
Semantic Segmentation in Multiple Adverse Weather Conditions
with Domain Knowledge Retention

Xin Yang1, Wending Yan2, Yuan Yuan2, Michael Bi Mi2, Robby T. Tan1

1National University of Singapore
2Huawei International Pte Ltd

e0674612@u.nus.edu, {yan.wending,yuanyuan10@huawei}.com, michaelbimi@yahoo.com, robby.tan@nus.edu.sg

Abstract

Semantic segmentation’s performance is often compromised
when applied to unlabeled adverse weather conditions. Un-
supervised domain adaptation is a potential approach to en-
hancing the model’s adaptability and robustness to adverse
weather. However, existing methods encounter difficulties
when sequentially adapting the model to multiple unlabeled
adverse weather conditions. They struggle to acquire new
knowledge while also retaining previously learned knowl-
edge. To address these problems, we propose a semantic seg-
mentation method for multiple adverse weather conditions
that incorporates adaptive knowledge acquisition, pseudo-
label blending, and weather composition replay. Our adaptive
knowledge acquisition enables the model to avoid learning
from extreme images that could potentially cause the model
to forget. In our approach of blending pseudo-labels, we not
only utilize the current model but also integrate the previously
learned model into the ongoing learning process. This collab-
oration between the current teacher and the previous model
enhances the robustness of the pseudo-labels for the current
target. Our weather composition replay mechanism allows the
model to continuously refine its previously learned weather
information while simultaneously learning from the new tar-
get domain. Our method consistently outperforms the state-
of-the-art methods, and obtains the best performance with
averaged mIoU (%) of 65.7 and the lowest forgetting (%) of
3.6 against 60.1 and 11.3 (Hoyer et al. 2023), on the ACDC
datsets for a four-target continual multi-target domain adap-
tation.

Introduction
Semantic segmentation methods face challenges in adverse
weather conditions, as these conditions significantly degrade
images. Adapting models to multiple adverse weather condi-
tions in an unsupervised and successive manner causes ad-
ditional difficulties due to substantial domain gaps among
various weather conditions, and potentially leads to forget-
ting previously learned knowledge.

Continual unsupervised domain adaptation emerges as a
potential solution to address these challenges by adapting
the model from the labeled source domain to the unlabeled
target domains in a sequential manner, e.g., ((Lin et al. 2022;
Saporta et al. 2022)). However, these methods are designed
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Image MIC on T1 → T1 after T2 → T1 after T3

Ground Truth Ours on T1 → T1 after T2 → T1 after T3

Figure 1: The illustration of our method, where the model
adapts to each target domain sequentially. MIC (Hoyer et al.
2023) fails to retain previously learned knowledge, as its per-
formance on the first target gradually deteriorates, e.g., the
sky and the side walk in Target 1 are disappearing after the
method learns Targets 2 and 3. Our method retain previously
learned knowledge while adapting to new targets.

to acquire all information from the new target, without con-
sidering whether this information might lead to a forgetting
of previously learned knowledge. Moreover, as mentioned in
(Kalb and Beyerer 2023), domain shifts across distinct ad-
verse weather conditions are primarily induced by the deteri-
orated information within low-level features extracted from
the early convolutional layers. Consequently, there is a ne-
cessity to develop a method that takes this factor into con-
sideration to effectively address the challenges posed by ad-
verse weather conditions in domain adaptation.

In this paper, we present a semantic segmentation method
that sequentially adapts the model to multiple unlabeled ad-
verse weather domains, by progressively learning a new do-
main at a time while retaining the previous learned knowl-
edge. Our method conceives three novel concepts: adaptive
knowledge acquisition, pseudo-label blending, and weather
composition replay.

In contrast to single-target unsupervised domain adapta-
tion, our sequential domain adaptation aims to both learn
from the new target and retain previously acquired knowl-
edge simultaneously. Because of this, our model needs to
identify potentially detrimental input regions that could in-
troduce significant domain gaps and lead to forgetting of
previously learned knowledge (Yang et al. 2022a; Kalb
and Beyerer 2023). To achieve this, we introduce adaptive
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knowledge acquisition by utilizing the previous model and
class-wise feature representations, resulting in a dynamic
weighting map. This dynamic weighting map acts as a con-
straint, preventing the current model from learning poten-
tially detrimental areas.

Various adverse weather conditions may exhibit similar
degradation effects (Kalb and Beyerer 2023; Li et al. 2023).
For instance, both fog and the rain veiling effect visually
look alike. Based on this similarity, models trained under
different adverse weather conditions can collaborate to en-
hance learning from the shared degradation patterns (Allen-
Zhu and Li 2020). Motivated by this idea, we propose a
pseudo-label blending strategy. This involves employing the
previous model as an auxiliary model to identify images
from the new target that share similarities with those from
the past targets. We then involve the auxiliary model (i.e.,
the previous model) to enhance our learning process in an
ensemble manner. Note that, since we use a teacher-student
framework, the term ”previous model” refers to the previous
teacher.

When operating in a sequential manner, we do not as-
sume accessibility to the images from previously learned tar-
gets. In such a scenario, to maintain the previously acquired
knowledge, we introduce a replay technique that serves as
a continuous reminder of the weather degradation patterns
encountered in the past. To implement this, we retain the
weather information acquired from different targets in the
previous steps, Once a new target is introduced, for each tar-
get image, we randomly augment each of the past weather
information instances and integrate them into random seg-
ments of the current target images. Through training on these
composite images, the model sustains and revises its com-
prehension of various weather degradations over time, even
when direct access to previously learned target domain im-
ages is unavailable. In a summary, our contributions are as
follows:
• We present an adaptive knowledge acquisition method

that guides the model to refrain from learning new con-
tents that could potentially result in forgetting.

• We introduce the concept of incorporating the previous
model into the current learning process to enhance our
method’s overall performance in an ensemble manner.

• To retain the past weather information, we propose a con-
tinuous replay of previously learned weather degrada-
tion, by randomly augmenting and integrating it into the
present target images.

Our method consistently outperforms the state-of-the-art
methods, and obtains the best performance with averaged
mIoU (%) of 65.7 and the lowest forgetting (%) of 3.6
against 60.1 and 11.3 (Hoyer et al. 2023), on the ACDC dat-
sets for a four-target continual multi-target domain adapta-
tion.

Related Work
Unsupervised domain adaptation (UDA) has been explored
extensively in recent years, with many applications rang-
ing from different vision tasks (Ganin and Lempitsky 2015;
Chen et al. 2018, 2021; Vu et al. 2019; Saito et al. 2019;

Zou et al. 2018; Li, Yuan, and Vasconcelos 2019). However,
UDA settings are limited to one source and one target, mean-
ing that the trained domain adaptive model can only work on
a certain target domain and will fail if more target domains
are involved. Hence, some researchers start to explore meth-
ods to adapt a model into multiple target domains (Peng et al.
2019; Chen et al. 2019; Yu, Hu, and Chen 2018; Gholami
et al. 2020; Nguyen-Meidine et al. 2021; Yao et al. 2022;
Roy et al. 2021).

(Isobe et al. 2021; Saporta et al. 2021; Lee et al. 2022)
adapt the model into multi-target domains in a parallel way,
where all the target domains are involved in every iteration.
(Isobe et al. 2021) maintains an expert model for each tar-
get domain, they are trained on many augmented images
and teach a common student model via a knowledge distil-
lation loss. (Saporta et al. 2021) proposes two MTDA meth-
ods, Multi-Dis and MTKT. For each target, Multi-Dis uses
two types of domain classifiers, a source vs. target classifier
and a target vs. all the other targets classifier. MTKT has a
target domain-specific decoder, and a corresponding target-
specific domain classifier for each target domain, the knowl-
edge learned from different decoders is passed to a common
decoder with knowledge distillation. (Lee et al. 2022) dis-
entangles the input images into semantic contents and style
contents, they obtain source images in target styles by swap-
ping the contents. The drawbacks of the parallel approaches
are, (1) They need additional modules/images for every tar-
get domain in every iteration, and the real-time memory con-
sumption could be a bottleneck when the number of tar-
get domains becomes larger. (2) Similar to the single-target
UDA model, when a new target domain is introduced, there
is no way to update a pretrained model, and hence a new
model will need to be trained from scratch with all the tar-
gets.

(Saporta et al. 2022) proposes a continual way to adapt a
model to multiple target domains, where the target domains
are adapted through multiple steps, and the model can be up-
dated at any time when a new target domain is introduced.
The paper also points out that due to this problem, the con-
tinual approach usually performs worse than the parallel ap-
proach.

Replay has been proven effective in addressing this pre-
serving previously learned knowledge for adverse weather
conditions (Kalb and Beyerer 2023). Existing replay tech-
niques including storing representative exemplar images
(Rebuffi et al. 2017; Hayes et al. 2020; Kang, Park, and Han
2022) and adversarially generating images in the style of
previous domains (Shin et al. 2017). However, the weather
degradation is closely coupled to the image’s physics prop-
erties (e.g., depth) (Sindagi et al. 2020; Hu et al. 2021; Yang
et al. 2022b; Li et al. 2023), so the degradation in each image
is unique and it is hard to identify a representative exemplar
image. Moreover, generating synthetic weather degradation
is still an unsolved problem (Sakaridis, Dai, and Van Gool
2018; Anoosheh et al. 2019), and there does not exist a solu-
tion to continuously generate different adverse weather con-
ditions.
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Figure 2: Our architecture for adapting a model to n adverse weather conditions in n steps in a sequential manner. The
architecture consists of several key components: (1) Adaptive knowledge acquisition, where the model is guided to avoid
learning the areas that could lead to a forgetting problem. (2) Pseudo-label blending, where the previous teacher is involved for
enhancing the pseudo-label. (3) Weather composition replay, where the weather vectors from previous steps are composed into
the current target image for revising on previously learned knowledge.

Proposed Method

Our goal is to adapt our model sequentially to multiple ad-
verse weather conditions, focusing on one weather domain
at a time, all the while retaining the knowledge gained previ-
ously. This sequential learning is necessary since we do not
assume that once we have learned a domain, the data from
that particular domain is accessible. To achieve this goal, we
begin by adapting our model to an initial weather domain.
Subsequently, we utilize the knowledge gained from the
first domain (previous domain), which includes the teacher
model and weather vectors, to aid the model’s adaptation to
the second weather domain (current domain). This process
of acquiring and retaining knowledge is iterated for each
weather domain.

Fig. 2 shows our pipeline. We progressively adapt our
model to n distinct adverse weather domains over n steps.
We feed the source images to the student model in each step
for supervised learning on semantic segmentation. As for the
target parts, from step 1 to step n− 1, our weather composi-
tion replay extracts and preserves weather vectors for every
previously encountered target domain. Then, in step n, we
compose the extracted weather vectors into the current tar-
get image. This composite image is subsequently fed into
the student model for making predictions.

We combine pseudo-labels generated by both the current
teacher model and the previous teacher model to synergis-
tically improve the quality of pseudo-labels. Our adaptive
knowledge acquisition assesses pixel-wise domain shifts
from both model-level and feature-level viewpoints. This
dynamic reassessment enables us to adjust the learning pro-
cess to the current target image, helping the model avoid
incorporating detrimental information that may result in sig-
nificant forgetting.

Adaptive Knowledge Acquisition
In this process of adaptive knowledge acquisition, we iden-
tify image regions with significant domain shifts that could
potentially trigger model forgetting. Subsequently, we dy-
namically adjust the weighting of these areas, ensuring that
while acquiring new knowledge, the model can still retain
past knowledge.

Model-Level Adjustment Following the standard unsu-
pervised domain adaptation methods (Kennerley et al. 2023;
Hoyer et al. 2023), in each step n (weather domain n), we
obtain a teacher model through the EMA (Exponential Mov-
ing Average) of a student model. We then adapt the student
model to the new target domain by learning from the soft
pseudo-labels generated by the teacher.

In this standard process, the student will quickly adapt to
the new target domain. However, certain images in the new
target domain can result in forgetting previous knowledge,
especially for images that differ significantly from those in
the previous target domain. To mitigate this potential risk,
we incorporate the teacher model from a previous target do-
main as an auxiliary model. This teacher model has not been
exposed to the new target images during training. We refer
to this teacher model as Previous-Teacher.

Our Previous-Teacher makes a prediction for each im-
age in the current step. Consequently, the confidence of
our Previous-Teacher in areas affected by the new adverse
weather degradation can be used as an indication of the de-
gree of the domain shift. Since, its confidence is low for
areas that have never been learned before. This allows our
model to selectively learn from the new target, avoiding
harmful (low confidence) areas and thereby reducing the risk
of forgetting previously acquired knowledge (Kalb and Bey-
erer 2023). To implement this idea, we define confidence as
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q:
q(x)ij = max(g(x)ij), (1)

where, g is the model and x is the input.
We compute a pixel-wise dynamic weighting mask for the

model-level adjustment, denoted as Mmod, as follows:

Mmod
ij = (1− α)qcur(x

T )ij + αqpre(x
T )ij , (2)

where xT represents the target image, qpre and qcur repre-
sent the confidence scores from the previous teacher and
the current teacher, respectively. α is a parameter to con-
trol the weights of each term, where it is large initially, and
reduces along the number of iterations. For regions where
Previous-Teacher exhibits significant low confidence, Mmod

dynamically reduces the learning weight in those areas. As
a result, the model is encouraged to prioritize exploration
in the regions that are less likely to lead to forgetting. As
the model progressively strengthens its resilience to new
weather degradations, the confidence qcur(x

T )ij in these
challenging regions increases. Simultaneously, with a de-
crease in the parameter α, the model becomes more inclined
to adaptively learn from these areas.

Feature-Level Adjustment While model-level adjust-
ment focuses on utilizing teacher models to guide the
model’s learning, feature-level adjustment aims to utilize
class-specific feature representations to quantify the domain
shift caused by weather degradation.

When a model attempts to adapt to a new adverse weather
domain, the low-level features it extracts from the early
convolutional layers are prone to degradation due to the
new weather conditions. Consequently, predictions relying
on these imprecise features could result in erroneous out-
comes and induce substantial domain shifts within the fea-
ture space. In contrast, a model capable of accurately ex-
tracting information should avoid notable domain shifts in
the feature space. Therefore, we leverage this feature infor-
mation to assess the extent of domain shifts.

To implement this, we first define the feature represen-
tations. Based on the ground-truth of a source image, we
partition the feature maps for different classes and calculate
their average for each class, yielding class-wise source fea-
ture vectors. We then compute the exponential moving av-
erage (EMA) of the source feature vectors, denoted as SR.
Compared to the source feature vectors, SR can filter out
images that are different from the typical source images, and
thus can provide more representative features.

Similarly, we partition and calculate the average of the
target feature maps according to the corresponding pseudo-
labels, resulting in target feature vectors. As our objective
involves dynamically assigning weights to each target im-
age, we directly employ the target feature vectors as the tar-
get feature representation, denoted as TR, for every image.
Following this, we construct a weighting map based on the
distances between SR and TR:

M feat = max(0, 1− (TRc1 − SRc1)
2∑C

c=1(TRc − SRc1)
2
), (3)

where c1 represents the predicted class, and C is the number
of all the predicted classes. In this equation, we calculate the
relative distance between SR and TR for class c1.

Intuitively, as shown in Fig. 2, within the feature space,
for the target feature representations of Class 1, if they
closely resemble the source feature representations of the
same class, the domain shift is probably minor. This implies
that learning in these areas would result in lesser chances
of significant forgetting. Conversely, when we notice that
the target feature representations are considerably distant
from the source feature representations of the same class
(as illustrated in Class 2 in the figure), it indicates that the
model might have captured degraded information from the
image. Training within these regions can lead to substantial
alterations in the feature space, potentially affecting the pre-
trained feature structures (Hoyer, Dai, and Van Gool 2022;
Su et al. 2023). In such scenarios, our objective is to mitigate
the possibility of forgetting by constraining the model from
learning based on this information.

Pseudo-Label Blending
By integrating Previous-Teacher with the current teacher
model, we can effectively ensemble them to enhance the
robustness of the pseudo-labels (Allen-Zhu and Li 2020).
We achieve this using both Previous-Teacher and its target
feature representations. First, we utilize both the Previous-
Teacher and the current teacher model to generate predic-
tions for the current target image. Based on the confidences
of these predictions, we generate a binary mask, denoted
as M con, which indicates the regions where the Previous-
Teacher exhibit higher confidence compared to the current
teacher,

M con
ij =

{
1, if qpre(xT )ij > qcur(x

T )ij
0, otherwise

, (4)

As discussed in the feature-level adjustment, if Previous-
Teacher demonstrates greater robustness to an area than
the current teacher for a specific image segment, the corre-
sponding extracted target feature representations should be
closer to the source feature representations. Hence, we also
compute a weighting map using the equation mentioned in
Eq. (3), but using the target feature representations gener-
ated from Previous-Teacher. We denote this weighting map
as M feat

pre . We can then obtain the refined pseudo-label, de-
noted as p.

p(xT )ij = argmax
c

(qcur(x
T )ijc+M conM feat

pre qpre(x
T )ijc).

(5)
We incorporate reliable predictions from the previously
learned models into the current learning process. This
blending of pseudo-labels enables the model to effectively
learn the similar patterns in different targets, leveraging the
knowledge and expertise accumulated by both Previous-
Teacher and the current teacher model.

Weather Composition Replay
We propose a replay technique utilizing the weather infor-
mation obtained from different weather domains. As men-
tioned in (Kalb and Beyerer 2023), the domain shifts intro-
duced by weather degradation can be captured in the fre-
quency domain by the amplitude spectrum. Hence, when
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Figure 3: Examples of composing night and fog weather
vectors into snow and rain images, respectively.

adapting to a new target domain, we begin by translating
each new target image into the frequency domain, and sep-
arate the amplitude from the phase. Although each target
image may contain some image-specific information, they
are all subjected to the same adverse weather conditions.
By averaging the extracted amplitude, we can then suppress
image-specific information while preserving the weather
vectors, in frequency domain.

As illustrated in Fig. 2, once the weather vectors are ex-
tracted, we keep them to future steps. In step n, we apply
augmentations on the stored weather vectors from step 1 to
step n− 1, and randomly inject them into the current target
images as follow:

xT2
r = Mrx

T2 + (1−Mr)iFT(P
T2, σAT1), (6)

where, xT2 is the current target image, xT2
r is the com-

posed images for the model to learn, PT2 and AT1 represent
the phase component of the current image and the weather
vectors of the previous domain, respectively. σ represents a
randomly determined volume of AT1, where a larger vol-
ume indicates a stronger dominance of the previous weather
information in the area. iFT represents an inverse Fourier
Transformation to translate back the images from frequency
domain. Mr represents a random segment in that image, as
augmenting a segment can be more efficient than augment-
ing the whole image (Yun et al. 2019; Olsson et al. 2021).
This process is repeated for each weather vector we ob-
tained, for a total of n− 1 times.

This replay technique, utilizing the composed images, en-
sures that the model continuously updates its understanding
of adverse weather conditions while retaining and refining
its knowledge from past experiences.

Experimental Results
In this section, we present a comprehensive evaluation of our
method under multiple adverse weather conditions in a se-
quential setting. We begin by describing the datasets used in
our experiments, followed by the architectures and param-
eters employed. Next, we assess our model’s performance
both quantitatively and qualitatively, demonstrating its ef-
fectiveness in handling diverse weather conditions. Lastly,
we conduct ablation studies to evaluate the importance of
each factor in our method.

Datasets We utilize Cityscapes (Cordts et al. 2016) as our
source domain, consisting of real-world street scene im-
ages captured under daytime, clear weather conditions. For
the target dataset, we employ ACDC (Sakaridis, Dai, and

Van Gool 2021), which contains real-world street scene im-
ages captured under four adverse weather conditions: night-
time, rain, fog, and snow. In our experiments, each of these
four adverse weather conditions is treated as a separate tar-
get, and our models are adapted to these targets sequentially.

Baseline Models In our experiments, we conduct compar-
isons with the state-of-the-art unsupervised domain adap-
tation method, MIC (Hoyer, Dai, and Van Gool 2022).
To ensure a fair comparison, we use the same architec-
ture, DAFormer, in all comparisons. Additionally, we em-
ploy identical optimization strategy, including the number
of epochs, batch sizes, domain adaptation techniques and the
pretrained backbone, as suggested in MIC.

Since our method is not limited by the model’s architec-
ture, we also compare it with two parallel and one continual
general-purpose multiple target domain adaptation methods,
MTKT, Multi-Dis, and MuHDi (Saporta et al. 2021, 2022).
Note, for the parallel setting methods (Saporta et al. 2021),
they learn all the targets simultaneously, their models are not
affected by the forgetting problem. For the continual setting
method (Saporta et al. 2022), it provides a forgetting pre-
vention technique, but this method is not designed specifi-
cally for adverse weather conditions. Once again, to main-
tain fairness in the comparison, we utilize the same archi-
tecture, DeeplabV2 (Chen et al. 2017), and employ identi-
cal optimization strategy, domain adaptation techniques and
pretrained backbone, following (Saporta et al. 2022).

Regarding our method’s parameters, we initialize the
value of α to be 0.8 and gradually decrease it to 0.2 as the
number of iterations progresses. When injecting the previ-
ous weather information into the new target image, we ran-
domly generate σ between 0.2 and 1.2, and the sizes of the
affected area are randomly selected in the target image, rang-
ing from one-third to half of the image size. All these param-
eters are decided empirically.

Evaluation Metrics Cityscapes and ACDC have the same
segmentation class protocols, hence we apply the same pro-
tocol in our evaluation. We use the percentage of Intersection
over Union (IoU %) as our evaluation metric for the effec-
tiveness of the knowledge acquisition from a new target, the
higher the better (↑). As for the knowledge retention, we use
Accumulated Forgetting, which is calculated as follow,

A.F. =
K−1∑
k=1

(mIoUk,k −mIoUk,K), (7)

where, K is the number of targets. We adapt the model to
K targets in K steps. mIoUk,k represents the initial perfor-
mance of target k at step k, and mIoUk,K represents the
final performance of target k at the last step, K. A smaller
Accumulated Forgetting indicates a lesser degree of forget-
ting in the model (↓).

Quantitative Results
We conduct experiments on four ACDC adverse weather
conditions: nighttime, rain, fog, and snow. As shown in
Tab. 1, our models outperformed other methods on all tar-
gets. Specifically, our models surpassed AdvEnt (Vu et al.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

6562



Cityscapes→Night→Rain→Fog→Snow

Method Forgetting
Prevention Night Rain Fog Snow mIoU

Avg. ↑
A.F.
↓

MTKT (Saporta et al. 2021) - 21.5 39.4 48.8 38.7 37.1 -
Multi-Dis (Saporta et al. 2021) - 20.5 38.5 43.6 36.8 34.8 -
AdvEnt (Vu et al. 2019) ✗ 16.9 (-9.0) 36.9 (-3.2) 40.8 (-10.3) 35.1 32.4 22.4
MuHDi (Saporta et al. 2022) ✓ 17.6 (-8.3) 37.2 (-3.4) 44.4 (-6.7) 36.3 33.9 18.4
Ours (DeeplabV2) ✓ 24.0 (-1.9) 42.0 (-1.3) 50.8 (-1.1) 44.0 40.2 4.3
MIC (Hoyer et al. 2023) ✗ 34.7 (-7.2) 65.8 (-2.8) 78.4 (-1.3) 65.2 60.1 11.3
Ours (DAFormer) ✓ 39.0 (-2.9) 70.6 (-0.9) 80.4 (-0.2) 72.6 65.7 3.6

Table 1: Quantitative results of Ours compare to the existing unsupervised domain adaptation methods and continual multiple
target domain adaptation methods, evaluated against four targets, ACDC nighttime, rain, fog and snow. Bold numbers are the
best scores for different backbones. The mIoU (%) of each target, the mIoU average of all the targets (the higher the better),
and the accumulated forgetting, A.F. (the lower the better) are presented. The number in parentheses ’()’ indicates changes in
performance, with a smaller number indicating a more pronounced forgetting effect. Our method outperforms the best existing
method with forgetting prevention on DeeplabV2 backbone, by 6.3 mIoU (%) in average across all the targets, and 14.1 in the
accumulated forgetting. As for the DAFormer backbone, our method outperforms the best domain adaptation method by 5.6
mIoU (%) in average across all the targets, and 7.7 in the accumulated forgetting.

2019) and MIC (Hoyer et al. 2023) by 8.2 mIoU (%) and 5.6
mIoU (%) in mIoU Avg., and 18.1 and 7.7 in accumulated
forgetting, respectively. The highest mIoU and the small-
est forgetting across all previous targets indicate the effec-
tiveness of our models’ knowledge acquisition and retention
when adapting to different targets.

We compared our method to MuHDi (Saporta et al.
2022), which offers a general-purpose forgetting prevention
technique for multiple targets. Our method outperformed
MuHDi by 6.3 mIoU (%) in mIoU Avg. and 14.1 in ac-
cumulated forgetting. Moreover, while the parallel multiple
target domain adaptation methods do not suffer from the for-
getting problem, our model still outperforms their perfor-
mance in mIoU Avg. by 3.1 mIoU (%) and 5.4 mIoU (%),
respectively. This highlights the importance of our method’s
weather-specific knowledge acquisition and retention.

Without Source In certain circumstances, access to the
source data may not be available in different steps. In this
section, we evaluate our method when we can only access
the current target domain in each step. Since the source
datasets are inaccessible, we do not apply M feat and M feat

pre
in this scenario. We use MIC as the baseline for compari-
son. Note, for both MIC and our method without source, we
provide a model finetuned on the source, following (Kalb
and Beyerer 2023). Both methods are required to adapt this
model to different adverse weather conditions. For AdvEnt
backbone, it requires the source dataset for domain adapta-
tion, so models with this backbone are not involved.

The results are presented in Tab. 2, with the absence of
the source image dataset, MIC’s accumulated forgetting in-
creased significantly from 11.3 (%) to 23.9 (%), by 12.6 (%),
where our model is less affected, with only an increase of ac-
cumulated forgetting by 6.7 (%).

Qualitative Results
We first show our qualitative results of our knowledge ac-
quisition ability in Fig. 4, for a four-target sequential do-

Cityscapes→Night→Rain→Fog→Snow

Method Night Rain Fog Snow
mIoU
Avg. ↑

A.F.
↓

MIC (w/o) 30.8 63.0 74.5 69.2 57.5 23.9
Ours (w/o) 36.7 69.8 75.9 69.6 63.0 10.3

Table 2: Quantitative comparisons between MIC (Hoyer
et al. 2023) and our method, both without source (w/o).

Cityscapes→Night→Rain→Fog→Snow
Method mIoU Avg. ↑ A.F. ↓

AdvEnt 32.4 22.4
Blending 34.0 19.6

Table 3: Ablation studies of knowledge acquisition with
pseudo-label blending.

main adaptation (on night, rain, fog, and snow). We evalu-
ate our best model Ours (DAFormer) against MIC, and the
ground truths semantic segmentation maps. We can see that
our method can predict more precise semantic segmentation
maps, and also has fewer false positives compared to MIC in
all the target domains. More qualitative results are provided
in the supplementary materials.

Ablation Studies
Knowledge Acquisition and Retention We begin by
evaluating the effectiveness of our adaptive knowledge ac-
quisition and weather composition replay techniques, as
they are specifically designed for both knowledge acquisi-
tion and knowledge retention. In Tab. 3, we report the per-
formance changes of four models: AdvEnt, AdvEnt with
model-level assistance, AdvEnt with both model-level and
feature-level assistance, and AdvEnt with adaptive knowl-
edge acquisition and weather composition replay tech-
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Image MIC (2023) Ours Ground Truth

Figure 4: Comparisons on the semantic segmentation performance with MIC (Hoyer et al. 2023), Ours (DAFormer), and ground
truths on ACDC (Val.) under rainy, foggy, and snowy weather conditions following sequential multitarget domain adaptation.

Cityscapes→Night→Rain→Fog→Snow
Progressive Replay A.F.

↓Model
Level

Feature
Level

22.4
✓ 12.9
✓ ✓ 9.6
✓ ✓ ✓ 4.5

Table 4: Ablation studies of our knowledge retention
techniques, including adaptive knowledge acquisition and
weather composition replay.

niques. All these models are trained to adapt to four adverse
weather conditions using source data, and it is evident that
each component contributes to preventing forgetting.

Pseudo-Label Blending Pseudo-label blending is de-
signed for exploring the similar patterns among different
targets to improve the knowledge acquisition on the current
target. We evaluate the knowledge acquisition with two ap-
proaches: AdvEnt and AdvEnt with pseudo-label blending.
The results are presented in Tab. 3. We can observe that
pseudo-label blending enhances the average mIoU across
the four targets, without causing additional forgetting issues.

Combining all our proposed techniques, we achieve an
enhanced performance on the new target, while retain the
most knowledge from the previous targets.

Conclusion
We have proposed a novel method that adapts a model to
multiple unlabeled adverse weather conditions sequentially.
We use both model-level and feature-level knowledge to as-
sist the model avoid learning from the harmful contents from
the new target image that can lead to a forgetting of the
previously learned knowledge. To support our current learn-
ing process, we have also proposed a method to involve the
previously obtained model to jointly improving the pseudo-
labels for the current target. We propose a weather composi-
tion replay technique, which compose the previously learned
weather information to the current target image, enabling the
model learn from the current target image while revising the
previously learned weather information. We train two mod-
els using our method on both DeeplabV2 and DAFormer,
respectively, to demonstrate that our method can be gener-
alized to different architectures. We evaluate these models
on several benchmark adverse weather conditions with dif-
ferent settings and found that our models outperform many
methods in different settings.
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