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Abstract

In recent years, following the success of text guided image
generation, text guided 3D generation has gained increasing
attention among researchers. Dreamfusion is a notable ap-
proach that enhances generation quality by utilizing 2D text
guided diffusion models and introducing SDS loss, a tech-
nique for distilling 2D diffusion model information to train
3D models. However, the SDS loss has two major limitations
that hinder its effectiveness. Firstly, when given a text prompt,
the SDS loss struggles to produce diverse content. Secondly,
during training, SDS loss may cause the generated content to
overfit and collapse, limiting the model’s ability to learn in-
tricate texture details. To overcome these challenges, we pro-
pose a novel approach called Noise Recalibration algorithm.
By incorporating this technique, we can generate 3D content
with significantly greater diversity and stunning details. Our
approach offers a promising solution to the limitations of SDS
loss.

Introduction
Text guided 3D generation is a challenging task that aims
to generate 3D content based on textual prompts. This ap-
proach has numerous applications in various fields such as
gaming, virtual environments, automation, AI augmented
design, and 3D data augmentations. However, the lack of
annotated 3D data makes this task extremely difficult. Cur-
rent 3D generation methods (Chan et al. 2022; Liao et al.
2020; Henzler, Mitra, and Ritschel 2019; Nguyen-Phuoc
et al. 2019, 2020; Wu et al. 2016; Zhu et al. 2018; Zhou
et al. 2021; Yu et al. 2021), which typically focus on gen-
erating categorical objects, often require pose supervision
during training, resulting in a significant gap between 3D
generation and text guided generation.

To address this challenge and achieve photo-realistic 3D
object and scene generation, recent methods have utilized
2D models trained on 2D image data. For example, Dream-
field (Jain et al. 2022) leverages the contrastive image text
model CLIP (Radford et al. 2021) to train Neural Radi-
ance Field (NeRF) (Mildenhall et al. 2021) by measuring the
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similarity between rendered images and text. Meanwhile,
Dreamfusion (Poole et al. 2022) represents a significant
breakthrough in improving generation quality by using 2D
language-guided diffusion models to train NeRF.

Specifically, Dreamfusion (Poole et al. 2022) starts from
a random initialized NeRF and adjusts the NeRF weights by
calculating the Score Distillation Sampling (SDS) loss be-
tween the NeRF rendered images and the text prompt based
on the 2D diffusion model’s output. A detailed illustration of
the Dreamfusion method can be found in the third Section.

Despite the success of SDS loss, it faces two major is-
sues. First, as also witnessed in Dreamfusion, the SDS loss
can hardly generate diversified content given different ran-
dom seeds during NeRF training. The authors attribute the
reason to that the smoothed density may not contain many
distinct modes at high noise levels (Poole et al. 2022). In ex-
periments, we also witness the similar issue – given a fixed
text prompt, the randomness in NeRF optimization does not
guarantee sufficient generation variety. Second, the degen-
eration issue. The SDS loss can cause the learned NeRF to
gradually collapse, preventing it from learning high-quality
texture details. This issue occurs not only with the original
SDS loss, but also with its successors like VSD loss (Wang
et al. 2023). We show a visual illustration of the two prob-
lems in Fig. 2.

In this paper, we thoroughly investigate the two issues and
propose a Noise-Recalibration SDS (NR-SDS) algorithm to
overcome them. The NR-SDS algorithm contains two parts:
the single noise training and the Noise Recalibration loss.
First, we propose a single noise training scheme to address
the diversity issue. We demonstrate that the original SDS
loss is searching for the optimal mode using random noises
from the entire Gaussian space. However, the generation
process can be limited to a single noise sampled from the
Gaussian space, leading to more diverse results. Second, we
propose Noise-Recalibration loss to address the degenera-
tion issue. We attribute the degeneration problem to the high
guidance weight used in SDS loss. While a high guidance
factor is essential for the NeRF model to learn text-specific
content, it tends to cause the learned NeRF to degrade dur-
ing training. To resolve this dilemma, we make the “sin-
gle noise” in the single noise training method learnable and
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A sliced loaf of fresh bread

A car made out of cheese

A model of a house in Tudor style

Fries and a hamburger

Figure 1: Examples of generation results with NR-SDS loss. Given a text prompt, we show our method can generate high-
quality diversified 3D objects. Results are generated using NeRF only, without DMTet finetuning.

gradually adjust the learnable noise based on the Noise Re-
calibration loss, such that the noise could generate high qual-
ity contents even when operating at a high guidance weight.
By using the NR-SDS algorithm, we achieve impressive re-
sults with improved texture details and diverse 3D content
generation. Some generation results can be found in Fig. 1.

The paper is organized as follows: in the related works
section, we first briefly review the 3D generation methods
and text guided 3D generation methods. After that, we in-
troduce the preliminaries of diffusion models, the Dreamfu-
sion algorithm, the SDS loss and the problems of SDS loss.
Consequently, we present our proposed NR-SDS algorithm.
In the experiment section, we show the ablation experiments
and more experimental results.

Unless otherwise stated, our analysis and experiments are
primarily based on the latent diffusion models (Rombach
et al. 2022). However, we show in the experiment section

that the identified issues are not unique to the latent diffusion
models. Our proposed method could improve the Pixel-Pixel
diffusion models (Saharia et al. 2022) as well.

To summarize our contributions:
• We identify and systematically study the diversity and

degeneration issues of SDS loss.
• We propose the NR-SDS algorithm. The NR-SDS algo-

rithm consists of two key components: single noise train-
ing to solve the diversity issue and the Noise Recalibra-
tion loss to solve the degeneration issue.

• With the proposed NR-SDS algorithm, we are able to
generate high-quality, multi-view consistent 3D objects
using 2D diffusion models.

Related Works
Our work belongs to the field of 3D generation, specifically
in text guided 3D generation. Previous research (Chan et al.
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Degeneration Issue

Diversity Issue
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Figure 2: An illustration of the two identified issues. For
the diversity issue, we run SDS loss using text prompt “a
dog” with different random seeds. It can be observed that
the generated content barely changes with different seeds.
For the degeneration issue, we observe that it happens with
both SDS loss and VSD loss.

2022; Liao et al. 2020; Henzler, Mitra, and Ritschel 2019;
Nguyen-Phuoc et al. 2019, 2020; Wu et al. 2016; Zhu et al.
2018; Zhou et al. 2021; Yu et al. 2021) has focused on gen-
erating synthetic data or data of a single category, requir-
ing the network to be trained on multi-view images of the
same scene or images with pose annotations. These super-
vised learning methods have limitations in training scale and
generalizing ability. Moreover, the lack of annotated 3D data
with language constraints supervised language-guided 3D
generation (Liu et al. 2022; Canfes et al. 2023) to simple
shapes or avatars.

Compared to language-guided image generation models,
which are usually trained on billions of images (Rombach
et al. 2022; Ramesh et al. 2022; Saharia et al. 2022; Nichol
et al. 2022), it seems impossible to achieve the same train-
ing scale for 3D data by supervised learning. As a result,
researchers have turned to using large-scale trained multi-
modal 2D models to improve text-guided 3D generation.
Previous works (Jain et al. 2022; Wang et al. 2022) have
used CLIP (Radford et al. 2021) to guide NeRF training or
editing, but CLIP as a contrastive model struggles to recover
high-frequency surface details and accurate object shapes.
Large-scale text-guided diffusion models (Rombach et al.
2022; Ramesh et al. 2022; Saharia et al. 2022; Nichol et al.
2022) provide a more tractable way to distill 2D generative
priors. Dreamfusion (Poole et al. 2022), a pioneering work,
proposes a score distillation sampling (SDS) method to dis-
till the prior of a 2D diffusion model for training Neural Ra-
diance Field (NeRF) since diffusion models are a type of
score function.

In the following section, we will introduce the prelimi-
naries of Dreamfusion, the SDS loss, and the problems of
Dreamfusion.

Dreamfusion and SDS Loss Revisit
Diffusion Model
The diffusion models (Ho, Jain, and Abbeel 2020; Sohl-
Dickstein et al. 2015; Song, Meng, and Ermon 2020; Song
et al. 2020) as a new family of state-of-the-art generative
models treat the image generation process as a noise remov-
ing process. Starting from a randomly sampled noise from
the Gaussian space, diffusion process gradually removes a
small portion of Gaussian noise step by step. Next, we dis-
cuss the training and testing phases of the diffusion model
following DDPM (Ho, Jain, and Abbeel 2020).

Training of Diffusion Model. To generate training data,
given a sample from the real data distribution x0 ∼ q(x), the
diffusion process adds random Gaussian noise by following:

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

where β is called a variance schedule with value βt ∈ (0, 1).
Since the process is defined as a Markov process, we can
also get:

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1). (2)

Considering Eq 2, Eq 1 can be further simplified as:

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (3)

where αt = 1 − βt and ᾱt =
∏T

t=1 αt. In other words, the
distribution at time step t can be directly calculated from x0

without considering intermediate steps. Once training data is
generated, the diffusion model is trained by optimizing the
MSE loss between the added random noise and the model
prediction:

L(ϕ) = E[∥ ϵ− ϵϕ(
√
ᾱtx0 +

√
1− ᾱtϵ, t) ∥2], (4)

where ϵ is the noise added to the image and ϵϕ is the noise
predicted by the diffusion model.

The generation process is indeed the reverse process of
diffusion process: to find p(xt−1) given p(xt). Formally, the
reverse diffusion process is:

pϕ(xt−1 | xt) = N (xt−1;µϕ(xt, t),Σϕ(xt, t)), (5)

where µϕ and Σϕ can be calculated from the trained dif-
fusion model ϵϕ given the output of the previous step and
current step t.

Dreamfusion and SDS Loss
In this section, we provide a description of the Dreamfusion
algorithm and the SDS loss. Methodologically, Dreamfusion
shares the same underlying principles as other gradient in-
version techniques, such as Deepdream (Mordvintsev, Olah,
and Tyka 2015), Dreaming to distill (Yin et al. 2020), and
Gradient Inversion (Yin et al. 2021). These methods seek
to optimize the input of a trained model, rather than the
model parameters. However, previous methods mainly em-
ploy pre-trained image classification networks like ResNet,
whereas Dreamfusion uses a diffusion model for distillation
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Guidance Weight
W = 100W = 50W = 25W = 1

Figure 3: A high guidance is necessary to learn good shapes.
With the guidance weight reduced from 100, the learned
shapes get weaker.

purposes. The significant differences between a classifica-
tion model and a diffusion model are twofold. Firstly, a dif-
fusion model is a generative model that can potentially per-
form better in generation tasks when compared with a classi-
fication model. Secondly, a diffusion model is a score func-
tion that directly generates an update gradient.

Formally, suppose g(θ) is the NeRF model to learn,
Dreamfusion optimizes the parameter θ by the following
SDS loss:

∇θLSDS(ϕ,x = g(θ)) ≜ Et,ϵ

[
(ϵ̂ϕ(zt; y, t)− ϵ)

∂x

∂θ

]
,

(6)
where ϵ is a randomly sampled noise and ϵ̂ϕ is calculated
from the trained diffusion model. Intuitively, the Dreamfu-
sion algorithm adds a randomly sampled noise to the NeRF
rendered image. The combined image is then fed into a
trained diffusion model to predict the added noise. Ideally,
if the rendered image is realistic, the diffusion model should
predict the noise accurately. The difference between the pre-
dicted noise and the added noise is known as the SDS loss.
It is witnessed in SDS loss that ignoring the UNet Jacobian
will improve the generation quality.

In practice, the 2D diffusion model is a conditional dif-
fusion model and the calculation of ϵ̂ϕ is based on the
classifier-free guidance (Ho and Salimans 2022):

ϵ̂ϕ = ϵϕ(zt) + w(ϵϕ(zt; y)− ϵϕ(zt)), (7)
where ϵϕ(zt; y) and ϵϕ(zt) represent the diffusion process
using the given text prompt and the null embedding. w is
the guidance weight. If the w is set too low, the generated
image will be less related to the condition y. If the w is set
too high, the generation quality will be reduced. In image
generation tasks, a typical w choice is 5 to 20. However, SDS
loss (Poole et al. 2022) requires training the 3D model with
a guidance weight w as high as 100. Without such a high
guidance value, the 3D models will not learn good shapes
as described in Dreamfusion (Poole et al. 2022) (see Sec.
3.2 and Appendix Figure 9). In our experiments, we witness
similar behaviours. We show a brief example in Fig. 3 using
text prompt “a cat”.

Understanding the Issues of SDS Loss
In this section, we will discuss the two major issues of SDS
loss: the diversity issue and the degeneration issue. These
issues are summarized in Fig. 2.

NeRF

Moving Noise 𝝐𝒎

(Learnable)

Anchor Noise 𝝐𝒂

(Fixed)

SD𝐒 𝐋𝐨𝐬𝐬 𝐄𝐪𝟖
 ෝ𝝐 (𝝐𝒎) − 𝝐𝒂

“A corgy”

Diffusion Model NR Loss (Eq 9)
∥ ෝ𝝐 (𝝐𝒂) − ෝ𝝐 (𝝐𝒎) ∥𝟐

Predicted Noise
ෝ𝝐 (𝝐𝒂)

Predicted  Noise
ෝ𝝐 (𝝐𝒎)

+

+

“A corgy”

Forward in NR Gradient Pass in NR Forward in SDS Gradient in SDS

Figure 4: The forward and backward path of our NR-SDS
algorithm. The SDS loss directly applies gradient on the
NeRF rendered image, while the NR loss requires back-
propagation on the diffusion model parameters. For the case
of latent diffusion models, the rendered image will first pass
an encoder and the noises are added to the latent features
generated by the encoder.

The diversity issue is a problem that has been previ-
ously observed in the original Dreamfusion work (see ap-
pendix Sec. A.5) and also in our own experiments. As shown
in Fig. 2, even when adjusting the random seeds, the SDS
loss struggles to generate diverse content. For example, in
the case of the dog images, the shape and texture of the
dog remain relatively unchanged despite varying the random
seeds.

The degeneration issue, as shown in Fig. 2 at the bot-
tom, is another problem with SDS loss and its variances. Al-
though the SDS loss can help the model learn good shapes
in the early stages of training, the training process eventually
collapses after longer iterations, resulting in a degeneration
issue. Even for the VSD loss in prolific dreamer (Wang et al.
2023), the texture of the generated object could sometimes
gradually disappear. This issue restricts the NeRF model
from learning object details such as dog fur. Furthermore,
we observe that the degeneration issue occurs unpredictably
and not on a fixed training step. This makes it challenging to
address this issue through methods like early stopping.

Our Method
In this section, we present our method – the Noise Recali-
bration SDS algorithm.

Resolving Diversity Issue with Single Noise
Training
We hypothesize that the lack of diversity in SDS loss and
Dreamfusion is primarily due to the large noise sampling
space. To generate the 3D representation of a scene, the
SDS algorithm samples random noise from the entire Gaus-
sian space. This enforces the generated NeRF to satisfy all
noises. In this case, the trained NeRF will finally become
the average model. In fact, the generation of one data in-
stance, whether it is an image or a 3D scene, is simply a
data point sample from the data space. In the case of 2D
generation based on Eq. 5, only T random noises are sam-
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Algorithm 1: The NR-SDS Algorithm.
Input: Diffusion Model ϵϕ, Language Prompt y,

Hyper-parameters: Total Step N .
Output: NeRF Model g(θ)

1 Initialize NeRF Model g(θ)
2 Initialize fixed anchor noise ϵa
3 Set initial learnable moving noise ϵm[t] = ϵa for all

timestep t;
4 for n = 1 to N do
5 SAMPLE diffusion time step t
6 UPDATE θ Based on Eq 9 and ϵm[t]
7 UPDATE ϵm[t] Based on Eq 8
8 RETURN g(θ);

pled to generate a single image, with T values ranging from
25 to 1000, depending on the generation steps. Therefore,
we assume in 3D generation, the generated scene does
not need to satisfy all the random noises sampled from
the entire Gaussian space as well. In its extreme case, a
3D scene only needs to satisfy one single noise when using
SDS loss. With that in mind, we propose a single noise train-
ing scheme to restrict the noise sampling process to a single
random noise sampled from the Gaussian space, i.e., training
one scene with one random noise. In the experiment section
and Fig. 6, we show that the single noise training method
helps to generate more varied content without reducing the
generation quality.

Resolving Degeneration Issue with Noise
Recalibration Loss
To understand the degeneration issue, we first consider the
SDS loss given different input images. Ideally, the SDS
should generate a high value for the unreal images and a
zero value for the real images. However, this can not be
achieved with the current SDS loss due to the high guidance
weight w (Eq. 6, Eq. 7). The reason for this is as follows:
Given the training and generation formula of the classifier-
free guidance diffusion model (Eq. 4 and Eq. 7), the training
of the original diffusion model is carried out by randomly
choosing the correct language embedding and the null em-
bedding. In other words, the training is carried out with a
guidance weight w = 1. Therefore, if the diffusion model is
well trained, it could only guarantee a zero SDS loss value
with guidance weight w = 1. Under the setting of guid-
ance weight w = 100, the difference between the language
embedding output and the null embedding output will be
greatly amplified. We show a detailed visual proof in Sup-
plementary Material. Finally, the SDS loss will still gener-
ate a relatively high response to the real images, causing the
3D model to get worse and be unable to learn good details.

Solving this problem is non-trivial because reducing the
guidance weight in the SDS loss is not a viable option.
As stated in the previous section and shown in Fig. 3, the
NeRF model requires a large guidance weight to learn cor-
rect shapes. To address this issue, we propose the Noise-
Recalibration (NR) loss.

2D Generation Comparison
NR-SDSVSDSDSAncestral 

Sampling

A hamburger

An astronaut riding a horse

A tiger eating ice cream

Figure 5: Generation comparison in 2D space.

The intuition behind NR loss is that we would like
to make the “single noise” in the single noise training
method learnable and the learnable noise could operate
well even under guidance weight w = 100. We call this
noise the learnable moving noise. To achieve this, we first
sample a fixed anchor noise, such that the learnable moving
noise running at w = 100 will finally converge to the fixed
anchor noise running at w = 1.

Specifically, we define a fixed anchor noise ϵa and a learn-
able moving noise ϵm, where the moving noise ϵm is used
to train the NeRF model and the anchor noise acts as an an-
chor to recalibrate the learnable moving noise. The Noise
Recalibration loss is defined as:

∥ϵ̂ϕ(zt; y, t, w = 1, ϵa)

− ϵ̂ϕ(zt; y, t, w = 100, ϵm[t]) ∥22 .
(8)

The NR loss gradually optimizes the moving noise to the di-
rection of ϵa at w = 1. If fully optimized, the learnable mov-
ing noise operating at w = 100 will have the same behavior
as the anchor noise operating at w = 1 and the degeneration
issue can be resolved.

The NR-SDS Algorithm
To summarize the NR-SDS algorithm, our algorithm applies
the following SDS loss and NR loss (Eq. 8):

∇θLSDS(ϕ,x = g(θ)) ≜ Et,ϵ[(ϵ̂ϕ(zt; y, t, w = 100, ϵm[t])

− ϵa)
∂x

∂θ
],

(9)
Concretely, Eq. 9 applies the SDS loss to update the NeRF

parameters. Different from the original SDS loss, instead of
randomly sampling the added noise from Gaussian space,
we fix the noise to the learnable moving noise. Eq. 8 is
the Noise Recalibration loss. We further summarize the NR-
SDS algorithm in Algorithm 1. An illustration of the for-
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SDS Baseline

NR - SDS

SDS + SNT

Figure 6: Ablation Experiments on Diversity. We run experiments with SDS baseline, SDS + Single Noise Training, and our
final NR-SDS algorithm. For SDS baseline and SDS + SNT, we manually select the best time step before degeneration. The
baseline method only generates cats with very similar gestures and textures. Our methods can better generate diversified content.

Training 
Steps 3000 10000 15000 30000 45000

SDS 
Baseline

NR - SDS

60000

Figure 7: Ablation Experiments on Degeneration Issue. We observe that our method effectively resolves the degeneration issue.
Our NeRF model learns object details when trained for long epochs, while the baseline method degenerates.

ward propagation and backward propagation can be found
in Fig. 4.

In a perfectly trained case, the Noise-Recalibration SDS
algorithm ensures the NeRF model converges to a stable
state. That is, given a real image, both Eq. 9 and Eq. 8 will
generate values close to zero.

Experiments
Implementation Details
The experiments are carried out on NVIDIA-A6000 GPUs
with 48GB memory. We use the code base from (Tang 2022)
and (Guo et al. 2023) for the implementation of SDS loss
and VSD loss. We use Instant-NGP (Müller et al. 2022) as
the backbone NeRF and stable diffusion (Rombach et al.
2022) as the 2D diffusion model.

The NeRF model is trained for 25000 iterations with 2048
sampled rays and a batch size of 1. We use a learning rate
of 1x10-3 without learning rate decay. To ensure an equi-
table comparison and mitigate the potential influence of ex-
traneous factors on the generated outcomes, we deliberately
refrain from utilizing mesh finetuning to bolster the qual-
ity of our generation results. It’s worth highlighting that our

proposed approach seamlessly integrates with DMTet fine-
tuning, as introduced in Magic3D (Lin et al. 2023) and Fan-
tasia3D (Chen et al. 2023).

Qualitative Experiments
Comparison in 2D space. We first show the generation re-
sults in 2D space in Fig. 5 as a proof of concept. In this
experiment, we start from a randomly initialized noise latent
and optimize the latent with various optimization methods.
After optimization, we use the decoder of latent diffusion
model to convert the latents to images. Compared with SDS
loss, our proposed method can generate much better results
with stunning details. Compared with concurrently proposed
VSD loss (Wang et al. 2023), our method generates com-
parable high-quality images. In the meantime, our method
only optimizes the noise space, while VSD loss requires to
finetune a Lora model. Therefore, our method only requires
around 60% as much running memory as VSD loss.

3D Ablations on the identified issues. We demonstrate
the ablation experiments on the identified issues in Fig. 6
and Fig. 7. For the diversity issue, we run the experiments
with baseline SDS loss, SDS + single noise training, and our
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A brightly colored mushroom growing on a log

A car made out of sushi

A small saguaro cactus planted in a clay pot

Ours Dreamfusion VSD

Figure 8: Our Results vs. Other Methods. We compare our method against Dreamfusion and concurrently proposed VSD loss.
We observe that our proposed method can generate high-fidelity 3D results.

NR-SDS vs. SDS (Quality) NR-SDS vs. SDS (Diversity) NR-SDS vs. Dreamfusion NR-SDS vs. VSD
Preference Score 80% 75% 67% 50%

Table 1: User Study Results

proposed NR-SDS method using the same text prompt “a
cat”. We observe that the single noise training method can
effectively improve the diversity of generations. In Fig. 7,
we observe that our method resolves the degeneration issue.

3D comparison with other methods. We also directly
compare our method with Dreamfusion (Poole et al. 2022)
by using the released images and VSD loss by running the
method with the same setting. Results are shown in Fig. 8.
We observe that our method can generate high-resolution
results with better texture details compared with Dreamfu-
sion and comparable results compared with VSD loss. More
results of generation quality and diversity can be found in
Supplementary Materials.

Quantitative Results
We conduct user studies to quantitatively evaluate our
method. Participants are given NeRF rendered videos or
multi-view images to evaluate in four different experiments.
Some generation videos can be found in Supplementary
Materials. First, a diversity comparison is conducted be-
tween the NR-SDS and SDS baseline. We generate 300
NeRFs using 100 text prompts, with each prompt training
3 NeRFs with different seeds. Participants are asked to se-
lect which set of three is more diverse. Second, we conduct
quality experiments, with 100 NeRFs trained using the NR-
SDS and SDS baseline (both use latent diffusion). Partic-
ipants are asked to select which one is of higher quality.
Thirdly, we compare our results to those Dreamfusion re-

leased generation examples and training NeRFs using the
same prompts. The Dreamfusion released examples are gen-
erated with Imagen (Saharia et al. 2022) and the weights are
not publicly available. Finally, we also compare ours against
VSD loss. The user study preference scores are listed in Ta-
ble. 1. The results of our user study indicate that our method
attains higher or comparable user preference scores in com-
parison to both baseline and contemporary methods.

NR-SDS with Even Larger Guidance Weight
In our experiments, we observe that our method remains ef-
fective with guidance weights exceeding 100, consistently
producing accurate colors. We include these results in Sup-
plementary Materials.

Conclusions, Limitation and Future Works
In this work, we identify and study the two commonly seen
problems of SDS loss, the diversity issue and the degenera-
tion issue. We propose NR-SDS algorithm to tackle the two
problems. With NR-SDS loss, we could greatly improve the
generation diversity and quality.

Future work can be done by improving the shapes of gen-
erated objects. One limitation of current method is that 2D
diffusion guided 3D generation often falls short in learning
object shapes. For example, they will suffer from the multi-
head Janus problem. One potential solution could be to add
additional 3D priors to the generation process.
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