails as follows:

E = Ldis + Al£7‘econs~ (5)

Disentanglement Loss. We denote the input source image
as I, the input driving image as Ig and the output driven
image as I. We adopt the encoder E to extract wi® & w??
and w* & w7® from I, and I4 respectively. Moreover, we
use E to extract the w®® & w™ from I. Our optimization
goal is to minimize the distance between w?? and w*?, and
the distance between w7* and w™. Therefore, we propose
our disentanglement loss L g;s:

Lais = ||lwi® — 0™ o + Az f|wi’ — w™ 2. ©)
Reconstruction Loss. When we conduct the experiments,
we found that the regions of eyes and mouths take longer
training time to learn the distribution, which are high-
frequency details with small areas and big variations. There-
fore, as for the reconstruction 10sS L,.ccons, We include £q
loss and mask loss, as follows:

l:'recons = ||Id_I||1+A3||M(Id)_M(I)||17 (7)

where M is a mask that indicates the eye and mouth part of
the face image.
Training Strategy. We use two types of paired data and use
different losses to optimize the network parameters. One
type is to use the source image and target image from the
same identity, and we adopt £ for training. The other is to
use the source image and target image from different identi-
ties, and we only use L4;, for training.

Experiments
Experimental Settings

Implementation Details. The encoder E is a ResNet-
10 (He et al. 2016) network. The generators G;4 and
G, are two StyleGAN-based generators (Karras et al.
2020). The Super Resolution module utilizes two blocks of
StyleGAN-modulated layers. To further improve the image
resolution and quality, we adopt the pre-trained dual dis-
criminator from EG3D (Chan et al. 2022) and sample data
from FFHQ (Karras, Laine, and Aila 2019) as real images
to fine-tune our networks in a GAN manner. The \q, Ag,
and A3 are set as 1.0, 1.5, and 10. The iteration ratio of self-
reenactment and cross-identity reenactment is better set at
2:1. Using Adam optimizer (set learning rate as 0.0001), the
training takes about 4 days on 8 Tesla V100 GPUs while the
fine-tuning takes 1 day.
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Figure 3: Qualitative results of self-reenactment.

Baselines. We select five state-of-the-art methods from
different  perspectives, including 2D-warping-based
FOMM (Siarohin et al. 2019) & DaGAN (Hong et al. 2022),
mesh-based ROME (Khakhulin et al. 2022), NeRF-based
FNeVR (Zeng et al. 2022), and tri-plane-based HiDeN-
eRF (Li et al. 2023b). For fair comparisons, these methods
are trained with VoxCeleb dataset (Nagrani, Chung, and
Zisserman 2017; Chung, Nagrani, and Zisserman 2018).
Datasets. We conduct experiments over three commonly
used datasets: VoxCelebl (Nagrani, Chung, and Zisserman
2017), VoxCeleb2 (Chung, Nagrani, and Zisserman 2018),
and TalkingHead-1KH (Wang, Mallya, and Liu 2021). We
follow the FOMM to pre-process these videos, in which each
frame is aligned and cropped into 2562 resolution. We fol-
low the EG3D (Chan et al. 2022) to extract camera extrin-
sics, which is based on an off-the-shelf pose estimator (Deng
et al. 2019). Furthermore, we use face-parsing.Pytorch (zll-
running 2019) to provide region masks of face, hair, and
torso, and set the background region as black, which can
reduce the impact of complex backgrounds. The selected
videos for the test are not overlapped with the training
videos.

Metrics. We evaluate different methods from three perspec-
tives: (1) Visual quality: We adopt SSIM (Wang et al. 2004),
PSNR, LPIPS (Zhang et al. 2018), and FID (Heusel et al.
2017) as quality metrics. (2) Identity fidelity and motion ac-
curacy: Following the previous works (Ha et al. 2020; Hong
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SSIM{ PSNRT LPIPS|

FOMM  0.690 192 0.112
DaGAN 0.807 232  0.088
FNeVR  0.901 21.1 0.092
ROME 0.833 21.6  0.085
HiDeNeRF 0.862 219  0.084
Ours 0.870 221  0.079

Table 1: Visual quality evaluation of self-reenactment.

CSIM{ AUCON{ PRMSE| AVD| ET|

FOMM  0.837 0.872 2.88 0.021 1.98
DaGAN  0.875 0.921 1.79  0.016 4.08
FNeVR  0.880 0.929 222 0.016 2.01
ROME 0.906 0.918 1.68 0.013 5.28
HiDeNeRF 0.931 0.956 1.66  0.010 5.44
Ours 0.946 0.961 1.60 0.009 1.72

Table 2: Identity fidelity and motion accuracy evaluation of
self-reenactment.

et al. 2022), we adopt CSIM, PRMSE, and AUCON to eval-
uate the identity preservation of the source image, the ac-
curacy of head poses, and the precision of expression. (3)
Multi-view consistency: We adopt the AVD proposed by Hi-
DeNeRF (Li et al. 2023b) to evaluate multi-view identity
preservation. Furthermore, we propose the ET (Eye Track-
ing) metric to evaluate fine-grained motion control of gaze,
which calculate the error of eye locations (Antoine et al.
2022) between the source image and driving image (they are
all aligned face images).

Self-Reenactment

The self-reenactment experiments are using the source and
driving images of the same identity, which have the ground
truth of the synthesized results for comparisons. As shown
in Fig. 3, we show the qualitative results of different meth-
ods. Because we use the motion features extracted from the
driving images, instead of 3DMM parameters, we can not
only realize more fine-grained motion control than 3DMM-
based methods but also handle special regions like hair and
eyes. We list the quantitative results in Tab. 1 and Tab. 2, and
we achieve matched or better scores than other state-of-the-
art methods which are based on the correspondence from
the 3DMM prior. These results show that, instead of using
3DMM parameter control at the cost of missing details, we
can directly establish dense correspondence between differ-
ent tri-plane representations, which overcomes the optimiza-
tion burden of aligning 3DMM space and the latent space of
NeRF-based generative models.

Cross-Identity Reenactment

The cross-identity reenactment is using the source and driv-
ing images of different identities, which is a more difficult
challenge for source identity preservation and fine-grained
motion transfer between different face tri-planes. We first
qualitatively compare different state-of-the-art methods and
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Figure 5: Mesh evaluation for identity preservation of cross-
identity reenactment (vertex distance from source identity|/
vertex distance from driving identity?).

show their synthesized results in Fig. 4. Although the fu-
sion of identity and motion information is a hard prob-
lem, our framework with the PlaneDict module is able
to generate cross-identity reenactment results with better
image quality and identity fidelity without any artifacts.
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VoxCelebl

CSIMt AUCON? PRMSE| FID| AVD,] ET|

FOMM 0.748 0.752 3.66 86 0.044 6.08
DaGAN  0.790 0.880 3.06 87 0.036 6.16
FNeVR 0.812 0.884 3.32 82 0.041 6.10
ROME 0.833 0.871 2.64 76  0.016 7.08
HiDeNeRF 0.876 0917 2.62 57 0.012 7.02
Ours 0.911 0.928 2.50 49 0.011 5.18

VoxCeleb2

CSIM{ AUCON? PRMSE| FID| AVD,] ET|

FOMM 0.680 0.707 4.16 85 0.047 6.23
DaGAN  0.693 0.815 3.93 86 0.040 6.62
FNeVR 0.699 0.829 3.90 84 0.047 5.99
ROME 0.710 0.821 3.08 76  0.019 7.29
HiDeNeRF 0.787 0.889 291 61 0.014 7.30
Ours 0.790 0.894 2.83 58 0.012 5.33

TalkingHead-1KH

CSIM{ AUCON? PRMSE| FID| AVD] ET|

FOMM 0.723 0.741 3.71 76  0.039 6.17
DaGAN  0.766 0.872 2.98 73 0.035 6.59
FNeVR 0.775 0.879 3.39 73 0.037 6.03
ROME 0.781 0.864 2.66 68 0.017 6.97
HiDeNeRF 0.828 0.901 2.60 52 0.011 7.09
Ours 0.831 0.912 2.55 49 0.010 5.42

Table 3: Cross-identity reenactment evaluation.

To further compare the identity preservation ability of our
framework, as shown in Fig. 5, we evaluate and visual-
ize the identity fidelity (i.e., the shape preservation of the
source identity) using 3D face reconstruction models (Deng
et al. 2019). The quantitative experiments are performed
with VoxCelebl (Nagrani, Chung, and Zisserman 2017),
VoxCeleb2 (Chung, Nagrani, and Zisserman 2018), and
TalkingHead-1KH (Wang, Mallya, and Liu 2021), which are
shown in Tab. 3 respectively.

Multi-View Synthesis

The one-shot multi-view cross-identity reenactment is the
most challenging task. It requires not only using one face
image from the source identity to construct a 3D face rep-
resentation for multi-view rendering but also this represen-
tation can be controlled by motion conditions for novel ex-
pression and pose reenactment. We adopt the state-of-the-
art HiDeNeRF (Li et al. 2023Db) as the baseline method for
comparison. As shown in Fig. 6, we render the driven results
from different view directions. Our method achieves better
image quality than HiDeNeRF and does not show artifacts
or 3D inconsistency in some angles. As shown in Tab. 4,
we further evaluate ours and HiDeNeRF in quantitative ex-
periments. Our framework with the PlaneDict module can
replace the 3DMM to model the dense correspondence be-
tween different tri-plane representations. In this way, instead
of aligning the implicit spaces of the two generative models,
we learn the dense correspondence without any loss of the
3D consistency of the target NeRF-based model.
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Figure 6: Qualitative results of multi-view synthesis.

CSIMT AUCON{T PRMSE| AVD)

HiDeNeRF 0.829 0.864 3.78 0.014
Ours 0.840 0.881 3.53 0.008

Table 4: Quantitative evaluation of multi-view synthesis.

CSIMt AUCON{ PRMSE| AVD| ET|
w/o PlaneDict ~ 0.763  0.809 3.10  0.035 7.58
w PlaneDict (5)  0.679  0.718 393 0.058 9.92
w PlaneDict (10) 0.802  0.824 3.18  0.038 7.36
w PlaneDict (15)  0.899  0.871 292 0019 6.69
w PlaneDict (20) 0.911  0.928 250  0.011 5.18

Table 5: Ablation study.

Ablation Study

As shown in Tab. 5, in the ablation study of whether to use
the PlaneDict module, we adopt the same structure as iden-
tity deformations for obtaining motion and they are trained
with the same time and dataset. Limited by the hardware,
the max number of plane bases is 23. However, since 20,
there has been almost no improvement. Therefore, we adopt
20 as the number of plane bases in our PlaneDict module to
balance the quality and optimization difficulty.

Conclusions

In this paper, we propose a novel framework to learn
the dense correspondence between different face tri-planes
without a 3D parametric model prior. With the PlaneDict
module, our framework can achieve fine-grained motion
driving of face tri-planes without any 3D inconsistency. Ex-
tensive experiments demonstrate our better image quality,
fine-grained motion control, and identity fidelity of one-shot
multi-view face reenactment than previous methods.
Limitations and Ethical Concerns. Due to the inherent bi-
ases in the datasets, we are not able to handle extreme poses
and expressions. We strongly oppose any misuse of our tech-
nology but we believe it has the potential to achieve multi-
view animation of diverse objects without relying on sophis-
ticated 3D parametric models like human faces.
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